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Abstract

We consider the task of weighted first-order model counting
(WFOMC) used for probabilistic inference in the area of sta-
tistical relational learning. Given a formula ¢, domain size n
and a pair of weight functions, what is the weighted sum of
all models of ¢ over a domain of size n? It was shown that
computing WFOMC of any logical sentence with at most two
logical variables can be done in time polynomial in n. How-
ever, it was also shown that the task is #Pi-complete once
we add the third variable, which inspired the search for ex-
tensions of the two-variable fragment that would still permit
a running time polynomial in n. One of such extension is the
two-variable fragment with counting quantifiers. In this pa-
per, we prove that adding a linear order axiom (which forces
one of the predicates in ¢ to introduce a linear ordering of the
domain elements in each model of ¢) on top of the counting
quantifiers still permits a computation time polynomial in the
domain size. We present a new dynamic programming-based
algorithm which can compute WFOMC with linear order in
time polynomial in n, thus proving our primary claim.

Introduction

The task of probabilistic inference is at the core of many
statistical machine learning problems and much effort has
been invested into performing inference faster. One of the
techniques, aimed mostly at problems from the area of sta-
tistical relational learning (Getoor and Taskar 2007), is lifted
inference (Van den Broeck et al. 2021). A very popular way
to perform lifted inference is to encode the particular prob-
lem as an instance of the weighted first-order model count-
ing (WFOMC) problem. It is worth noting that applications
of WFOMC range much wider, making it an interesting re-
search subject in its own right. For instance, it was used to
aid in conjecturing recursive formulas in enumerative com-
binatorics (Barvinek et al. 2021).

Computing WFOMC in the two-variable fragment of first-
order logic (denoted as FO?) can be done in time polyno-
mial in the domain size, which is also referred to as FO? be-
ing domain-liftable (Van den Broeck 2011). Unfortunately,
it was also shown that the same does not hold in FO® where
the problem turns out to be #P;-complete in general (Beame
et al. 2015). That has inspired a search for extensions of FO?
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that would still be domain-liftable. Several new classes have
been identified since then.

Kazemi et al. (2016) introduced S?’FO? and S?RU. Ku-
usisto and Lutz (2018) extended the two-variable fragment
with one functionality axiom and showed such language to
still be domain-liftable. That result was later generalized to
the two-variable fragment with counting quantifiers, denoted
CQ(Kuielka 2021). Moreover, van Bremen and Kuzelka
(2021b) proved that C? extended by the tree axiom is still
domain-liftable as well.!

Another extension of C? can be obtained by adding a lin-
ear order axiom. Linear order axiom (Libkin 2004) enforces
some relation in the language to introduce a linear (total)
ordering on the domain elements. Such a constraint is inex-
pressible using only two variables, requiring special treat-
ment. This logic fragment has also received some attention
from logicians (Charatonik and Witkowski 2015).

In this paper, we show that extending C* with a lin-
ear order axiom yields another domain-liftable language.
We present a new dynamic programming-based algorithm
for computing WFOMC in C? with linear order. The algo-
rithm’s running time is polynomial in the domain size mean-
ing that C* with linear order is domain-liftable.

Even though our result is mostly of theoretical interest, we
still provide some interesting applications and experiments.
Among others, we perform exact inference in a Markov
Logic Network (Richardson and Domingos 2006) on a ran-
dom graph model similar to the one of Watts and Strogatz
(Watts and Strogatz 1998).2

Background

Let us now review necessary concepts, definitions and as-
sumptions as well as notation.

We use boldface letters such as k to differentiate vectors
from scalar values such as n. If we do not name individual
vector components such as k = (k1, ko, ..., kq), then the
i-th element of k is denoted by (k);. Since our vectors only
have non-negative entries, the sum of vector elements, i.e.,

'Other recent works in lifted inference not directly related to
our work presented here are works of van Bremen and KuZelka
(2021a), Malhotra and Serafini (2022) and Wang et al. (2022).

This paper is accompanied by a technical report available at
https://arxiv.org/abs/2211.01164



Z?Zl(k)i, always coincides with the L!-norm. Hence, we
use |Kk| as a shorthand for the sum. We also introduce special
name 6 for a vector such that

(0;)i = {

For a vector k = (k1, ko, . .., kq) with |k| = n,

()= (i)

k
denotes the multinomial coefficient. We make use of
one non-trivial identity of multinomial coefficients (Berge

1971), namely

We also assume the set of natural numbers IN to con-
tain zero and that 0° = 1. We use [n] to denote the set

{1,2,...,n}.

First-Order Logic

We work with a function-free subset of first-order logic. The
language is defined by a finite set of constants A, a finite set
of variables V and a finite set of predicates P. If the arity
of a predicate P € P is k, we also write P/k. An atom has
the form P(ty,ta,...,t;) where P/k € Pandt; € A U
V. A literal is an atom or its negation. A formula is an atom
and a literal. More complex formulas may be formed from
existing formulas by logical connectives, or by surrounding
them with a universal (V) or an existential (3x) quantifier
where x € V. A variable z in a formula is called free if
the formula contains no quantification over x. A formula is
called a sentence if it contains no free variables. A formula
is called ground if it contains no variables.

