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Abstract
Many works in explainable AI have focused on explaining
black-box classification models. Explaining deep reinforce-
ment learning (RL) policies in a manner that could be under-
stood by domain users has received much less attention. In
this paper, we propose a novel perspective to understanding
RL policies based on identifying important states from auto-
matically learned meta-states. The key conceptual difference
between our approach and many previous ones is that we form
meta-states based on locality governed by the expert policy
dynamics rather than based on similarity of actions, and that
we do not assume any particular knowledge of the underlying
topology of the state space. Theoretically, we show that our
algorithm to find meta-states converges and the objective that
selects important states from each meta-state is submodular
leading to efficient high quality greedy selection. Experiments
on four domains (four rooms, door-key, minipacman, and
pong) and a carefully conducted user study illustrate that our
perspective leads to better understanding of the policy. We
conjecture that this is a result of our meta-states being more
intuitive in that the corresponding important states are strong
indicators of tractable intermediate goals that are easier for
humans to interpret and follow.

1 Introduction
Deep reinforcement learning (RL) has seen stupendous suc-
cess over the last decade with superhuman performance in
games such as Go (Silver, Huang, and et al. 2016), Chess (Sil-
ver et al. 2018), and Atari benchmarks (Mnih, Kavukcuoglu,
and et al. 2015). With increasing superior capabilities of auto-
mated (learning) systems, there is a strong push to understand
the reasoning behind their decision making. One motivation
is for (professional) humans to improve their performance
in these games (Rensch 2021). An even deeper reason is for
humans to be able to trust these systems if they are deployed
in real life scenarios (Gunning 2017). The General Data
Protection Regulation (Yannella and Kagan 2018) passed in
Europe demands that explanations need to be provided for
any automated decisions that affect humans. While various
methods have been provided to explain classification mod-
els (Ribeiro, Singh, and Guestrin 2016; Lundberg and Lee
2017; Lapuschkin et al. 2016; Dhurandhar et al. 2018) and be
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evaluated in an application-grounded manner (Doshi-Velez
and Kim 2017; Dhurandhar et al. 2017), the exploration of
different perspectives to explain RL policies has been limited
and user study evaluations are rarely employed in this space.

In this paper, we provide a novel perspective to produce
human understandable explanations with a task-oriented user
study that evaluates which explanations help users predict the
behavior of a policy better. Our approach involves two steps:
1) learning meta-states, i.e., clusters of states, based on the
dynamics of the policy being explained, and 2) within each
meta-state, identifying states that act as intermediate goals,
which we refer to as strategic states. We call our method the
Strategic State eXplanation (SSX) method. Such an approach
has real-world applicability. Consider scenarios where busi-
nesses want to increase their loyalty base. Companies often
train RL policies to recommend next-best actions in terms
of promotions to offer. They try to maximize the Lifetime
Value (Theocharous, Thomas, and Ghavamzadeh 2015). For
such policies, SSX could identify strategic offers that lead
to becoming loyalty customers based on a state space with
features such as demographics, buying behavior, etc. Another
example is robotics; consider the task of a robotic arm lifting
a cup on a table which can be broken down to a sequence of
stages, i.e., strategic states (subgoals) to aim for.

Contrary to the global nature of recent explainability works
in RL (Topin and Veloso 2019; Sreedharan, Srivastava, and
Kambhampati 2020; Amir and Amir 2018), our focus is on
local explanations; given the current state, we explain the pol-
icy moving forward within a fixed distance from the current
state. This key distinction lets us consider richer state spaces
(i.e., with more features) because the locality restricts the
size of the state space. It is also important to recognize the
difference from bottlenecks (Menache, Mannor, and Shimkin
2002; Simsek and Barto 2004) which are policy-independent
and learned by approximating the state space with randomly
sampled trajectories; rather than help explain a policy, bot-
tlenecks are used to learn efficient policies such as through
hierarchical RL (Botvinick, Niv, and Barto 2008) or options
frameworks (Ramesh, Tomar, and Ravindran 2019). Strategic
states are rather learned with respect to a policy and identified
without assuming access to the underlying topology.

