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Abstract

Semantic segmentation is still a challenging task for parsing
diverse contexts in different scenes, thus the fixed classifier
might not be able to well address varying feature distribu-
tions during testing. Different from the mainstream literature
where the efficacy of strong backbones and effective decoder
heads has been well studied, in this paper, additional contex-
tual hints are instead exploited via learning a context-aware
classifier whose content is data-conditioned, decently adapt-
ing to different latent distributions. Since only the classifier
is dynamically altered, our method is model-agnostic and can
be easily applied to generic segmentation models. Notably,
with only negligible additional parameters and +2% infer-
ence time, decent performance gain has been achieved on
both small and large models with challenging benchmarks,
manifesting substantial practical merits brought by our sim-
ple yet effective method. The implementation is available at
https://github.com/tianzhuotao/CAC.

1 Introduction
As a fundamental tool, semantic segmentation has profited
a wide range of applications (Zhang et al. 2022a; Tian et al.
2019). Recent advances regarding model structure for boost-
ing segmentation performance are fastened to stronger back-
bones and decoder heads, focusing on delicate designs to
yield high-quality features, and then they all apply a classi-
fier to make predictions.

However, the classifier in the recent literature is composed
of a set of parameters shared by all images, leading to an
inherent challenge during testing that the fixed parameters
are required to handle diverse contexts contained in various
samples with different co-occurring objects and scenes, e.g.,
domain adaptation (Xin Lai and Jia 2021) Even for pixels in
the same category, embeddings from different images cannot
be well clustered as shown in Figure 1, potentially inhibit-
ing the segmentation performance with the fixed classifier.
This observation induces a pertinent question: whether the
classifier can be enriched with contextual information for
individual images.

Consequently, in this paper, we attempt to yield context-
aware classifier whose content is data-conditioned, decently
describing different latent distributions and thence making
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Figure 1: Visualizations of latent features of Bed in different
scenes. Red, blue and green represent features belonging to
Bed in the left three images respectively, and gray denotes
the embeddings of the other co-occurring classes.

accurate predictions. To investigate the feasibility, we start
from an ideal scenario where the precise contextual hints are
provided to the classifier by the ground-truth label that en-
ables forming perfect categorical feature prototypes to sup-
plement the original classifier. As illustrated in Figure 4, the
classifier enriched with impeccable contextual priors signif-
icantly outperforms the baseline in both training and test-
ing phases, certifying the superior performance upper bound
achieved by the context-aware classifier.

Yet, ground-truth label is not available during testing;
therefore, in an effort to approximate the aforementioned
oracle situation, we instead let the model learn to yield the
context-aware classifier by mimicking the predictions made
by the oracle counterpart. Nevertheless, treating elements
equally during the imitation process is found deficient, in
that the informative cues may be suppressed by those not
instructive. To alleviate this issue, the class-wise entropy is
leveraged to accommodate the learning process.

The proposed method is model-agnostic, thus it can be
applied to a wide collection of semantic segmentation mod-
els with generic encoder-decoder structures. To this end,
with our method, as shown in Figure 2, significant perfor-
mance gains have been constantly brought to both small and
large models without compromising the model efficiency,
i.e., only about 2% increase on inference time and a few ad-
ditional parameters, even boosting the small model OCRNet
(HR18) (Yuan and Wang 2018; Sun et al. 2019) to reach
higher performance than the competitors with much more
parameters. To summarize, our contributions are as follows.

• We propose to learn the context-aware classifier whose
content varies according to different samples, instead of
a static one used in common practice.

• To make the context-aware classifier learning tractable,
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Figure 2: Effects on model performance (mIoU) and effi-
ciency (parameters and inference time) on ADE20K (Zhou
et al. 2017). Detailed results are shown in Table 1.

an entropy-aware KL loss is designed to mitigate the ad-
verse effects brought by information imbalance.

• Our method is easy to be plugged into other existing seg-
mentation models, achieving considerable improvement
with little compensation on efficiency.

2 Related Work
Semantic segmentation is a fundamental yet challenging
task where precise pixel-wise predictions are needed. How-
ever, models cannot make prediction for each position
merely based on its RGB values, thus broader contextual in-
formation are exploited to achieve decent performance.