As is customary in computer science, we adopt the Her-
brand semantics (Hinrichs and Genesereth 2006) with a fi-
nite domain. Since we have a finite domain with a one-to-
one correspondence to the constant symbols, we denote the
domain also with A. We denote the Herbrand base by HB.
We use w to denote a possible world, i.e., any subset of HB.
When we wish to restrict a possible world w to only atoms
with a particular predicate P, we write w|[P)].

We work with logical sentences containing at most two
variables (the language of FO?). We assume our FO? sen-
tences to be constant-free. Dealing with constants in lifted
inference is a challenge in its own right. Treatment of condi-
tioning on evidence as well as using constants in sentences
is available in other literature (Van Den Broeck and Davis
2012; Van Haaren et al. 2016).

l1ifi=j,
0 otherwise.

n
kv, ks, ..

d

D

j=1

n—1
k—9;

n
k

Weighted Model Counting and Lifted Formulation

Throughout this paper, we study the weighted first-order
model counting. We will also make use of its propositional
variant, the weighted model counting. Let us formally define
both these tasks.
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Definition 1. (Weighted Model Counting) Let ¢ be a logical
formula over some propositional language L. Let HB de-
note the Hebrand base of L (i.e., the set of all propositional
variables). Let w : HB — R and w : HB — R be a pair
of weightings assigning a positive and a negative weight to
each variable in L. We define

WMC(g,wm) = > JJw@) J] =O).

wCHB:wl=¢ lew leEHB\w

Definition 2. (Weighted First-Order Model Counting) Let ¢
be a logical formula over some relational language L. Let
n be the domain size. Let HB denote the Hebrand base of
L over the domain A = {1,2,...,n }. Let P be the set of
the predicates of the language L and let pred : HB — P
map each atom to its corresponding predicate symbol. Let
w:P = Randw : P — R be a pair of weightings
assigning a positive and a negative weight to each predicate

in L. We define WFOMC(¢, n,w,w) =

> JJwlpred@) J] w@(pred(r)).

wCHB:wlE¢ lew l€HB\w

Remark 1. Since for any domain A of size n, we can de-
fine a bijective mapping 7 such that m(A) = {1,2,...,n },
WFOMC is defined for an arbitrary domain of size n.

Cells and Domain-Liftability of FO?

We will not build on the original proof of domain-liftability
of FO? (Van den Broeck 2011; Van den Broeck, Meert, and
Darwiche 2014), but rather on the more recent one (Beame
et al. 2015). Let us review some parts of that proof as we
make use of them later in the paper.

An important concept is the one of a cell.

Definition 3. A cell of a first-order formula ¢ is a maximally
consistent conjunction of literals formed from atoms in ¢
using only a single variable.

We will denote cells as C1(z), Ca(z),...,Cp(x) and as-
sume that they are ordered (indexed). Note, however, that
the ordering is purely arbitrary.

Example 1. Consider ¢ = Sm(z) A Fr(z,y) = Sm(y).
Then there are four cells:

Cy(z) = Sm(z) A Fr(z,x),
Ca(z) = 2Sm(x) A Fr(z, z),
Cs(x) = ~Sm(x) A —Fr(z,x),
Cy(z) = Sm(z) AN —=Fr(z,z).

It turns out, that if we fix a particular assignment of domain
elements to the cells and if we then condition on such evi-
dence, the WFOMC computation decomposes into mutually
independent and symmetric parts, simplifying the computa-
tion significantly.

When we say assignment of domain elements to cells, we
mean a domain partitioning allowing empty partitions, that
is ordered with respect to a chosen cell ordering. Each par-
tition .S; then holds the constants assigned to the cell C;.
Such partitioning can be captured by a vector. We call such
a vector a partitioning vector and often shorten the term to a
p-vector.



Definition 4. Let C1,Cy,...,C, be cells of some logical
formula. Let n be the number of elements in a domain. A
partitioning vector (or a p-vector) of order n is any vector

k € IN? such that |k| = n.

Moreover, conditioning on some cells may immediately lead

to an unsatisfiable formula. To avoid unnecessary computa-

tion with such cells, we only work with valid cells (van Bre-

men and KuZelka 2021a).

Definition 5. A valid cell of a first-order formula ¢(z,y) is

a cell of ¢(x,y) and is also a model of ¢(x, x).

Example 2. Consider ¢ = F(z,y) A (G(z) vV H(x)).
Cells setting both G(x) and H(x) to false are not valid

cells of ¢.

Let us now introduce some notation for conditioning on par-

ticular (valid) cells. Denote

Yij(z,y) = ¥(z,y) Nb(y, ) A Ci(z) A Cj(y),
V() = P(z,2) A Cy(z),
and define
rij = WMC(¢35(A, B), w', '), 6]
wy, = WMC(t (4), w, ), @)

where A, B € A and the weights w’, w’ are the same as w,
w except for the atoms appearing in the cells conditioned on.
Those weights are set to one, since the weights of the unary
and binary reflexive atoms are already accounted for in the
wy, terms.