An example of this for the Four Rooms game is seen in Fig-
ure 1a, where an agent moves through a grid with walls (rep-
resented by lack of a marker) looking for the goal state (upper
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(a) (b) (c)

Figure 1: Illustrations of our SSX (a), VIPER (b), and abstract states used for compression (c) methods based on an expert policy
for the Four Rooms game with neither having information about the underlying topology of the state space. Colors/Shapes denote
different meta-states/clusters. The black X in the upper right is the goal state. SSX clusters the four rooms exactly with strategic
states denoted by larger markers, where the biggest marker implies the priority strategic state. SSX explains that the expert policy
will head towards the open doors in each room preferring the door that leads to the room with the goal state. VIPER clusters
states by action (black/plus=up, green/circle=down, blue/diamond=left, red/square=right) based on the full (discrete) state space,
rather than samples, since it is tractable here. The compressed state space in (c) is also a function of the experts (conditional)
action distribution. Clusters in (b) and (c) are scattered making it challenging for a human to understand any policy over clusters.

right corner). Each position is a state and a meta-state is a
cluster of possible positions (states sharing a color/marker).
Within each meta-state, we identify certain states as strategic
states (shown with larger markers), which are intermediate
states that moving towards will allow the agent to move to
another meta-state and get closer to the goal state, which is
the final state that the agent wants to get to. In Figure 1a, each
room is (roughly) identified as a meta-state by our method
with the corresponding doors being the respective strategic
states. Topology refers to the graph connecting states to one
another; our method only has access to the knowledge of
which states are connected (through the policy), whereas
reinforcement learning algorithms might have access to prop-
erties of the topology, e.g., the ability to access similar states
using successor representations (Machado et al. 2018). In
Figure 1, the topology is a graph connecting the different
positions in each room or the doors connecting two rooms.

A key conceptual difference between our approach and
others is that other methods aggregate insight (i.e. reduce
dimension) as a function of actions (Bastani, Pu, and Solar-
Lezama 2018) or formulas derived over factors of the state
space (Sreedharan, Srivastava, and Kambhampati 2020) to
output a policy summary, whereas we aggregate based on lo-
cality of the states determined by the expert policy dynamics
and further identify strategic states based on these dynam-
ics. Other summarization methods simply output simulated
trajectories deemed important (Amir and Amir 2018; Huber
et al. 2021) as judged by whether or not the action taken at
some state matters. We use the term policy dynamics to refer
to state transitions and high probability paths. We use the
term dynamics because this notion contrasts other methods
that use actions to explain what to do in a state or to identify
important states; strategic states are selected according to
the trajectories that lead to them, and these trajectories are
implicitly determined by the policy.

The example in Figure 1 exposes the global view of our
explanations when the state space is small because local ap-

proximations of the state space are not needed. We show that
this perspective leads to more understandable explanations;
aggregating based on actions, while precise, are too granu-
lar a view where the popular idiom can’t see the forest for
the trees comes to mind. We conjecture that the improved
understanding is due to our grouping of states being more
intuitive with strategic states indicating tractable intermediate
goals that are easier to follow. An example of this is again
seen in Figures 1b and 1c, where grouping based on actions
for interpretability or for efficiency leads to less intuitive
results (note that Figure 1c replicates Figure 4b from (Abel
et al. 2019)). This scenario is further discussed in Section 4,
where yet other domains have large state spaces and require
strategic states to explain local scenarios. As such, our main
contributions are two-fold:
1. We offer a novel framework for understanding RL policies,
which to the best of our knowledge, differs greatly from other
methods in this space which create explanations based on
similarity of actions rather than policy dynamics. We demon-
strate on four domains of increasing difficulty.
2. We conduct a task-oriented user study to evaluate effec-
tiveness of our method. Task-oriented evaluations are one of
the most thorough ways of evaluating explanation methods
(Doshi-Velez and Kim 2017; Lipton 2016; Dhurandhar et al.
2017) as they assess simulatability, yet to our knowledge,
have rarely been used in the RL space.

2 Related Work
While a plethora of methods are proposed in XAI (Ribeiro,
Singh, and Guestrin 2016; Lundberg and Lee 2017; La-
puschkin et al. 2016; Dhurandhar et al. 2018), we focus on
works related to RL explainability and state abstraction, as
they are most relevant to our work, and distinguish between
global and local explainability methods as done in (Burkart
and Huber 2021). Namely, global methods are model ex-
planation approaches whereas local methods are instance
explanation approaches. It is important to note that various
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global methods described below, e.g. decision trees such as
(Bastani, Pu, and Solar-Lezama 2018), can be used to explain
individual instances, however this does not apply to all global
methods, e.g. (Amir and Amir 2018). While global methods
can explain a model without passing individual instances, i.e.,
by analyzing the splits of a decision tree, local methods only
explain a model’s performance on individual instances.

