
Learning Safe Numeric Action Models

Argaman Mordoch1, Brendan Juba2, Roni Stern1

1Ben Gurion University in Be’er Sheva, Israel
2Washington University in St. Louis, USA

mordocha@post.bgu.ac.il, bjuba@wustl.edu, roni.stern@gmail.com

Abstract

Powerful domain-independent planners have been developed
to solve various types of planning problems. These planners
often require a model of the acting agent’s actions, given in
some planning domain description language. Yet obtaining
such an action model is a notoriously hard task. This task is
even more challenging in mission-critical domains, where a
trial-and-error approach to learning how to act is not an option.
In such domains, the action model used to generate plans
must be safe, in the sense that plans generated with it must be
applicable and achieve their goals. Learning safe action models
for planning has been recently explored for domains in which
states are sufficiently described with Boolean variables. In this
work, we go beyond this limitation and propose the Numeric
Safe Action Model Learning (N-SAM) algorithm. N-SAM runs
in time that is polynomial in the number of observations and,
under certain conditions, is guaranteed to return safe action
models. We analyze its worst-case sample complexity, which
may be intractable for some domains. Empirically, however,
N-SAM can quickly learn a safe action model that can solve
most problems in the domain.

Introduction
Planning is the fundamental task of choosing which actions
to perform to achieve the desired outcome. An automated
domain-independent planner refers to an Artificial Intelli-
gence (AI) capable of solving a wide range of planning
problems (Ghallab, Nau, and Traverso 2016). Developing
a domain-independent planner is a long-term goal of AI re-
search. Powerful domain-independent planners have been
developed for various types of planning problems. These plan-
ners often require a model of the acting agent’s actions, given
in some planning domain description language. Many plan-
ning languages have been proposed, such as STRIPS (Fikes
and Nilsson 1971), the Planning Domain Definition Lan-
guage (PDDL) (Aeronautiques et al. 1998), PDDL 2.1 (Fox
and Long 2003), and RDDL (Sanner 2010). Powerful cor-
responding planners have been developed, such as FastFor-
ward (Hoffmann 2001) and FastDownward (Helmert 2006)
for problems given in PDDL and COLIN (Coles et al. 2009),
TLP-GP (Maris and Régnier 2008), and DiNo (Piotrowski
et al. 2016) for PDDL2.1 problems.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Yet, defining an agent’s action model in these planning
languages for real-world problems is a notoriously hard task.
This modeling challenge has been acknowledged in the liter-
ature, and algorithms for learning agent action models from
observations have been proposed (Cresswell and Gregory
2011; Aineto, Celorrio, and Onaindia 2019; Yang, Wu, and
Jiang 2007; Juba, Le, and Stern 2021). Since the learned
model may differ from the domain’s actual action model, us-
ing it to plan raises two challenges: safety and completeness.
The safety risk is that the learned model may generate a plan
that cannot be applied in the domain or may not reach a state
that satisfies the problem goals. The completeness risk is that
the learned model may be too restrictive to generate plans
for solving solvable problems. This work focuses on safety,
which is crucial in mission-critical domains where a trial-and-
error approach for learning how to act or online replanning
are not options. In such domains, the action model used
to generate plans must be safe, i.e., it generates plans that
are applicable and achieve their goals. Learning safe action
models for planning has been recently explored by the Safe
Action Model Learning (SAM) family of algorithms (Stern
and Juba 2017; Juba, Le, and Stern 2021; Juba and Stern
2022). These algorithms are inapplicable for numeric plan-
ning, where states include continuous state variables. The
same safety considerations have motivated work in offline
RL (Kidambi et al. 2020; Yu et al. 2020; Levine et al. 2020).
Yet planning models can be reused for various goals, in con-
trast to standard RL that trains to a specific reward function.

We explore the problem of learning a safe action model for
numeric planning. Specifically, we focus on problems defined
in PDDL2.1 (Fox and Long 2003), a popular language for
describing deterministic, fully observable numeric planning
problems. We prove that learning a safe action model is im-
possible without making assumptions about the preconditions
and effects of the agent’s actions. Then, we identify a reason-
able set of assumptions in which learning a safe action model
is possible. For domains that satisfy these assumptions, we
introduce the Numeric Safe Action Model (N-SAM) learning
algorithm, which runs in time that is polynomial in the num-
ber of observations and is guaranteed to return safe action
models. Even with our assumptions, the worst-case sample
complexity of N-SAM is intractable. However, we show em-
pirically that with fewer than 60 trajectories, N-SAM can learn
action models that can solve most of the relevant problems

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

12079

in two standard numeric planning benchmarks. This, coupled
with its safety guarantee, suggests the practical applicability
of N-SAM.

Background and Problem Definition
We focus on planning problems in domains where action out-
comes are deterministic and states are fully observable, and
described with discrete and continuous state variables. Such
problems are commonly modeled using the PDDL2.1 (Fox
and Long 2003) language.1 We introduce the following no-
tation to define a numeric planning problem in PDDL2.1. A
domain is defined by a tuple D = ⟨F,X,A⟩ where F is a fi-
nite set of Boolean variables, X is a set of numeric variables,
and A is a set of actions. A state is an assignment of values
to all variables in F ∪X . For a state variable v ∈ F ∪X , we
denote by s(v) the value assigned to v in state s.