Finally, we can write WFOMC(¢, n, w E) =

S (o) I e A
keNP: |[k|=n

i,je[p]:i<] i€[p]
which implies that universally quantified FO? is domain-
liftable since Equation 3 may be evaluated in time polyno-
mial in n. Using a specialized Skolemization procedure for
WFOMC (Van den Broeck, Meert, and Darwiche 2014), we
can easily extend the result to the entire FO? fragment.

(k),;

i I

3

Cardinality Constraints and Counting Quantifiers

WFOMC can be further generalized to WFOMC under car-
dinality constraints (KuZelka 2021). For a predicate P € P,
we may extend the input formula by one or more cardinality
constraints of the type (|P| > k), where e { <, =, >}
and k& € IN. Intuitively, a cardinality constraint (| P| = k) is
satisfied in w if there are exactly k£ ground atoms with pred-
icate P in w. Similarly for the inequality signs.

Counting quantifiers are a generalization of the tradi-
tional existential quantifier. For a variable z € V), we al-
low usage of a quantifier of the form F**z, where <€
{ <,=,>}and k € IN. Satisfaction of formulas with count-
ing quantifiers is defined naturally, in a similar manner
to the satisfaction of cardinality constraints. For example,
3=k : () is satisfied in w if there are exactly k constants
{A1,A9,..., A } C AsuchthatVi € [k] : w = ¥(4;).

Kuzelka (2021) showed C? to be a domain-liftable lan-
guage. That was done by reducing WFOMC in C? to
WFOMC in FO? under cardinality constraints and showing
that the two-variable fragment with cardinality constraints is
also domain-liftable.
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Linear Order Axiom

Assuming logic with equality, we can encode that the pred-
icate R enforces a linear ordering on the domain using the
following logical sentences (Libkin 2004):

1. Yz : R(z, ),

2. VaVy : R(z,y) V R(y, ),

3. VaVy : R(z,y) A R(y,z) = (z = y),
4. VaVyVz : R(z,y) A Ry, z) = R(x, 2).

The last sentence, expressing transitivity of the relation R,
is the problematic one as it requires three logical variables.
Hence, we will not simply append this axiomatic definition
to the input formula but rather make use of a specialized al-
gorithm. However, we must keep the axioms in mind, when
constructing cells. Substituting = for both y and z into the
axioms above leaves us with (after simplification) a single
sentence enforcing reflexivity, i.e., Va : R(x,z). Only cells
adhering to this constraint can be valid.

Throughout this paper, we denote the constraint that a
predicate R introduces a linear order on the domain as
Linear(R). For easier readability, we also make use of the
traditional symbol < for the linear order predicate whenever
possible. We also prefer the infix notation rather than the
prefix one as it is more commonly used together with < sign.
We also use (A < B) as a shorthand for (A < B) A =(B <
A).

We often write ¢ = 1) A Linear(<), where we assume 1)
to be some logical sentence in FO? or C? and < one of the
predicates of the language of 1. Let us formalize the model
of such a sentence.

Definition 6. Let v be a logical sentence possibly contain-
ing binary predicate <. A possible world w is a model of
¢ = ¢ A Linear(<) if and only if w is a model of v, and

w[<] satisfies the linear order axioms.

Our usual goal will be to compute WFOMC of ¢ over
some domain. In such cases, part of the input will be weight-
ings (w,w). Since we are treating < as a special predi-
cate that is only supposed to enforce an ordering of do-
main elements in the models of ¢, we will always assume
w(<) =W(<) = L.

One more consideration should be given to our assump-
tion of having equality in the language. That is not a hard
requirement since encoding equality in C? (or FO? with car-
dinality constraints) is relatively simple, compared to full
first-order logic. For example, we may use the axioms:

1. Vo : (z = x),
2. Va3 ly : (2 =y).
Example 3. As a simple example of what the linear or-

der axiom allows us to express, consider the sentence ¢ =
VaVy : ¥(z,y) A Linear(<), where

Y(z,y) =T(x) A (z <y) = T(y)

How can we interpret models of ¢? Due to Linear(<),
the < predicate will define a total ordering on the domain,
e.g., 1 <2< ... < n. Thus, we can think of the domain as
a sequence.



Algorithm 1 Incremental WFOMC
Input: An FO? sentence ¢, n € IN, weightings (w, W)
Output: WFOMC(¢, n, w, @)
Require: Vi € [n]Vk € N?, k| =¢: T;[k] =0
1: for each cell C; do

2: Ty [6]] = w;j

3: end for

4: fori =2tondo

5 for each cell C; do

6: for each (k,;q, Wo1q) € T;—1 do

7: Whew < Woia - wj - lpzl T;ll(Old)l
8: Knew < Kot + 5j

9: Ti [knew] — Ti [knew] + Wnew
10: end for
11:  end for
12: end for

13: return 3"y o=, TnlK]

The formula 1(x,y) then seeks to split that sequence into
its beginning (head of the sequence) and its end (tail of the
sequence). The predicate T/1 denotes the tail of the se-
quence. Whenever there is a constant, for which T /1 is set
to true in a model (it is part of the tail), then all constants
greater also have T /1 set to true. Constants, for which T'/1
is set to false, then belong to the sequence head.