FCN (Shelhamer, Long, and Darrell 2017) proposes to
adopt the convolution layers to tackle the semantic segmen-
tation task. Then, well-designed decoders (Noh, Hong, and
Han 2015; Badrinarayanan, Kendall, and Cipolla 2017; Ron-
neberger, Fischer, and Brox 2015) are proposed to gradu-
ally up-sample the encoded features in low resolution, so as
to retain sufficient spatial information for yielding accurate
predictions. Besides, since the receptive field is important
for scene parsing, dilated convolutions (Chen et al. 2018a;
Yu and Koltun 2016), global pooling (Liu, Rabinovich, and
Berg 2015) and pyramid pooling (Chen et al. 2018a; Zhao
et al. 2017; Yang et al. 2018; Tian et al. 2020; Hou et al.
2020) are proposed for further enlarging the receptive field
and mining more contextual cues from the latent features ex-
tracted by the backbone network. More recently, pixel and
region contrasts are exploited (Wang et al. 2021; Xin Lai
and Jia 2021; Hu, Cui, and Wang 2021; Jiang et al. 2021;
Cui et al. 2022b).

Also, transformer performs dense spatial reasoning, thus
it is adopted in decoders for modelling the long-range re-
lationship in the extracted features (Yuan and Wang 2018;
Zhao et al. 2018; Zhang et al. 2022b; Cui et al. 2022a;
Zhang et al. 2018; Fu et al. 2019; Huang et al. 2019; Yuan,
Chen, and Wang 2020; Cheng, Schwing, and Kirillov 2021).
Transformer-based backbones take a step further because the
global context can be modeled in every layer of the trans-
former, achieving new state-of-the-art results. Concretely,
by applying a pure transformer ViT (Dosovitskiy et al. 2021)
as the feature encoder, (Zheng et al. 2021; Strudel et al.
2021) set up new records on semantic segmentation against
the other convolution-based competitors, and Swin Trans-
former (Liu et al. 2021) further manifests the superior per-
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proposed pipelines.

formance with the decoder head of UperNet (Xiao et al.
2018). Besides, SegFormer (Xie et al. 2021) is a framework
specifically designed for segmentation by combining both
local and global attentions to yield informative representa-
tions.

In summary, the mainstream of research aiming at im-
proving segmentation model structures focuses on either de-
signing backbones for feature encoding or developing de-
coder heads for producing informative latent features, and
the classifier is seldom studied. Instead, we exploit the se-
mantic cues in individual samples via learning to form the
context-aware classifiers, keeping the rest intact.

3 Our Method
3.1 Motivation
A generic deep model can be deemed as a composition of
two modules: 1) feature generator G and 2) classifier C. The
feature generator G receives the input image x and projects
it into high-dimensional feature f ∈ R[hw×d] where h, w
and d denote the height, width and dimension number of
the feature f , respectively. Necessary contextual informa-
tion is enriched in the extracted feature by the feature gen-
erator, ensuring the classifier C ∈ R[n×d] can make pre-
diction p ∈ R[hw×n] for n classes on different positions
individually. Put differently, the aforementioned process im-
plies that the classifier should serve as a feature descriptor
whose weights are used as decision boundaries in the high-
dimensional feature space, decently describing the feature
distribution and making the judgment, i.e., pixel-wise pre-
dictions.

However, images for semantic segmentation usually have
distinct contextual hints, thus we conjecture that using the
universal feature descriptor, i.e., classifier, shared by all test-
ing samples might not be the optimal choice for parsing local
details for the individual ones. This inspires us to explore
a feasible way by which the classifier becomes “context-
aware” to different samples, improving the performance but
keeping the structure of the feature generator intact, as ab-
stracted in Figure 3.
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Figure 4: Visual comparison between train (left) and
val (right) mIoU curves. Results are obtained with
UperNet+Swin-Tiny (Xiao et al. 2018; Liu et al. 2021) on
ADE20K (Zhou et al. 2017).

3.2 Is Context-Aware Classifier Necessary?
With an eye towards enriching contextual cues to the clas-
sifier, essential information should be mined from the ex-
tracted features. To verify the hypothesis that the proposed
context-aware classifier is conducive to the model perfor-
mance, we start with a case study regarding the oracle sit-
uation where the contextual information is exactly enriched
with the guidance of ground-truth annotation that can offer
precise contextual prior.