Every action a ∈ A is defined by a tuple
⟨name(a), param(a), pre(a), eff(a)⟩ representing the ac-
tion’s name, parameters, preconditions, and effects, respec-
tively. The preconditions of action a are a set of assignments
over (possibly a subset of) the Boolean variables and a set of
conditions over (possibly a subset of) the numeric variables.
These conditions are of the form (ξ,Rel, k) where ξ is an
arithmetic expression over X , Rel ∈ {≤, <,=, >,≥}, and
k is a number. The effects of action a, denoted eff(a), are a
set of assignments over F and X representing how the state
changes after applying a. An assignment over a Boolean vari-
able is either True or False. An assignment over a numeric
variable x ∈ X is a tuple of the form ⟨x, op, ξ⟩ where ξ is a
numeric expression over X and op is either increase (“+=”),
decrease (“-=”), or assign (“:=”). The set of actions with their
definitions is referred to as the action model of the domain.
We say that an action a is applicable in a state s if s satisfies
pre(a). Applying a in s, denoted a(s), results in a state that
differs from s only according to the assignments in eff(a).
A planning problem is defined by ⟨D, s0, G⟩ where D is a
domain, s0 is the initial state, and G are the problem goals.
The problem goals G are assignments of values to a subset
of the Boolean variables and a set of conditions over the
numeric variables. A solution to a planning problem is a plan,
i.e., a sequence of actions applicable in s0 and resulting in a
state sG in which G is satisfied. A trajectory is a list of state
transitions of the form ⟨si, ai, ai(si)⟩ created by executing
some plan (. . . , ai, . . .) in the domain. For a state transition
⟨s, a, s′⟩, the states s and s′ are referred to as the pre-state
and post-state, respectively.
Problem Definition. We consider a problem solver
tasked with solving a numeric planning problem
⟨D = ⟨F,X,A⟩ , s0, G⟩. The main challenge is that
the problem solver does not receive explicit information
about the set of actions A. Instead, it receives a set of
trajectories T , created by executing solutions – plans – for
other planning problems in the same domain D. A human
operator, random exploration, or some other domain-specific
process may have created these plans. We assume the
problem solver has full observability of these trajectories, in
the sense that it knows the value of every variable in every

1Technically, we focus on level 2 of PDDL2.1.

state in every trajectory T ∈ T , and it knows the name and
parameters of every action in every trajectory T ∈ T .
Related Work. Different algorithms have been proposed
for learning planning action models (Cresswell, McCluskey,
and West 2013; Yang, Wu, and Jiang 2007; Aineto, Celorrio,
and Onaindia 2019; Juba, Le, and Stern 2021). Some action-
model learning algorithms, such as LOCM (Cresswell and
Gregory 2011) and its extension LOCM2 (Cresswell, Mc-
Cluskey, and West 2013), analyze observed plan sequences,
where each action appears as an action name and arguments
in the form of a vector of object names. Other action-model
learning algorithms, such as FAMA (Aineto, Celorrio, and
Onaindia 2019), can also utilize information about the states
reached while executing plans in the domains. Most action
model learning algorithms do not guarantee that plans cre-
ated with the learned action model are applicable in the real
action model. The SAM learning algorithm (Stern and Juba
2017) addresses this gap by providing the following guaran-
tee: the learned action model is safe in the sense that plans
generated with it are guaranteed to be applicable in the real
action model and yield the predicted states. SAM also runs
in polynomial time, and the number of samples required
to guarantee the learned action model is sufficient to solve
most problems scales gracefully. However, SAM learning and
its recent extensions (Juba, Le, and Stern 2021; Juba and
Stern 2022) are limited to learning action models that do
not support numeric state variables. In fact, learning numeric
action models has been scarcely studied. PlanMiner (Segura-
Muros, Pérez, and Fernández-Olivares 2021; Segura-Muros,
Fernández-Olivares, and Pérez 2021) is a notable exception.
It is an algorithm that learns numeric action models from
partially known and potentially noisy trajectories. PlanMiner
does not, however, provide any safety guarantees.

Safe Numeric Planning with Offline Learning
Our approach for solving this problem, referred to as plan-
ning with offline learning, comprises two steps. (1) learning
an action model Â using the given trajectories T , and (2)
planning using the learned action model Â, i.e., using an
off-the-shelf PDDL 2.1 planner to find a plan for the plan-
ning problem

〈〈
F,X, Â

〉
, s0, G

〉
. There are many planning

algorithms to solve such PDDL2.1 problems, such as Met-
ric FF (Hoffmann 2003) and ENHSP (Scala et al. 2016).
Recall that since the learned action model may differ from
the actual action model, planning with it raises both safety
and completeness risks. The relative importance of each risk
is application dependent. This work emphasizes addressing
the safety risk, which is crucial in applying our method to
mission-critical applications or applications in which plan
failure is very costly. To this end, we aim to learn an safe ac-
tion model (Stern and Juba 2017; Juba, Le, and Stern 2021).

Definition 1 (Safe Action Model). For ϵ ≥ 0, an action
model Â is ϵ-safe w.r.t. a norm ∥ · ∥ in a planning domain
D = ⟨F,X,A⟩ if for every â ∈ Â there exists a ∈ A such
that name(a) = name(â) and for every state s: (1) if â is
applicable in s then so is a, and (2) if â is applicable in s
then applying it in s results in a state that is ϵ-close to that

12080

obtained by applying a to s, i.e., ∥â(s)− a(s)∥ ≤ ϵ.