Approach

To prove our main result, we proceed as follows. First, we
present a new algorithm based on dynamic programming
that computes WFOMC of a universally quantified FO?
sentence in an incremental manner, and it does so in time
polynomial in the domain size. Note, that the assumption
of universal quantification is not a limiting one, since we
can apply the Skolemization for WFOMC to our input sen-
tence before running the algorithm. Second, we show how
to adapt the algorithm to compute WFOMC of a formula
¢ = 1 A Linear(<), where v is a universally quanti-
fied FO? sentence. And third, we use the algorithm as a
new WFOMC oracle in the reductions of WFOMC in C>
to WFOMC in FO?, thus proving C? extended by a linear
order axiom to be domain-liftable.

New Algorithm

Our algorithm for computing WFOMC(¢, n, w,w) for an
FO? sentence ¢ works in an incremental manner. The do-
main size is inductively enlarged in a similar way as in the
domain recursion rule (Van den Broeck 2011; Kazemi et al.
2016). For each domain size i, the WFOMC for each pos-
sible p-vector is computed. The results are tracked in a ta-
ble T; which maps possible p-vectors to real numbers (the
weighted counts). The results are then reused to compute
entries in the table 7;, ;. See Algorithm 1 for details.

To compute an entry 7;1[u] for a p-vector u, we must
find all entries 7;[k] such that k + d; = u and C} is one
of the cells. Intuitively speaking, we will assign the new do-
main element (i + 1) to the cell C;;, which will extend the
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existing models with new ground atoms containing the new
domain element. The models will be extended by atoms cor-
responding to the subformula );(¢ + 1) (which, if we are
only working with valid cells, are simply the positive liter-
als from C}) and by atoms corresponding to the subformula
;1 (i + 1,4") for each cell Cj, and each domain element al-
ready processed (i.e., 1 < i’ < i+ 1). As we can construct
the new models by extending the old, we can also compute
the new model weight from the old. The weight update can
be seen on Line 7 of Algorithm 1.

To prove correctness of Algorithm 1, we prove that its
result is the same as is specified in Equation 3. For better
readability, we split the proof into an auxiliary lemma, which
proves a particular property of table entries at the end of
each iteration ¢, and the actual statement of the algorithm’s
correctness.

Lemma 1. At the end of iteration i of the for-loop on lines

4 — 12, it holds that
. p
i
rw=(,) II 1Ir
i,JE[p]:i<y =1

Sor any i > 2 and any p-vector k such that |k| = 1.

(ON
2

(

i

)

Tg_f)i(k)j

Proof. Let us prove Lemma 1 by induction on the iteration
number.

First, consider ¢ = 2. When entering the loop for the first
time, we have T3 [d;] = w; for each cell C;. Then, for a
particular cell C; selected on Line 5, there are two cases to
consider.

The first case is Koiq = 6. Then Wyq = w; and

0
IT ) rs=1-r
i€ [plri]
Moreover, K;,c., = 26 ;. Since this is the only scenario where

we obtain such ke, and since (,3 ) = 1, we have
J

2
T5[26,] = (25 ) ;-
J

The second possibility is that kg = 7, where j' # j.
Then Wy = wjr and Wiyey, = w;wjrjj/. The new p-vector
Ky = 6+ 0, will also be obtained when the selected cell
is Cj and kg = 0. The resulting W,,, will be the same
as above. Those values will be summed together (Line 9)
and produce

w?.

Wnew = W;wy b

2
g Ty
J J

Hence, the lemma holds at the end of the first iteration.
Second, assume the claim holds at the end of iteration 7.
Let us investigate the entry T;1[Kk]. For now, consider k
without any zero entries. Then there are p cases that will
produce a particular p-vector k = (k1, k2, . .., k;,), namely

Koig = (k1 — 1, k2, ..., kp) and cell C4
kold = (kh kg — ]., ey kp) and cell CQ

Tol6; + 651 = 2 rjjwjwy = (5

Koia = (k1,ka, ..., k, — 1) and cell C,,.



For a particular cell C; and kpiq = k —
induction hypothesis:

Woia = (

II -

i€[pli#]

4, we have by

((k)j_l

2
)T
J

(“2) w®

i

1

(1) ()
k-6 i

)w](k)j—l 11

i lE[pl:i<l ij#l
GO

]L

[I

i€[plri£]

Following the weight update on Line 7 and simplifying af-
terwards, the value will become

() T

i,le[p]i<i
Observe that the product after the multinomial coefficient
will be the same for any of the p cases outlined above.
Hence, the final new table entry is given by

1
k —

(k) (k) H Ty (k)q

i€lp]

(k);
(9 )wgk)i

7 k)i (k
Ti+1[k]2(k_6‘> 11 MOHCT IT =i
j=1 17 i lelpli<i i€lp]
- I eI (59, 00 zp: !
. . il - . k — (Stf
i,le[p)ti<l i€lp] j=1

(

P00 TT r{# ),

i€[p]

II

i,l€[p]:i<l

i+1
k
which is consistent with the claim.
The last thing to consider is if there are some zero entries

in k. Suppose there are z of them and w.l.0.g. assume they
are on the positions (p —z+ 1), (p — 2+ 2), ... p. Then we

obtain a result such that

i,5€[pli<y
Denote u the first p — z components of the vector k — ;.
Note that (k ' s ) (l) , since the last z entries are all zeros.
—90j u
Hence, even now it holds that

) 1

i,j€[p]:i<y
Theorem 1. Algorithm 1 computes WFOMC(¢, n, w, @) of
a universally quantified FO* sentence ¢ in prenex normal
form. Moreover, it does so in time polynomial in the domain
size n.