Specifically, given the extracted feature map f ∈
R[hw×d] and the vanilla classifier C ∈ R[n×d] of n classes,
the pixel-wise ground-truth annotation y ∈ R[hw] can be ac-
cordingly transformed into n binary masks y∗ ∈ R[n×hw]

indicating the existence of n classes in y. Then, we can
obtain the categorical prototypes Cy ∈ R[n,d] by applying
masked average pooling (MAP) with y∗ and f :

Cy =
y∗ × f∑hw
j=1 y∗(·, j)

. (1)

Then, the oracle context-aware classifier Ay ∈ R[n,d] is
yielded by taking the merits from both Cy and C with a light-
weight projector θy that is composed of two linear layers.
This process can be expressed as

Ay = θy(Cy ⊕ C), (2)

where ⊕ denotes the concatenation on the second dimen-
sion. An alternative choice is simply adding Cy and C, while
experimental results in Table 5 show that concatenation with
projection leads to better performance. Finally, the predic-
tion py obtained with the oracle context-aware classifier Ay

is yielded as:

py = τ · η(f)× η(Ay)
⊤, (3)

where η is the L-2 normalization operation along the second
dimension, thus Eq. (3) is calculating the cosine similarities.
τ scales the output value range from [-1,1] to [-τ , τ ], so that
py can be decently optimized by the standard cross-entropy
loss. We empirically set τ to 15 in experiments. The neces-
sity of cosine similarity and sensitivity analysis regarding τ
are discussed in Section 4.3.

Results and discussion. As shown by the red and blue
curves in Figure 4, by simply substituting the original classi-
fier C with the oracle context-aware classifier Ay , samples of
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Figure 5: Pipeline for learning context-aware classifier.

different classes can be better distinguished via a better fea-
ture descriptor serving as the decision boundary. It implies
that additional detailed co-occurring semantic cues condi-
tioned on individual testing samples have been exploited by
Ay , so as to achieve preferable performance on both training
and validation sets during both training and testing phases.

However, Ay is obtained with the ground-truth annota-
tion that is only available during model training. To make
it tractable for boosting the testing performance, learning to
form such context-aware classifiers conditioned on the con-
tent of individual samples takes the next step.

3.3 Learning Context-Aware Classifier
Without ground-truth labels, a natural modification to the or-
acle case is to use prediction p instead of ground-truth label
y∗ to approximate the oracle contextual prior. The overall
learning process is illustrated in Figure 5.

Specifically, we note that the prediction p ∈ R[hw×n]

refers to the results got with the original classifier, i.e.,
p = f ×C⊤. Therefore, the estimated contextual prototypes
Cp ∈ R[n×d] are yielded with p as

Cp =
σ(p)⊤ × f∑hw
j=1 σ(p)

⊤(·, j)
=

σ(f × C⊤)⊤ × f∑hw
j=1 σ(f × C⊤)⊤(·, j)

, (4)

where σ is Softmax operation applied on the second di-
mension. Similar to Eq. (2), the context-aware classifier
Ap ∈ R[n,d] is yielded by processing the concatenation of
the estimated contextual prior Cp and the original classifier
C as shown in Eq. (5):

Ap = θp(Cp ⊕ C), (5)

where θp denotes the projector that has the same structure
as θy . Also, prediction pp represents the result got from the
temporarily estimated context-aware classifier Ap as shown
in Eq (6).

pp = τ · η(f)× η(Ap)
⊤. (6)

We find that adopting the context-aware classifier to calcu-
late the cosine similarities yields better results than the com-
monly used dot product, because the former helps alleviate
the issues that stem from the instability of the individually
generated Ay and Ap. Contrarily, simply replacing the dot
product used by the original classifier with cosine similarity
is not profitable to the overall performance. More detailed
discussions and experiments are shown in Section 4.3.
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Optimization. Using a single pixel-wise cross-entropy
(CE) loss Lce

p to supervise pp seems feasible for learning
the context-aware classifier. However, as shown in later ex-
periments in Table 2, standard CE loss brings incremental
improvement to the baseline because, compared to the pre-
cise prior offered by the ground-truth y, the uncertainty con-
tained in p makes the estimated categorical prototypes Cp
less reliable than the universally shared classifier C, poten-
tially making the projector θp tend to trivially neglect Cp.