Plans created with safe action models are safe in the sense
that they execute as anticipated by the model up to a total
error of magnitude at most ϵ times the length of the plan
(by the triangle inequality). We allow for a small ϵ error in
our definition because such an error is unavoidable in most
situations due to numerical issues, limited precision sensors,
etc. We refer to an algorithm that learns a safe action model
from a given set of trajectories as a safe action model learner.

Theoretical Analysis
The problem of learning numeric preconditions and effects
of a safe action model can be mapped to known results in the
Probably Approximately Correct (PAC) Learning literature.
This allows us to establish learnability results in our settings
and identify which assumptions may enable efficient learning.
To formalize the notion of efficient learning in our setting, we
introduce the following terminology. We say that an action
model solves a given problem if a complete planner using that
action model will be able to solve it. We say that an action
model learning algorithm is (1 − ϵ)-complete it returns an
action model that can solve a given problem with probability
at least 1− ϵ.2

Learning Preconditions Learning the preconditions of ac-
tions can be viewed as the problem of learning a Boolean-
valued function, where the training examples are the given
trajectories that include that action. The given trajectories
were created by successfully executing plans in the domain.
In every trajectory transition, the preconditions of the exe-
cuted actions have necessarily been satisfied. Thus, learning
the preconditions of actions is a special case of learning a
Boolean-valued function from only positive examples Kearns,
Li, and Valiant (1994).

Definition 2 (PAC Learning from Positive Examples). Let X
denote our set of instances. Let C and H be sets of Boolean-
valued functions on X . The problem of PAC learning C with
H using positive examples is as follows: we are given param-
eters ϵ, δ ∈ (0, 1), and access to examples from X sampled
from a distribution P supported on {x ∈ X : c(x) = 1} for
some c ∈ C. With probability 1 − δ, we must return h ∈ H
such that (1) h has no false positives: h(X) ⊆ c(X), and (2)
h is 1 − ϵ accurate: Prx∈P [h(x) = c(x)] ≥ 1 − ϵ, where
Prx∈P [h(x) = c(x)] means the probability that h(x) = c(x)
for an example x ∈ X sampled from a distribution P . If our
algorithm runs in time polynomial in the representation size
of members of X , the representation size of c, 1/ϵ, and 1/δ,
then we say that the algorithm is efficient. If C = H, this is
known as the proper variant of the problem. Otherwise, the
learner is said to be improper.

Next, we reduce the problem of PAC learning from positive
examples to the problem of learning preconditions of a safe
action model.

Proposition 1. Suppose there exists a safe action model
learning algorithm A for domains with preconditions from

2This, of course, assumes the training and testing problems are
drawn from the same distribution of problems.

C that produces preconditions from H such that A is guar-
anteed to be 1 − ϵ-complete with probability 1 − δ when
given at least m(ϵ, δ) trajectories as input for some function
m. Then there is a PAC learning algorithm for learning C
with H using m(ϵ, δ) positive examples. Moreover, if the safe
action model learning algorithm is efficient, so is the PAC
learning algorithm.

Proof. Consider a domain with one action a and states given
by X extended by one Boolean attribute, t. We provide the
following trajectories to our safe action model learner: given
an example x sampled from P for the problem of learning
from positive examples, we construct the trajectory with
(x, 0) as the first state, i.e., with t = 0, followed by the action
a and (x, 1) as the final state. The associated goal is “t = 1.”
We obtain an action model from the algorithm run with δ and
ϵ and given m(ϵ, δ) examples, and return its precondition for
a with t set to 0 as our solution h for PAC learning. Note
that the trajectories are consistent with an action model in
which c ∈ C (the correct hypothesis for the positive-example
PAC learning problem) is the precondition of a and the only
effect of a is to set t = 1. h must have no false positives
because the precondition for a must be safe: if there exists
x ∈ X such that h(x) = 1 but c(x) = 0, our action model
would permit a for some x where its precondition is violated,
thus violating safety. Similarly, h must be 1− ϵ-accurate: our
action model learner guarantees that with probability 1− δ,
it is 1 − ϵ complete. Observe that in our distribution over
examples, t = 0 initially, so to satisfy the goal, the plan must
include the action a. Hence, the precondition for a must be
satisfied with probability at least 1−ϵ on P , or else the action
model would fail with probability greater than ϵ. Hence, h is
indeed as required for PAC learning. The “moreover” part is
immediate from the construction.

The above reduction allows us to identify which classes of
preconditions cannot be efficiently learned by the family of
Boolean-valued functions that cannot be efficiently learned
from positive examples.

Corollary 1 ((Goldberg 1992)). The family of preconditions
given by single linear inequalities with at most two variables
cannot be safely learned by any H.

Corollary 2 ((Kivinen 1995)). The family of preconditions
given by the disjunction of two univariate inequalities cannot
be safely learned by any H.

In particular, classes of preconditions C that contain the
above representations as special cases cannot be safely
learned. The strongest class of Boolean-valued function that
is known to be learnable is “axis-aligned boxes,” i.e., con-
junctions of univariate inequalities (Natarajan 1991).