1
k-9,

(49) ,00: S

i l

pBi(k);

U

Tiv1k] = H [

=1

1+ 1

() w®
y :

i

p
Tz(;()i(k)j H .

i=1

Tiy1[k] = (

O

Proof. By Lemma 1, we have

n
() 11
i, €[pl:i<d
On Line 13, all those entries are summed together which
produces a formula identical to the one in Equation 3.

0100,

P, ,
Hri(i ’ )wgk)l'

i=1

T,K]
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As for the second part of the claim. The first loop on lines
1 — 3 runs in time O(1) with respect to n. The large loop on
lines 4 — 12 runs in O(n). The first nested loop (lines 5 —11)
is again independent of n, and the second (lines 6 — 10) runs
in O(n?). The final sum on Line 13 also runs in O(n?).
Overall, we can upper bound the algorithm’s time complex-
ity by O(nP*1). Hence, the running time is polynomial in
the domain size n. O

Enforcing a Linear Order

When adding the linear order axiom to the input sentence
1, each model of ¢ will be with respect to some domain
ordering. Assume we find the set €2 of all models for one
fixed ordering. Having a domain permutation 7,

:U{Ww

weR

will be the set of all models with respect to the new domain
ordering defined by 7. Hence, the situation is symmetric for
any particular ordering of the domain.

Theorem 2. Let ¢ be a formula of the form ¢ = ¢(x,y) A
Linear (<), where (x,y) is a universally quantified FO*
sentence and < is one of its predicates. Let A be a domain
over which we want to compute WFOMC.

If w = ¢ and 7 is a permutation of A, such that w(A) #
A, then w(w) = ¢, where application of w to a possible
world is defined by appropriate substitution of the domain
elements in ground atoms. Moreover, w # m(w).

Proof. If w is a model of ¢, we can partition w into two
disjoint sets: w[<] holding only atoms with the predicate <
and wy, = w \ w[<]. w[<] defines an ordering of A and wy;
is then a model of VzVy : ¢(x,y) respecting the ordering
defined by w[<]. Applying the permutation 7 to w[<] will
define a different domain ordering.

Since there are no constants in ¢, m(wy) will still be a
model of VaVy : ¢ (z,y) (we simply apply a different sub-
stitution to the variables in 1)). Moreover, since w,;, respected
the ordering defined by w[<],7(w.;,) will respect the new or-
dering defined by 7w (w[<]).

Hence 7(w) = m(w[<]) U m(wy) is another model of ¢
and it must be different from w, because m(w[<]) defines a
different ordering than w|[<]. O

Corollary 1. To compute WFOMC(¢, n, w, W), where ¢ =
¥(x,y) A Linear(<), we can compute WFOMC for one or-
dered domain of size n and then multiply the result by the
factorial of n, since there are n! different permutations of
the domain.

Let us now show that we can compute WFOMC of a for-
mula ¢ = 1) A Linear (<) for a fixed domain ordering using
only slightly modified Algorithm 1. The modified algorithm
will take advantage of the fact that when we are process-
ing the i-th domain element, it holds that i’ < 4 for all al-
ready processed domain elements 7'. Hence, when extend-
ing the domain by the constant ¢ (and consequently, extend-
ing the models by atoms containing 7), the only difference
will be in the models of the subformulas ;;(A, B), where



A, B € A. The one constant must be “greater” than the other
in the sense of the enforced domain ordering. Thus, we only
need to redefine r;; to reflect this. Then, we may prove that
FO? with a linear order axiom is domain-liftable in a simi-
lar manner to how we proved correctness of Algorithm 1 for
FO? alone.

Let us redefine r;; =

WMC(¢;(A, B) A (B < A) A—(A < B),w' @) (4)

Theorem 3. Incremental WFOMC with r;; values from
Equation 4 computes WFOMC(¢, n, w, W) of a universally
quantified FO? sentence ¢ in prenex normal form on the or-
dered domain A = {1 <2 < ... <n}. Moreover, it does
so in time polynomial in the domain size n.

Proof. Let us prove the claim by induction on size of the
domain.

The base step is analogical to the one in proof of Lemma
1. More generally speaking, for a domain of a constant size
K (K = 1in Algorithm 1), we may simply ground the prob-
lem and compute its WMC without any lifting. Since K is a
constant with respect to n, we won’t exceed the polynomial
running time.