As discussed in Section 3.2, the oracle context-aware clas-
sifier Ay yielded with ground-truth label is a better distribu-
tion descriptor for each sample, thus it achieves much bet-
ter performance than the original classifier C. Therefore, in-
spired by the practices in knowledge distillation (Hinton,
Vinyals, and Dean 2015) and incremental learning (Li and
Hoiem 2016), as a means to transfer or retain necessary in-
formation, we additionally incorporate KL divergence LKL

to regularize the model such that it is encouraged to yield
more informative Ap by mimicking the prediction py of the
oracle situation Ay . In other words, useful knowledge is dis-
tilled from Ay to Ap:

LKL = − 1

hw

hw∑
i=1

n∑
j=1

σ(py)
i,j · log σ(pp)

i,j , (7)

where h, w and n denote height, width and class number,
and σ represents the Softmax operation applied to the second
dimension of py ∈ R[hw,n] and pp ∈ R[hw,n]. Gradients
yielded by LKL will not be back-propagated to py .

In addition to Lce
p and LKL, CE losses applied to p and

py , denoted as Lce and Lce
y respectively, are also optimized,

intending to ensure the quality of the estimated and the ora-
cle prototypes. To this end, the training objective L is:

L = Lce + Lce
p + Lce

y + λKLLKL. (8)

Entropy-aware distillation. The KL divergence LKL in-
troduced in Eq. (7) distills the categorical information from
Ay to Ap, so as to let the model learn to approximate the
oracle case. Also, for segmentation, the one-hot label is
not always semantically accurate because it cannot reveal
the actual categorical hints in each image, but soft targets
py that are estimated in the local oracle situation can of-
fer such information for distillation. Still, even if individ-
ual co-occurring contextual cues have been considered in the
above-mentioned method, we observe another issue that in-
hibits the improvement in semantic segmentation.

However, the impact of the informative soft targets may
be overwhelmed by those less informative because they are
treated equally in Eq. (7), causing inferior performance as
verified in later experiments. Therefore, adjusting the contri-
bution of each element according to the level of information
could be beneficial for transferring knowledge in Eq. (7).

In information theory, entropy H measures the “amount
of information” in a variable. For the i-th element on the
pixel-wise prediction py ∈ R[hw,n], Hi is calculated as:

Hi = −
n∑

j=1

σ(py)
i,j · log σ(py)

i,j i ∈ {1, ..., hw}, (9)

where σ represents the Softmax operation on the second di-
mension of py . As shown in later experiments, adopting the
prediction py yielded with the oracle contextual prior to es-
timate H brings preferable results than pp and p. Then, by
incorporating the entropy mask H ∈ R[hw], the distillation
loss LKL introduced in Eq. (7) is accordingly updated as:

LKL =
−1∑hw
i=1 Hi

hw∑
i=1

n∑
j=1

Hiσ(py)
i,j log σ(pp)

i,j . (10)

Besides, in semantic segmentation, multiple classes usu-
ally exist in a single image, thus the propagated information
may still bias towards the classes of the majority. To allevi-
ate this issue, the distillation loss is calculated independently
for different categories. Finally, LKL is formulated as:

LKL =
−1

n

n∑
k=1

∑hw
i=1

∑n
j=1 Mi

kHiσ(py)
i,j log σ(pp)

i,j∑hw
i=1 Mi

kHi

(11)
where the binary mask Mk = (y == k) indicates the exis-
tence of the k-th class.

We note that though it seems to be attainable to directly
apply LKL to regularize the original output p instead of
pp yielded by the estimated context-aware classifier, experi-
ments in Table 5 show that applying LKL to p is less effec-
tive, certifying the importance of the context-aware classi-
fier. On the other hand, as shown in Table 2, removing LKL

results in inferior performance, manifesting the fact that both
LKL and context-aware classifier are indispensable.