Learning Effects. The problem of learning effects is es-
sentially similar to regression under the “sup norm loss”: we
demand a bound on the maximum error that holds with high
probability. We can characterize the sample complexity of
learning effects easily when the errors are considered under
the ℓ∞-norm, and observe that since all ℓq-norms are equiva-
lent up to polynomial factors in the dimension, this, in turn,
characterizes which families of effects are learnable for all
ℓq norms.

12081

Theorem 1. (cf. Anthony et al. (1996, Theorem 3)) Let A be a
class of functions mapping X to X , such that the true effects
function A∗ is in A, and let A′

ϵ be the set of Boolean-valued
functions of the form {A′(s) = I[∥A(s) − A∗(s)∥∞ ≤ ϵ] :
A ∈ A}. Let d be the VC-dimension of A′

ϵ. Suppose training
and test problems are drawn from a common distribution
D. Then Ω(1

δ1
(d+ log 1

δ2
)) training trajectories from D are

necessary to identify A ∈ A that satisfy ∥A(s)−A∗(s)∥∞ ≤
ϵ with probability 1− δ1 on test trajectories with probability
1− δ2 over the training trajectories. In particular, if d = ∞,
then A is not learnable.

Proof. The sup norm regression problem can be reduced
to learning of effects as follows: given a training set
{(xi, f

∗(xi))}mi=1, construct one-step trajectories for a plan-
ning domain with a single action, initial states given by xi,
and post-states given by f∗(xi). Then an estimate of the ef-
fect f that is ϵ-close to f∗ with probability 1-δ1 indeed yields
a solution to the original regression problem. The bound thus
follows from Theorem 3 of Anthony et al. (1996).

Thus, we see that some restrictions on the family of effects
are necessary for learnability. Fortunately, unlike precondi-
tions, these restrictions are relatively mild. For example, for
linear functions in k dimensions, the VC-dimension of the
corresponding A′

ϵ is O(k2) (Anthony et al. 1996, Prop. 18).

Assumptions
In our numeric planning setting, the actions’ names and pa-
rameters are observable in the trajectories. The actions’ pre-
conditions are conjunctions of conditions over discrete and
numeric state variables. In addition, we limit our attention
to scenarios that satisfy the following assumptions: (1) The
conditions over the numeric state variables in actions’ precon-
ditions are linear inequalities, (2) The numeric expressions
defining actions’ effects are linear combinations of state vari-
ables, and (3) The set of numeric state variables involved in
each action’s preconditions and effects are known in advance.

While these assumptions restrict the types of domains
we consider, they still cover a variety of applications. The
first two assumptions hold in most of the domains in the
3rd International Planning Competition (IPC) for numeric
planning (Fox and Long 2003) and other benchmarks we con-
sidered (Scala et al. 2017). The third assumption requires a
human modeler to specify the relevant state variables, which
is still significantly easier than manually defining the entire
action model. Without this assumption, the space of possi-
ble preconditions may become intractably large. Next, we
propose Numeric SAM (N-SAM), an action model learning
algorithm for numeric domains that, under the above assump-
tions, is guaranteed to output a safe action model.

Numeric SAM (N-SAM)
The N-SAM algorithm learns an action model that includes
all actions observed in the given trajectories T . First, it uses
SAM learning (Juba, Le, and Stern 2021) to learn every ob-
served action’s Boolean preconditions and effects. Then, it
creates numeric preconditions for every observed action a

Figure 1: Graphical illustration of how N-SAM learns numeric
preconditions and effects.

by constructing a convex hull over the relevant numeric vari-
ables’ values observed in states before a was applied. Finally,
it creates numeric effects by solving a linear regression prob-
lem for every numeric variable that is part of the effects of
that action. Figure 1 illustrates the learning process of the
numeric preconditions and effects. Next, we describe these
steps in detail.
Learning Numeric Preconditions. For any action a, let
preX(a) be the set of numeric state variables used in its
preconditions. If preX(a) = ∅, then there is no need to learn
numeric preconditions for a. Otherwise, N-SAM creates a
dataset of |preX(a)|-dimensional points by iterating over
every observed state transition ⟨s, a, s′⟩ and extracting from
s the values for the variables in preX(a). This dataset is
denoted as DBpre(a). Natarajan (1991) observed that when
learning from positive examples, the optimal hypothesis is
the intersection of all consistent candidate hypotheses. In
our case, this is precisely the convex hull of the observed
points. Thus, N-SAM computes the convex hull of the points
in DBpre(a) and sets the preconditions of a as the set of linear
inequalities that define the convex hull. These inequalities
can be obtained with off-the-shelf tools in polynomial time
in the number of inequalities and attributes. 3 State variables
that are linearly dependent on other state variables in the
given trajectories are extracted from the convex hull, and the
linear dependency is translated into equality preconditions.
The top part of Figure 1 illustrates this process of learning
numeric preconditions with N-SAM.

Example: consider a domain with numeric fluents f1 and
f2 and an action that is observed in three transitions where
the pre-states are (f1 = 0, f2 = 0), (f1 = 1, f2 = 0), and
(f1 = 0, f2 = 1). The preconditions learned for a with N-SAM

are the inequalities: 0 ≤ f1,f2 ≤ 1, and f1 + f2 ≤
√
2.

Learning Numeric Effects. Let effX(a) be the set of nu-
meric state variables relevant to computing the effects of
a. Under the linear effects assumption, the change in any
variable x ∈ effX(a) is a linear combination of the values
of effX(a) in the state before applying a. Thus, we learn
the effects of an action using standard linear regression. In

3We used the convex hull algorithm available in the SciPy library
in our implementation.