The inductive step differs from the one for Lemma 1, but
still builds on the same intuition. Now, assume that our al-
gorithm computes WFOMC with linear order for a domain
of size i, where the result is stored as the table entries T; K]
for all p-vectors k such that |k| = 4 (the final result would be
obtained by summing those entries together). Consider pro-
cessing of the element (i + 1). For a particular cell C; and a
p-vector k, adding the new element will again extend the ex-
isting models with new atoms. First, atoms corresponding to
the subformula ¢ (¢4 1) will be added, hence the old weight
must be multiplied by w;. Second, atoms corresponding to
the subformulas ;4 (¢ + 1, ¢’) for each cell C, and each pro-
cessed element #'(1 < ¢’ < i + 1). However, only possible
worlds satisfying ' < ¢ + 1 on top of that, will be models
of the input sentence with respect to the fixed domain order-
ing. That is precisely captured by 7;; from Equation 4. Other
possible worlds will be assigned zero weight. Hence,

P

(K),

Whew = Wora - wy - le'jl .
=1

There are more possible p-vectors u and cells C,, such
that u + 6, = k + 0; = Kyey. Those all correspond to
different, mutually independent models whose weights can
be added together. Since we are processing all possible p-
vectors, those also correspond to the only existing models.
Therefore, at the end of the final iteration, we will have
summed up weights of all existing models of size n. And
since we only substituted one value in the original Algo-
rithm 1, the computation still runs in time polynomial in the
domain size. O

Theorem 4. The language of FO? extended by a linear or-
der axiom is domain-liftable.

Proof. For an input sentence ¢ = ¢ A Linear(<), where
v is an FO? sentence, start with converting v to a prenex
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normal form with each predicate having arity at most 2
(Gridel, Kolaitis, and Vardi 1997). Then apply the Skolem-
ization for WFOMC (Van den Broeck, Meert, and Dar-
wiche 2014) to obtain a sentence of the form ¢ = VazVy :
¥(x,y) A Linear(<), where ¢ is a quantifier-free formula.

By Theorem 3, we know that Algorithm 1 computes
WFOMC(¢, n, w,w) for one fixed ordering of the domain
in time polynomial with respect to the domain size. Once we
have that value, we may multiply it by n! to obtain the over-
all WFOMC, as is stated in Corollary 1. The entire compu-
tation thus runs in time polynomial in the domain size. [l

A Worked Example of Incremental WFOMC

Let us now use another example of splitting a sequence to
demonstrate the work of Algorithm 1. Consider the sentence
¢ = VaVy : Y(x,y) A Linear(<), where 1 is the conjunc-
tion of

~H(z) V ~T(x),
H(y) A (z < y) = H(x),
T(x) A (z < y) = T(y).

This time, we model a three-way split of a sequence, dif-
ferentiating its head, tail and middle. We have already seen
the third formula, which defines a property of the sequence
tail. The second formula does the same for the head. We also
require that for each element, at least one of H/1,7'/1 is set
to false. If both were set to true, then one element should be
part of both the head and the tail, which is obviously some-
thing, we do not want. If they are both set to false, then the
element is part of the sequence middle.

Our goal is to compute WFOMC(¢,n, w,w), where
(w,w) are some weight functions. For more clarity in the
computations below, we leave the weights as parameters (ex-
cept for the < predicate, whose weights are fixed to one). We
will substitute concrete numbers at the end of our example.

First, we construct valid cells of . There are 3 in total:

Ci(z)=H(x) N-T(x) A (xz < x)

Co(x) =—H(z)ANT(z) A (x < x)

Cs(x) = H(z) AT (x) A (z < x)
Having valid cells, we need to compute the values 7;; and
wy. Since we left the input weight functions as parameters,
those cannot be specified numerically. Instead, we use their
respective symbols.

Finally, we can start with the pseudocode. Following the
loop on Lines 1-3, we obtain the table 7 as follows:

T1((1,0,0)] = wr
T1[(0,1,0)] = ws
T1[(0,0,1)] = w3
For the main loop on Lines 4-12, we have ¢ = [2, 3] and
j=11,2,3].
e Seti = 2.

— Set 5 = 1. Now we iterate over entries in 77.
First, we have k4 = (1,0,0) and W,;q = w.



We compute the new weight as

1 0 0 2
Whew < Worg - wy - 11 T12 " T13 = WiT11-

The new p-vector will be Ky, < (2,0,0).
The old value T5[(2,0,0)] = 0.
Hence, we will set

T5[(2,0,0)] - 0+ w?ry;.
Analogically with other key-value pairs, we arrive at
T5[(1,1,0)] < 0 4+ wiwaris
T2[(1’ 0, 1)] — 0+ wiwsris

Set j = 2. Again, iterate over entries in 77.
First, we have k4 = (1,0,0) and W4 = wy.
We compute the new weight as

1 .0 .0
Whew < Woid - Wa - 131 - Tog * To3 = WiWaT21.