Discussion with self-attention. Self-attention (SA) dy-
namically adapts to different inputs via the weighing matrix
obtained by multiplying the key and query vectors yielded
by individual inputs. Yet, the intrinsic difference is that SA
only adjusts features to diverse contexts, leaving the decision
boundary in the latent space, i.e., the classifier, untouched,
while the proposed method works in another direction by al-
tering the decision boundary according to the contents of
various scenarios. As shown in Section 4.2, our method
is complimentary to popular SA-based designs, e.g., Swin
Transformer (Liu et al. 2021) and OCRNet (Yuan, Chen, and
Wang 2020), by achieving preferable improvements without
deprecating the efficiency.

4 Experiments
4.1 Implementation
We adopt two challenging semantic segmentation bench-
marks (ADE20K (Zhou et al. 2017) and COCO-Stuff
164K (Caesar, Uijlings, and Ferrari 2016)) in this pa-
per. Models are trained and evaluated on the training and
validation sets of these datasets respectively. Results of
Cityscapes (Cordts et al. 2016) and Pascal-Context (Mot-
taghi et al. 2014) are shown in the supplementary due to the
page limit. The convolution-based and transformer-based
models are investigated by following their default training
and testing configurations. Both single- and multi-scale re-
sults are reported. Different from the single-scale results that
are evaluated on the original size, the multi-scale evaluation
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ADE20K Stuff 164K
Head Backbone fps #params. s.s. m.s. s.s. m.s.
FCN MobileNet-V2 51.10 9.82M 19.71 19.56 15.28 17.01

+ Ours MobileNet-V2 49.46 10.61M 37.40 39.09 25.37 27.17
DeepLab-V3+ MobileNet-V2 38.42 15.35M 34.02 34.82 31.18 32.01
+ Ours MobileNet-V2 36.25 16.13M 39.34 41.28 34.71 35.81

OCRNet HRNet-W18 14.62 12.18M 39.32 40.80 31.58 32.34
+ Ours HRNet-W18 14.37 12.97M 44.47 47.16 39.12 40.65

UperNet ResNet-50 24.06 66.52M 42.05 42.78 39.86 40.26
+ Ours ResNet-50 23.37 67.30M 45.24 46.30 41.26 42.30

DeepLab-V3+ ResNet-50 24.09 43.69M 43.95 44.93 40.85 41.49
+ Ours ResNet-50 23.54 44.48M 46.29 47.56 42.99 43.97

OCRNet HRNet-W48 13.78 70.53M 43.25 44.88 40.40 41.66
+ Ours HRNet-W48 13.33 71.32M 45.68 48.13 42.64 43.53

UperNet ResNet-101 19.65 85.51M 43.82 44.85 41.15 41.51
+ Ours ResNet-101 19.49 86.30M 46.06 47.74 43.13 43.84

DeepLab-V3+ ResNet-101 16.39 62.68M 45.47 46.35 42.39 42.96
+ Ours ResNet-101 16.03 63.47M 47.25 48.41 44.21 45.10

UperNet Swin-Tiny 20.38 59.94M 44.51 45.81 43.83 44.58
+ Ours Swin-Tiny 19.96 60.73M 46.91 49.03 44.57 45.83

UperNet Swin-Base† 14.63 121.42M 50.04 51.66 47.67 48.57
+ Ours Swin-Base† 14.38 122.20M 52.00 53.52 48.26 49.55

UperNet Swin-Large† 10.54 233.96M 52.00 53.50 47.89 48.93
+ Ours Swin-Large† 10.44 234.75M 52.87 54.43 48.82 50.00

Table 1: Performance Comparison on ADE20K (Zhou et al. 2017) and COCO-Stuff 164K (Caesar, Uijlings, and Ferrari 2016).
Single-scale (s.s.) and multi-scale (m.s.) evaluation results are reported, and values of fps (frames per second) are obtained
with resolution 512 × 512 on a single NVIDIA RTX 2080Ti GPU. Models marked with † are pre-trained on ImageNet-22K
following the practice mentioned in (Liu et al. 2021).

conducts inference with the horizontal flipping and scales of
[0.5, 0.75, 1.0, 1.25, 1.5, 1.75].