12082

more detail, for every variable x ∈ effX(a) and given state
transition ⟨s, a, s′⟩ N-SAM creates an equation of the form
s′(x) = w0+

∑
x′∈effX(a) wx′ · s(x′). If the resulting system

of linear equations contains fewer than |effX(a)|+ 1 linearly
independent equations, we consider a unsafe and do not in-
clude it in the returned action model. Otherwise, we find the
unique solution to this set of equations and obtain the values
of w0 and wx′ for all x′ ∈ effX(a).4 Correspondingly, N-SAM
sets x := w0 +

∑
x′∈effX(a) wx′ · x′ as an effect of a. This

process is illustrated in the bottom of Figure 1.
Example: following our running example, assume that the
post-state in the three observed transitions are (f1 = 1, f2 =
0), (f1 = 2, f2 = 0), and (f1 = 1, f2 = 1). N-SAM learns
the effects that set the value of f1 by solving the resulting
three independent equations:(1) c = 1, (2) a + c = 2, and
(3) b + c = 1. The solution for this set of equations is
a = 1, b = 0, c = 1. For f2, N-SAM will also determine
using the same pre-state values that a does not affect the
fluent f2. Thus, the effect of the action is f1 := f1 + 1.
Extension to Nonlinear Domains. N-SAM can be easily ex-
tended to learn preconditions and effects with polynomials
of some low degree, e.g., quadratic or cubic polynomials. We
achieve this by mapping our example trajectories into trajec-
tories in a domain with a more extensive set of fluents: for
each possible monomial up to the desired degree, we create
a fluent taking value equal to the value of the corresponding
monomial evaluated on the original fluents’ values. For exam-
ple, if in some state in an example trajectory fluents x and y
take values 3 and 5, respectively, the new domain might have
a fluent xy taking value 15 in that state in the new trajectory.
Our original numeric fluents X are thus mapped to a set of
O(|X|d) fluents, where d is the degree of the polynomials
involved. We run N-SAM as before, obtaining a set of linear
inequalities and effects in this new domain. We can then sub-
stitute the corresponding monomials for the fluents in those
expressions to obtain polynomial inequalities and effects. We
observe that polynomials in the original domain are repre-
sentable as linear expressions in this expanded domain (and
vice-versa). Thus, the expanded domain satisfies the linear
preconditions and effects assumption; therefore, N-SAM can
be applied, and the resulting preconditions and effects can be
applied in the original domain.

Theoretical Properties
The runtime of N-SAM is polynomial in the number of state
transitions, state variables, and actions because computing
convex hulls and solving linear regression problems can be
done in polynomial time. For polynomial domains, the run-
time is polynomial in the number of relevant monomials,
which can be exponential in the degree of the polynomial.
Regarding safety, we first show that the preconditions we
learn are safe for a broad family of planning models in which
the constraints are convex. Recall that a set of points (in our
case, the points satisfying the precondition) is said to be con-
vex if for any two points s and t in the set, every convex

4In our implementation, we use least-squares linear regression
to obtain these weights.

combination λs+ (1− λ)t for λ ∈ [0, 1] is also in the set. In
particular, linear inequalities define a convex set.
Theorem 2. Consider a family of preconditions given by
conjunctions of convex properties. Then the preconditions
given by the convex hull of states from a set of trajectories in
which a given action was taken are safe.

Proof. Consider any point s′ in the convex hull; s′ may be
written λsi + (1− λ)sj for states si and sj that satisfied the
action’s preconditions. Note that si and sj satisfied all the
conditions in the conjunction defining the actual precondition;
since these conditions are convex, s′ also satisfies each of
them, so s′ satisfies the action’s actual preconditions.

Next, we show that if the actions are affine functions of the
pre-state, the effects are also accurate, given that the convex
hull precondition is satisfied.
Theorem 3. Fix q ∈ N ∪ {∞}. Suppose Θ is a set of param-
eters such that for all pre-states s of a given action in a set
of trajectories, Θs is ϵ-close to the post-state in the ℓq-norm.
Suppose furthermore that the true action model is given by
an affine function with parameters Θ∗. Then for any state s
satisfying the convex hull precondition, Θs is also ϵ-close to
the true post-state in ℓq norm.

Proof. We wish to show ∥Θs − Θ∗s∥ ≤ ϵ. Note that since
both functions are affine, Θs−Θ∗s = (Θ−Θ∗)s, and since
s is in the convex hull of observed points, s =

∑m
j=1 λjsj

for λj ∈ [0, 1] such that
∑m

j=1 λj = 1. So, by the triangle
inequality, ∥Θs−Θ∗s∥ ≤

∑m
j=1 λj∥(Θ−Θ∗)sj∥. We are

supposing that ∥(Θ−Θ∗)sj∥ ≤ ϵ for all j, so in turn this is
at most

∑m
j=1 λjϵ = ϵ.

Thus, N-SAM is guaranteed to return a safe action model.
However, that action model can be too restrictive, raising
the above completeness risk. Unlike SAM learning in dis-
crete domains, N-SAM does not have nice worst-case sample
complexity guarantees.