The new p-vector K,y < (1,1,0) already has non-
zero value set in 15, i.e.,

T5[(1,1,0)] = wywaris.
Hence, we will now assign
T3[(1,1,0)] < wiwa(riz + ro21)-
Again, analogically for other values:
T5[(0,2,0)] < 0 4 w3ray
T5[(0,1,1)] < 0 4+ wawsras

After repeating the steps for j = 3, we arrive at the
complete table 75 with entries:

T5((2,0,0)] = wiry

[(1,1,0)] = wywa(r12 + 721)
15[(1,0,1)] = wiws(r1z + r31)
T5[(0,2,0)] = wiry
15[(0,1,1)] = wows(ra3 + 732)

73[(0,0,2)] = wirss
* When performing the computation for : = 3, we now
iterate over entries in 75. Hence, for each j, there will
now be six p-vector keys and their respective values to
process.
Eventually, we arrive at T3 such that

T3((3,0,0)] = wir},

T3((2,1,0)] = wiwarii[ri2(riz + r21) + 3]
T5((2,0,1)] = wiwsrii[ris(ris + r31) + 73]
T5[(1,2,0)] = wiwiras[ray (ra1 + 112) + 175
T3[(1,1,1)] = wiwows[riariz(res + raz)

+121723(r13 4 731) + r31732(r12 + 721)]

T3[(1,0,2)] = wiw3rss[rai (a1 + ris) + ris)
T3[(0,3,0)] = wirs,

T3[(0,2,1)] = w3wsraa[ras(rag + r32) + 3]
T3[(0,1,2)] = wowdras[ras(ras + r23) + 735]
T3((0,0,3)] = w3ris
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Per Line 13, the final result is obtained by summing all
the values in 73 that are written above.

To find the number of three-way sequence splits, we set
all weights to one. For unitary weights, we obtain

w1 1 T11 713 1 0 0
w3 1 s T21 rog =11 1 1].
ws 1 731 33 1 0 1

Plugging those values into 73 and summing produces

Z T3] =

kEIN3: [k|=3

12
22
32

10,

which can be checked to be the correct value, e.g., by using
the popular stars and bars method.

Domain-Liftability of C? with Linear Order

WFOMC in C? may be reduced to WFOMC in FO? un-
der cardinality constraints. WFOMC under cardinality con-
straints may then be solved by repeated calls to a WFOMC
oracle. As there will only be a polynomial number of such
calls in the domain size, it follows that FO? with cardinality
constraints and also C? are domain-liftable (KuZelka 2021).

Since the C? domain-liftability proof only relies on a
domain-lifted WFOMC oracle, we may use our new algo-
rithm for computing WFOMC with linear order as that ora-
cle, leading to our final result.

Theorem 5. The language of C* extended by a linear order
axiom is domain-liftable.

We omit the proof as it would consist of almost word by
word restating of the already available proof on domain-
liftability of C* (KuZelka 2021) with only cosmetic changes.

Predecessor Relation

Having a domain ordering, an important relation is the one
of the immediate predecessor. Denoting Pred(z, y) the pre-
decessor relation, i.e., x is the immediate predecessor of y
under the order enforced by <, we may encode the prede-
cessor relation using the sentences

. Va : =Perm(z, ),

. Ya3=ly : Perm(z,y),

. Yy3=ta . Perm(z,y),

. VaVy : Pred(z,y) = Perm(z,y),
. VaVy : Pred(z,y) = (z <vy),

. |Pred|

We use an auxiliary relation Perm/2 for the encoding.
Perm/2 is assumed to be a fresh predicate symbol and it
captures a specific permutation of elements. Each domain el-
ement is mapped to its immediate successor in the ordering,
except for the last one (as it has no successors). The last ele-
ment in the ordering is mapped by Perm /2 to the very first
one, which is the only transition in our permutation from a
greater element to a smaller one. Finally, with the permuta-
tion defined, we “copy” all its smaller-to-greater transitions
over to the predecessor relation. See the online technical re-
port for details as well as generalization of the predecessor
relation.

(o) Y B O B S R

=n-—1.



Experiments

To check our results empirically, as well as to assess how our
approach scales, we implemented the proposed algorithm in
the Julia programming language (Bezanson et al. 2017). The
implementation follows the algorithmic approach presented
in the paper, with one notable exception. Counting quanti-
fiers and cardinality constraints are not handled by repeated
calls to a WFOMC oracle and subsequent polynomial in-
terpolation (Kuzelka 2021). Instead, they are processed by
introducing a symbolic variable® for each cardinality con-
straint and computing the polynomial (that would be inter-
polated) explicitly in a single run of the algorithm. We made
use of the Nemo . j1 package (Fieker et al. 2017) for poly-
nomial representation and manipulation.

Inference in Markov Logic Networks

Using Incremental WFOMC, we can perform exact lifted
probabilistic inference over Markov Logic Networks that
use the language of C? with the linear order axiom. We pro-
pose one such network over a random graph model similar
to the one of Watts and Strogatz. Then, we present inference
results for that network obtained by our algorithm.

First, we review necessary background. Then, we describe
our graph model. Finally, we present the computed results.

Markov Logic Networks Markov Logic Networks, often
abbreviated as MLNs (Richardson and Domingos 2006), are
a popular model from the area of statistical relational learn-
ing. An MLN @ is a set of weighted first-order logic for-
mulas (possibly with free variables) with weights taking on
values from the real domain or infinity:

O = { (w1, 1), (wa, a2), ..., (wg, ax) }

Given a domain A, the MLN defines a probability distribu-
tion over possible worlds such as

TN

7 w; - N, w)

PT<1>7A((U)

>

(wi,0;) EPR

where @ denotes formulas with real-valued weights (soft
constraints), ., denotes formulas with infinity-valued
weights (hard constraints), [-] is the indicator function, Z is
the normalization constant ensuring valid probability values
and N (a;, w) is the number of substitutions to free variables
of «; that produce a grounding of those free variables that is
satisfied in w. The distribution formula is equivalent to the
one of a Markov Random Field (Koller and Friedman 2009).
Hence, an MLN along with a domain define a probabilistic
graphical model and inference in the MLN is thus inference
over that model.