The projectors θy and θp are both composed of two linear
layers ([2d × d/2] → [d/2 × d], d = 512) with an inter-
mediate ReLU layer. The loss weight λKL and the scaling
factor τ for cosine similarity are empirically set to 1 and
15, and they work well in our experiments. Implementa-
tions regarding baseline models and benchmarks are based
on the default configurations of MMSegmentation (Contrib-
utors 2020), and they are kept intact when implemented with
our method.

4.2 Results

Quantitative results. To verify the effectiveness and gen-
eralization ability of our proposed method, various de-
coder heads (FCN (Shelhamer, Long, and Darrell 2017),
DeepLab-V3+ (Chen et al. 2018b), UperNet (Xiao et al.
2018), OCRNet (Yuan, Chen, and Wang 2020)), with differ-
ent types of backbones, including ResNet (He et al. 2016)
and MobileNet (Sandler et al. 2018), and Swin Transformer
(Swin) (Liu et al. 2021), are adopted as the baselines.

The results on ADE20K and COCO-Stuff 164K are
shown in Table 1 from which we can observe that the pro-
posed context-aware classifier only introduces about 2% ad-
ditional inference time and a few additional parameters to all
these baseline models, but decent performance gain has been
achieved on both two challenging benchmarks, including the
model implemented with powerful transformer Swin-Large,

reaching impressive performance without compromising the
efficiency. It is worth noting that, the improvement is not
originated from the newly introduced parameters, because
our method even helps smaller models beat the larger ones
with much more parameters, such as DeepLabV3+ (Res-50)
v.s. OCRNet (HR-48) and UperNet (Swin-Base†) v.s. Uper-
Net (Swin-Large†).

Qualitative results. Predicted masks are shown in Figure 6
where the ones yielded with our proposed method are more
visually attractive. Besides, for facilitating the understand-
ing, t-SNE results are demonstrated in Figure 7. It can be
observed that, with the proposed learning scheme, the esti-
mated context-aware classifiers are more semantically rep-
resentative to different individuals by effectively rectifying
the original classifier with necessary contextual information.

4.3 Ablation Study
In this section, experimental results are presented to inves-
tigate the effectiveness of each component of our proposed
method. The ablation study is conducted on ADE20K, and
the baseline model is UperNet with Swin-Tiny.

Effects of different loss combinations. Lce supervises
the original classifier’s prediction p that is used for gener-
ating the estimated context-aware prototypes Cp. Since Ap

is an approximation of the oracle one Ay yielded with the
ground-truth label y, the supervisions on p and Ay are both
essential. To examine the effects of individual losses, exper-
imental results are in Table 2. It can be observed from (b)
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Figure 6: Visual illustrations from top to bottom are from in-
put images, ground-truth, baseline and baseline+ours. Black
regions are ignored during testing.

Loss Function mIoU
(a) L = Lce (Baseline) 44.51
(b) L = Lce

p 44.06
(c) L = Lce + Lce

p 45.14
(d) L = Lce + Lce

p + Lce
y 45.74

(e) L = Lce + Lce
p + LKL 45.23

(f) L = Lce + Lce
p + Lce

y + LKL 46.91
(g) L = Lce + Lce

p + Lce
y + 0.1 · LKL 45.88

(h) L = Lce + Lce
p + Lce

y + 10 · LKL 46.08

Table 2: Ablation study on different loss combinations.

Loss Function mIoU
(a) w/o KL 45.74
(b) Vanilla KL 45.72
(c) Entropy KL 45.99
(d) Class-wise KL 46.10
(e) Class-wise Entropy KL 46.91
(1) Class-wise Entropy KL (Est.) 46.58
(2) Class-wise Entropy KL (Ori.) 46.22

Table 3: Ablation study on the designs for KL loss.

that, without Lce, Lce
y and LKL, merely supervising pp even

worsens the baseline’s performance (a), and the comparison
between (b) and (c) tells the importance of Lce that super-
vises p. The other experiments show the necessities of LKL

and Lce
y . Specifically, since LKL encourages Ap to mimic

Ay , though the comparison between (c) & (d) implies addi-
tionally optimizing the prediction of the oracle case is ben-
eficial, (d) is still inferior to (f) that incorporates LKL. On
the other hand, without Lce

y that ensures the validity of the
prediction in the oracle case, the result of (e) is clearly lower
than that of (f). Moreover, the sensitivity analysis on the loss
weight λKL for LKL is demonstrated by the results of (f)-
(h), and setting λKL to 1 is found satisfactory.