Experimental Results
Although we do not obtain theoretical completeness guaran-
tees for worst-case distributions, whether or not N-SAM learns
applicable action models in practice is an empirical question.
Thus, we implemented N-SAM and evaluated its performance
on 12 benchmark domains, namely Depot, Driverlog, Zeno-
travel, Rovers, Satellite, Settlers, and UMT domains from
the 3rd International Planning Competition (IPC3) (Long
and Fox 2003), and Farmland, Counters, Plant-watering, and
Sailing from (Scala et al. 2017). N-SAM’s code is available
in the link - https://github.com/Search-BGU/numeric-sam.

Table 1 provides details about these domains. The first col-
umn contains the domains’ names. The next three columns
list domain properties related to the applicability of N-SAM.
The first column (labeled “L”) indicates whether the precondi-
tions and effects in the domain include only a linear combina-
tion of the state variables. The third column (“CE”) indicates
whether the domain contains conditional effects. The fourth
column (“EP”) indicates whether the domain contains pre-
conditions with equality instead of inequalities. Currently,

12083

max
Domain L CE EP |A| |F | |X| preX
Farmland ✓ ✗ ✗ 2 1 2 1
Depot (IPC) ✓ ✗ ✗ 5 6 4 3
Sailing ✓ ✗ ✗ 8 1 3 3
Counters ✓ ✗ ✗ 2 0 2 2
Satellite (IPC) ✓ ✗ ✗ 5 8 6 2
Rovers (IPC) ✓ ✗ ✗ 10 26 2 1
Driverlog (IPC) ✗ ✗ ✗ 6 5 4 0
Zenotravel (IPC) ✗ ✗ ✗ 5 2 8 3
Plant watering ✓ ✗ ✓ 10 0 11 8
Settlers (IPC) ✓ ✓ ✗ 24 20 6 2
UMT (IPC) ✓ ✓ ✓ 38 38 24 11

Table 1: PDDL 2.1 domains. The bolded domains are those
in which all our assumptions hold and are thus used in the
experiments.

N-SAM does not support domains with conditional effects,
and our current implementation does not support equality
preconditions. 9 out of the 12 domains satisfy these require-
ments (highlighted in bold). We discarded the other domains
from our experiments. The columns |A|, |F |, and |X| rep-
resent the number of actions, Boolean state variables, and
numeric state variables, respectively. The column max preX
is the maximal number of numeric variables involved in a
precondition.

For each domain, we performed the following type of ex-
periments. First, we generated a set of trajectories by solving
problems in the domain using a numeric planner. Then, we
ran N-SAM on these trajectories, returning an action model Â.
Next, we selected a different set of planning problems from
the same domain, and checked if the same numeric planner
can solve these problems given the learned action model Â.
We generated the problems using publicly available prob-
lem generator. To solve problems, we run two well-known
planners with a timeout of 60 seconds: Metric-FF (version
2.1) (Hoffmann 2003) and ENHSP (Li et al. 2018). 5 The
planner with the best coverage under the given timeout was
used, Metric FF for Rovers and Counters, and ENHSP for
all other domains. In our experiments, we did not use unsolv-
able problems. These problems in each domain were split to
train and test using a 5-fold cross-validation. All generated
plans were validated using VAL (Fox and Long 2006). All
experiments were run on a Linux machine with 8 cores and
16 GB of RAM.

Evaluation Metrics
The primary evaluation metric is the number of problems
solved using the learned action model Â. We also measured
the precision and recall of Â with respect to the actual action
model A, where precision is TP

TP+FP and recall is TP
TP+FN .

We defined TP , FP , and FN differently for the Boolean

5For Metric-FF, we used BFS with no cost minimization and
running configuration EHC+H. For ENHSP, we used Greedy Best
First Search with the MRP heuristic and helpful actions.

Domain Dis. RX MSEX PF RF Solved Var

Farmland 0.50 1.00 0.00 0.50 1.00 0.98 0.01
DriverLog L 1.00 1.00 0.00 0.64 1.00 0.97 0.02
DriverLog P 1.00 1.00 0.00 0.64 1.00 1.00 0.00
Depot 1.00 0.99 0.00 0.77 1.00 0.93 0.13
Sailing 0.87 0.99 0.00 1.00 1.00 0.81 0.25
Counters 1.00 0.74 0.00 N/A N/A 0.80 0.92
Satellite 1.00 0.99 0.00 0.74 1.00 0.66 0.10
Rovers 0.95 0.94 0.00 0.58 0.84 0.38 0.69
Zenotravel 0.80 0.99 0.00 0.84 1.00 0.94 0.05

Table 2: N-SAM results for the max. # of trajectories in each
domain.

and the numeric parts of Â. For the Boolean parts, TP is the
number of Boolean preconditions that are in both Â and A;
FP is the number of Boolean preconditions that are in Â but
not in A; and FN is the number of Boolean preconditions
that are in A but not in Â. Due to its continuous nature, these
definitions do not carry over well to numeric parts of the
action model. Instead, we calculate the values of TP , FP ,
and FN by iterating over the trajectories created for the
test problems using A and checking for every given state
transition ⟨s, a, s′⟩ ∈ T if the action a is also applicable
in s according to Â. Here, TP is the number of triplets
where a is applicable in its pre-state according to Â, FN is
the number of triplets where a is not applicable in its pre-
state according to Â. FP is set to zero since it represents
triplets where a is not applicable in its pre-state according
to A. Such triplets do not exist as the trajectory was created
using A. Thus, precision is always one for the numeric action
model; therefore, only recall is of interest. Finally, we also
measured the Mean Squared Error (MSE) of the numeric
effects, comparing the post-state in the trajectory created
with A and the expected post-state according to Â. We denote
by PF , RF , RX , and MSEX the precision and recall of the
Boolean part of the action model and the recall and MSE
of the numeric part, respectively. These metrics were only
computed for observed actions.