Inference (and also learning) in MLNSs is reducible to
WFOMC (Van den Broeck, Meert, and Darwiche 2014).
For each (w;,a;(x;)) € ®g, introduce a new formula
Vx; ¢ &i(x;) < ai(x;), where ; is a fresh predicate, and
set w(&;) = exp(w;),w(&;) = 1and w(Q) = W(Q) = 1

*Symbolic weights have also been recently used in probabilistic
generating circuits (Zhang, Juba, and Van den Broeck 2021) in a
similar way to ours.
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for all other predicates ). Formulas in ¢, are added to the
theory as additional constraints. Denoting the new theory by
I" and a query by ¢, we can compute the inference as

_ WFOMC(T" A ¢, |A], w, )
Pro a(¢) = WFOMC(T, |A|,w,@)

Watts-Strogatz Model The model of Watts and Strogatz
(Watts and Strogatz 1998) is a procedure for generating a
random graph of specific properties.

First, having n ordered nodes, each node is connected to
K (assumed to be an even integer) of its closest neighbors by
undirected edges (discarding parallel edges). If the sequence
end or beginning are reached, we wrap to the other end.

Second, each edge (4, j) for each node i is rewired with
probability 8. Rewiring of (7, j) means that node k is chosen
at random and the edge is changed to (4, k).

Our Model We start constructing our graph model in the
same manner as Watts and Strogatz, with K = 2. Ergo, we
obtain one cyclic chain going over all our domain elements:

However, we do not perform the rewiring. Instead, we
simply add m additional edges at random. Hence, all nodes
will be connected by the chain and, moreover, there will be
various shortcuts as well.

Finally, we add a weighted formula saying that friends
(friendship is represented by the edges) of smokers also
smoke. Intuitively, for large enough weight, our model
should prefer those possible worlds where either nobody
smokes or everybody does.

Let us now formally state the MLN that we work with:

® = {(o0,Vx : =Perm(z, x)), (5)
(00, VxIy : Perm(z,y), (6)
(00, VyIx : Perm(z,y), @)
(00, VaVy : Pred(z,y) = Perm(z,y)), (8)
(00, VaVy : Pred(z,y) = (z < y)), 9)
(OO’ |Perm| = n)’ (10)
(00, |Pred| =n —1), (11)
(00, VaVy : Perm(z,y) = E(z,vy)), (12)
(00, VaVy : E(x,y) = E(y,x)), (13)
(00, Vz : =E(z,y)), (14)
(00, |E| = 2n + 2m), (15)
(Inw, Sm(xz) A E(xz,y) = Sm(y))} (16)

Senteces 5 through 11 come from the predecessor defini-
tion. They define the basic cyclic chain, albeit a directed
one. We reduced the counting quantifiers to ordinary exis-
tential quantifiers by adding the cardinality constraint (the
sentence) 10 (Kuzelka 2021).

Formula 12 copies all Perm/2 transitions to E/2 and
formula 13 makes the edges undirected. Moreover, sentence
14 prohibits loops. Sentence 15 then requires that there are
exactly n + m undirected edges in the graph. As all these



are hard constraints, every model must define our predefined
graph model.

The only soft constraint is sentence 16. By manipulating
its weight, we may determine how important it is for the
formula to be satisfied in an interpretation.

Inference We can use Incremental WFOMC to run ex-
act inference in the MLN described above. We may query
the probability that a particular domain member (element)
smokes. Obviously, the probability will be the same for any
domain member. We will thus combine all of these together
and query for the probability of there being exactly &£ smok-
ers, instead.

Denote I' the theory obtained when we reduce the MLN
® to WFOMC. We may answer the query as

WFOMC(T' A (|Sm| = k), n,w w)
WFOMC(T, n, w,w)

Pr([Sm| = k) =

To relate our model to others which can be modelled with-
out the linear order axiom, we compare the results to infer-
ence over a completely random undirected graph with the
same number of edges.

Intuitively, completely random graph may form more dis-
connected components, thus not necessarily preferring the
extremes, i.e., either nobody smokes or everybody does. We
also keep the parameter m relatively small since, for large
m, even the random graph would likely form just one con-
nected component. The MLN over a random graph is defined
as follows:

= {(o0, E(z,y) = E(y,z)),

(o0
(oo —E(z,y)),
(00, |E| = 2n + 2m),
(Inw, Sm(z) A E(z,y) = Sm(y))}

Figure 1 depicts the inference results for a domain size
n = 10 and weight w = 3. The parameter m is set to 5, 8 and
10, respectively. As one can observe, our model prefers the
extreme values more, which is consistent with our intuition
above.

Conclusion

We showed how to compute WFOMC in C? with linear or-
der axiom in time polynomial in the domain size. Hence, we
showed the language of C? extended by a linear order to be
domain-liftable. The computation can be performed using
our new algorithm, Incremental WFOMC.
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