Different forms of KL loss. Section 3.3 introduces the
vanilla KL loss that encourages the model to learn to form
the context-aware classifier. To alleviate the information bias
and further exploit hidden useful cues, we propose an alter-

Figure 7: Results of t-SNE. Categories are represented in
different colors. Small dots are feature vectors, large circles
are the weights of the original classifier, and stars are the
weights of the approximated context-aware classifier.

Classifier mIoU
(a) Original (Dot) 44.51
(b) Original (Cos) 43.89
(c) Original (Dot) + Context (Dot) 45.42
(d) Original (Dot) + Context (Cos) 46.91
(e) Original (Cos) + Context (Cos) 46.39
(1) Exp. (d) with (τ = 5) 45.39
(2) Exp. (d) with (τ = 10) 46.78
(3) Exp. (d) with (τ = 20) 46.26

Table 4: Ablation study on the cosine similarity and dot
product on the original and the proposed context-aware clas-
sifiers. Exps. (b), (d) and (e) are with τ = 15.

native form that leverages the class-wise entropy. To show
the effectiveness of the proposed design on LKL, results are
shown in Table 3 where Exp. (a) is the same as Exp. (d) in
Table 2 without KL loss. Besides, different from Exps. (d)-
(e) whose entropy mask is obtained from py , entropy masks
in Exps. (1)-(2) are estimated by pp and p respectively.

In Table 3, the vanilla KL loss achieves comparable to
Exp. (a) without KL loss, and the entropy-based KL in Exp.
(c) also incrementally improves Exp. (a) because the infor-
mation of the majority may still overwhelm the others. In-
stead, by applying class-wise calculation to (b), improve-
ment is obtained in Exp. (d), since it helps alleviate the
imbalance between different classes. Furthermore, to tackle
the information bias, informative cues are better exploited
in Exp. (e) by incorporating the entropy estimation with
the class-wise KL, achieving persuasive performance. Last,
Exp. (1) and Exp. (2) prove that the oracle predictions py
are more favorable than pp (Est.) and p (Ori.) for estimating
the entropy mask used in Eq. (9).

The necessity of cosine similarity. In segmentation mod-
els, the original classifier C ∈ R[n,d] applies dot product on
the features f ∈ R[hw,d] yielded by the feature generator to
get the output p = f × C⊤ = |f ||C| cos(f , C). However,
the proposed context-aware classifier yields predictions via
cosine-similarity pa = τ · cos(f ,A∗) = τ · η(f)× η(A∗)

⊤

(∗ ∈ {y, p}). The difference is that, cosine similarity focuses
on the angle between two vectors, while dot product consid-
ers both angle and magnitudes.

Though both cosine similarity and dot product seem plau-
sible, since the norms |f | and |C| are not bounded, extreme
values may occur and hinder the optimization process of
the context-aware classifier to proceed normally as that with
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Model mIoU
Baseline 44.51
(a) A∗ = C∗ 44.08
(b) A∗ = C∗ + C 44.13
(c) A∗ = θ∗(C∗) 46.21
(d) A∗ = θ∗(C∗ + C) 46.53
(#) A∗ = θ∗(C∗ ⊕ C) 46.91
(e) A∗ = θ∗(C∗ ⊕ C) + C 45.94
(f) Ay = Cy,Ap = θp(Cp ⊕ C) 46.01
(g) Ay = θy(Cy ⊕ C),Ap = Cp 44.55
(h) Ay = C,Ap = θp(Cp ⊕ C) 45.69
(i) Ay = θy(Cy ⊕ C),Ap = C 44.62

Table 5: Ablation study on alternative designs for yielding
the context-aware classifier. All models except for the base-
line are optimized with LKL.

the original classifier. On the contrary, the instability issues
caused by the magnitudes of dynamically imprinted classi-
fier weights Ay and Ap can be alleviated by applying L-2
normalization in the cosine function.