Results
Table 2 presents the results of our experiments. The column
“Dis.” shows the ratio of actions in A observed by N-SAM. The
columns “Solved” and “Var” show the average and variance,
over the folds, of the ratio of problems solved using N-SAM.
The DriverLog domain has two versions, one with only linear
effects and the other with polynomial effects. We separated
the domain accordingly, denoting the former as DriverLog
Lin. and the latter as DriverLog Poly. The results show several
trends. First, with only 51 trajectories for learning, N-SAM
learned a safe action model that allowed solving more than
half of the problems in all domains except Rovers.

Interestingly, this result was achieved even though some
actions remained undiscovered in some domains, e.g., Satel-
lite, Rover, Farmland, and Sailing. The limited success in
Rovers may be attributed to the large number of fluents and
actions in this domain (26 and 10, respectively). Since N-SAM
returns a safe action model, the MSE of all actions’ effects is
constantly 0, i.e., N-SAM learned the numeric effects perfectly.

12084

0

5

10

15

20

25

1 6 11 16 21 26 31 36 41 46 51

AV
G

. #
 P

RO
BL

EM
S

TRAJECTORIES

solved

no-solution

time-out

(a) Depots

0

5

10

15

20

25

1 6 11 16 21 26 31 36 41 46 51

AV
G

. #
 P

RO
BL

EM
S

TRAJECTORIES

solved

no solution

time-out

(b) Farmland

0

5

10

15

20

25

1 6 11 16 21 26 31 36 41 46 51

AV
G

. #
 P

RO
BL

EM
S

TRAJECTORIES

solved
no solution
time-out

(c) Sailing

0

50

100

150

200

250

300

1 6 11 16 21 26 31 36 41 46 51

AV
G

. #
 P

RO
BL

EM
S

TRAJECTORIES

solved
no solution
time-out

(d) Rovers

0

2

4

6

8

10

12

1 6 11 16 21 26 31 36 41

AV
G

. #
 P

RO
BL

EM
S

TRAJECTORIES

solved
no solution
time out

(e) Satellite

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41 46 51

AV
G

. #
 P

RO
BL

EM
S

TRAJECTORIES

solved

no solution

time out

(f) Counters

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41 46 51

AV
G

. #
 P

RO
BL

EM
S

#TRAJECTORIES

solved
no solution
time-out

(g) Zenotravel

0
2
4
6
8

10
12
14
16
18

1 11 21 31 41 51

AV
G

. #
 P

RO
BL

EM
S

TRAJECTORIES

solved

no solution

time-out

(h) Driverlog Lin.

0

5

10

15

20

1 6 11 16 21 26 31 36 41 46 51

AV
G

. #
 P

RO
BL

EM
S

TRAJECTORIES

solved

no solution

time-out

(i) Driverlog Poly.

Figure 2: Number of problems for each possible planner outcome as a function of # trajectories.

The recall values for both numeric and Boolean preconditions
(RX and RF) were almost perfect in all domains. Boolean
precision results, while always higher than 0.5, were some-
what lower. This is explained by the fact that N-SAM learns
negative preconditions that are missing from the PDDL rep-
resentation.

When using a planner to solve a problem with an action
model learned by N-SAM, we can expect one of three out-
comes: (1) the planner was able to solve the problem, (2)
the planner declared the problem unsolvable with the given
action model, (3) the planner could not solve the problem
within the given time limit. These outcomes are denoted as
“solved”, “no solution”, and “timeout”. Since the benchmark
problems are all solvable by design, a “no solution” outcome
indicates the learned action model is too restrictive, and a
“timeout” outcome may only mean that the planner was not
fast enough. Figure 2 shows how many problems reached
each outcome as a function of the number of trajectories used
for training. In all cases, the number of “no solution” out-
comes decreases as we receive more trajectories, suggesting
that the action model returned by N-SAM is becoming less re-
strictive (yet still safe) with more data. However, the number

of “timeout” outcomes increases with the number of trajec-
tories. This is because having more data results in a richer
model, which allows the planner to explore a larger search
space. That being said, the general trend in all domains is
that increasing the quantity of data results in more “solved”
outcomes, as desired.

Conclusions and Future Work
We explored the problem of learning a safe action model for
numeric planning. Unlike the discrete case, we showed that
guaranteeing safety for all numeric planning domains is im-
possible. Then, we proposed the N-SAM algorithm, which is
capable of learning a safe action model under the assumption
that the preconditions and effects are polynomials. The worst-
case sample complexity of N-SAM does not scale gracefully,
but we it works well in practice on standard benchmarks.
Having fewer than 60 sample trajectories, N-SAM returns an
action model sufficient to find plans for most problems in
almost all benchmark domains. This suggests that N-SAM can
be applied in practice in domains that satisfy our assumptions.
Future work will extend N-SAM to support conditional effects,
noisy input, and handle partial observability.