Experimental results are shown in Table 4 where the
context-aware classifier implemented with cosine similarity
achieves favorable results while the dot product is better for
the original classifier. This discrepancy may be related to
their formation processes. The original one is shared by all
samples, but the weights of the context-aware classifier are
dynamically imprinted, thus the former may find an optimal
magnitude that generalizes well to a universal distribution
throughout the training process. Since magnitudes provide
additional information regarding different categorical distri-
butions, dot-product works better on the original classifier.

Differently, because the approximated context-aware
classifier is generated individually, the overall categorical
magnitudes may be dominated by the features with large
magnitudes, overwhelming those with smaller magnitudes.
Furthermore, even for the same class, the feature magni-
tude will change because of the varying co-occurring stuff
and things in different images. Therefore, cosine similar-
ity simply ignores the unstable magnitudes but instead fo-
cuses on the inter-class relations, bringing better results to
the context-aware classifier. In addition, the sensitivity anal-
ysis regarding different values of scaling factor τ shows that
the results of τ = {5, 10, 20} are inferior to Exp. (d) with
τ = 15. Therefore, We set τ to 15 in all experiments.

Alternative designs for yielding context-aware classifier.
As shown in Eqs. (2) and (5) in Section 3, the oracle and
the estimated context-aware classifiers A∗ (∗ is the place-
holder for y and p) are generated by applying the projectors
θ∗ to the concatenation of the estimated contextual proto-
types C∗ and the weights C of the original classifier, i.e.,
A∗ = θ∗(C∗ ⊕ C). There are several other design options
and results are shown in Table 5.

Concretely, (a) means both Ay and Ap are simply formed
by the oracle and estimated semantic prototypes, and (b)
adds the weights of the original classifier as a residue. How-
ever, both (a) and (b) cause performance deduction because
the estimated prototypes Cp may deliver irrelevant or even

512× 512 1280× 1280 2560× 2560
Model fps Mem fps Mem fps Mem
Baseline 20.38 2794 4.13 5650 1.04 10286
Ours 19.96 2796 4.05 5654 1.02 10290
△ -2.05% +0.07% -1.94% +0.07% -2.00% +0.04%

Table 6: Comparison regarding FLOPs and frames per sec-
ond (fps) and GPU memory usage (Mem) in different in-
put resolutions. △ denotes the relative change. The baseline
model is UperNet+Swin-Tiny, and the results of fps are ob-
tained on a single NVIDIA RTX 2080Ti GPU.

erroneous messages without any processing. Differently,
adding a projector to the estimated prototypes Cp is help-
ful, as verified by (c), since the projector keeps the essence
and screens the noise from Cp. Moreover, introducing the
information contained in the original classifier is found con-
ducive, as shown by (d) and (#), and (#) shows that the con-
catenation operation is more effective than simply adding
the prototypes. But, adding the original ones as a residue in
(e) degrades the performance because it may lead to a trivial
solution that is to simply skip the projector, which is easier
for optimization. The last four results of (f)-(i) are inferior
to that of (#), manifesting the necessity of adopting (#) to
yield both Ay and Ap. Also, the comparison between (#)
and (i) shows that removing the estimated context-classifier
may cause significant performance deduction. The discus-
sion of the projector’s structure is in the supplementary file.

Impact on model efficiency. Our proposed method is ef-
fective yet efficient since, during inference, it only intro-
duces an additional lightweight projector and several simple
matrix operations to the original model. To comprehensively
study the impacts brought to the model efficiency, frames
per second (fps) and GPU memory consumption (Mem) ob-
tained in higher input resolutions, i.e., 1280 × 1280 and
2560 × 2560, are presented in Table 6 from which we can
observe that only minor negative impacts are brought to the
baseline models, even with the high input resolutions.

5 Concluding Remarks

In this paper, we present learning context-aware classifier as
a means to capture and leverage useful contextual informa-
tion in different samples, improving the performance by dy-
namically forming specific descriptors for individual latent
distributions. The feasibility is verified by an oracle case and
the model is then required to approximate the oracle during
training, so as to adapt to diverse contexts during testing. Be-
sides, an entropy-aware distillation loss is proposed to bet-
ter mine those under-exploited informative hints. In general,
our method can be easily applied to generic segmentation
models, boosting both small and large ones with favorable
improvements without compromising the efficiency, mani-
festing the potential for being a general yet effective module
for semantic segmentation.
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