12085

Acknowledgments
This research is partially funded by NSF awards IIS-1908287,
IIS-1939677, and IIS-1942336 to Brendan Juba, BSF grant
#2018684 to Roni Stern, and to the DARPA SAIL-ON pro-
gram. This work was partially performed while Brendan Juba
was at the Simons Institute for the Theory of Computing.

References
Aeronautiques, C.; Howe, A.; Knoblock, C.; McDermott,
I. D.; Ram, A.; Veloso, M.; Weld, D.; SRI, D. W.; Barrett,
A.; Christianson, D.; et al. 1998. Pddl| the planning domain
definition language. Technical Report, Tech. Rep.
Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning
action models with minimal observability. Artificial Intelli-
gence, 275: 104–137.
Anthony, M.; Bartlett, P.; Ishai, Y.; and Shawe-Taylor, J. 1996.
Valid generalisation from approximate interpolation. Combi-
natorics, Probability and Computing, 5(3): 191–214.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2009. Temporal
planning in domains with linear processes. In International
Joint Conference on Artificial Intelligence (IJCAI).
Cresswell, S.; and Gregory, P. 2011. Generalised domain
model acquisition from action traces. In International Con-
ference on Automated Planning and Scheduling (ICAPS),
42–49.
Cresswell, S.; McCluskey, T.; and West, M. 2013. Acquiring
planning domain models using LOCM. The Knowledge
Engineering Review, 28(2): 195–213.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence, 2(3-4): 189–208.
Fox, M.; and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal of
Artificial Intelligence Research, 20: 61–124.
Fox, M.; and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. Journal of Artificial Intel-
ligence Research, 27: 235–297.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
planning and acting. Cambridge University Press.
Goldberg, P. W. 1992. PAC-learning geometrical figures.
Ph.D. thesis, University of Edinburgh.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Hoffmann, J. 2001. FF: The fast-forward planning system.
AI magazine, 22(3): 57–57.
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating “Ignoring Delete Lists” to Numeric State Variables.
Journal of Artificial Intelligence Research, 20: 291–341.
Juba, B.; Le, H. S.; and Stern, R. 2021. Safe Learning of
Lifted Action Models. In International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR),
379–389.
Juba, B.; and Stern, R. 2022. Learning Probably Approx-
imately Complete and Safe Action Models for Stochastic
Worlds. In AAAI Conference on Artificial Intelligence.

Kearns, M.; Li, M.; and Valiant, L. 1994. Learning boolean
formulas. Journal of the ACM (JACM), 41(6): 1298–1328.
Kidambi, R.; Rajeswaran, A.; Netrapalli, P.; and Joachims, T.
2020. MOReL: Model-Based Offline Reinforcement Learn-
ing. In Advances in Neural Information Processing Systems
(NeurIPS).
Kivinen, J. 1995. Learning reliably and with one-sided error.
Mathematical systems theory, 28(2): 141–172.
Levine, S.; Kumar, A.; Tucker, G.; and Fu, J. 2020. Offline
reinforcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643.
Li, D.; Scala, E.; Haslum, P.; and Bogomolov, S. 2018. Effect-
Abstraction Based Relaxation for Linear Numeric Planning.
In International Joint Conference on Artificial Intelligence
(IJCAI), 4787–4793.
Long, D.; and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. Journal of Artificial
Intelligence Research, 20: 1–59.
Maris, F.; and Régnier, P. 2008. TLP-GP: Solving temporally-
expressive planning problems. In International Symposium
on Temporal Representation and Reasoning (TIME).
Natarajan, B. K. 1991. Probably approximate learning of sets
and functions. SIAM Journal on Computing, 20(2): 328–351.
Piotrowski, W.; Fox, M.; Long, D.; Magazzeni, D.; and Mer-
corio, F. 2016. Heuristic planning for PDDL+ domains. In
International Joint Conference on Artificial Intelligence (IJ-
CAI).
Sanner, S. 2010. Relational dynamic influence diagram lan-
guage (RDDL): Language description. Unpublished ms. Aus-
tralian National University.
Scala, E.; Haslum, P.; Magazzeni, D.; Thiébaux, S.; et al.
2017. Landmarks for Numeric Planning Problems. In Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
4384–4390.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramirez, M. 2016.
Interval-based relaxation for general numeric planning. In
European Conference on Artificial Intelligence (ECAI), 655–
663.
Segura-Muros, J. Á.; Fernández-Olivares, J.; and Pérez, R.
2021. Learning Numerical Action Models from Noisy Input
Data. arXiv preprint arXiv:2111.04997.
Segura-Muros, J. Á.; Pérez, R.; and Fernández-Olivares, J.
2021. Discovering relational and numerical expressions from
plan traces for learning action models. Applied Intelligence,
1–17.
Stern, R.; and Juba, B. 2017. Efficient, Safe, and Proba-
bly Approximately Complete Learning of Action Models.
In International Joint Conference on Artificial Intelligence
(IJCAI), 4405–4411.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action models
from plan examples using weighted MAX-SAT. Artificial
Intelligence, 171(2-3): 107–143.
Yu, T.; Thomas, G.; Yu, L.; Ermon, S.; Zou, J. Y.; Levine,
S.; Finn, C.; and Ma, T. 2020. MOPO: Model-based Offline
Policy Optimization. In Advances in Neural Information
Processing Systems (NeurIPS), 14129–14142.

12086