In the spirit of (Burkart and Huber 2021), most global
RL methods summarize a policy using some variation of
state abstraction where the explanation uses aggregated state
variables that group actions (Bastani, Pu, and Solar-Lezama
2018; Liu et al. 2021) using decision trees or state features
(Topin and Veloso 2019) using importance measures, or such
that an ordering of formulas based on features is adhered to
(Sreedharan, Srivastava, and Kambhampati 2020). These ap-
proaches all intend to provide a global summary of the policy.
(Liu et al. 2021) is most recent and can be viewed comple-
mentary as well; the idea of using latent representations to
increase interpretability could be adapted in our framework
when visualizing results. Other summaries output trajectories
deemed important according to importance measures (Amir
and Amir 2018; Huber et al. 2021) or through imitation learn-
ing (Lage et al. 2019), or train finite state representations
to summarize a policy with an explainable model (Danesh
et al. 2019, 2021). Visualization techniques combined with
saliency have been used to either aggregate states and view
the policy from a different perspective (Zahavy, Zrihem, and
Mannor 2016) or create a trajectory of saliency maps (Grey-
danus et al. 2018). Other works try to find state abstractions
or simplify the policy (Abel et al. 2019; Paul, Vanbaar, and
Roy-Chowdhury 2019; Liang et al. 2016), which should not
be confused with works seeking explainability. State abstrac-
tion in these works is used for compression so that simpler
policies can be used; the compressed state space is not inter-
pretable as seen in Figure 1c.

Turning towards local explanation methods, some works
focus on self-explaining models (Mott et al. 2019) where the
policy has soft attention and so can indicate which (local) fac-
tors it is basing its decision on at different points in the state
space. (Yau, Russell, and Hadfield 2020) learns a belief map
concurrently during training which is used to explain locally
by predicting the future trajectory. Interestingly, there are
works which suggest that attention mechanisms should not
be considered as explanations (Jain and Wallace 2019). These
directions focus on learning an inherently explainable model
rather than explaining a given model. Other works use local
explanation methods to explain reasons for a certain action
in a particular state (Olson et al. 2021; Madumal et al. 2020).
These are primarily contrastive where side information such
as access to the causal graph may be assumed. Our approach
is both methodologically and conceptually different.

There are also program synthesis-type methods (Verma
et al. 2018; Inala et al. 2020) that learn syntactical programs
representing policies, which while more structured in their
form, are typically not amenable to lay users. Methods in
safe RL try to uncover failure points of a policy (Rupprecht,
Ibrahim, and Pal 2020) by generating critical states. Another
use of critical states is to establish trust in a system (Huang
et al. 2018). There is also explainability work in the Markov

decision processes literature focusing on filling templates
according to different criteria such as frequency of state oc-
currences or domain knowledge (Khan, Poupart, and Black
2009; Elizalde et al. 2009). An elaborate discussion of these
and other methods can be found in (Alharin, Doan, and Sar-
tipi 2020), all of which unequivocally are different from ours.

3 Method
We now describe our algorithm, the Strategic State eXplana-
tion (SSX) method, which involves computing shortest paths
between states, identifying meta-states, and selecting their
corresponding strategic states. Recall that all paths discussed
below are based on transitions dictated by an expert policy
we want to explain; bottlenecks however, are identified from
paths generated as random walks through the state space and
are meant to help learn policies rather than explain them.
Notations: Let S define the full state space and s ∈ S
be a state in the full state space. Denote the expert policy
by πE(·, ·) : (A,S) → R where A is the action space.
The notation πE ∈ R|A|×|S| is a matrix where each col-
umn is a distribution of actions to take given a state (i.e.,
the policy is stochastic). We assume a transition function
fE(·, ·) : (S,S)→ R that defines the likelihood of moving
between states in one jump by following the expert policy.

Let Sφ = {Φ1, ...,Φk} denote a meta-state space of car-
dinality k. Denote m strategic states of meta-state Φ by
GΦ = {gΦ

1 , ..., g
Φ
m} where gΦ

i ∈ S ∀i ∈ {1, ...,m}.
Maximum likelihood (expert) paths: One criterion used
below is that two states in the same meta-state should not
be far from each other. The distance we consider is the most
likely path from state s to state s′ under πE . Consider a fully
connected, directed graph where the states are vertices and
an edge from s to s′ has weight − log fE(s, s′). By this defi-
nition, the shortest path is also the maximum likelihood path
from s to s′. Denote by γ(s, s′) the value of this maximum
likelihood path and Γ ∈ R|S|×|S| a matrix containing the
values of these paths for all pairs of states in the state space.
Counts of Out-paths: Another criterion used below for as-
signing states to meta-states is that if state s lies on many of
the paths between one meta-state Φi and all other meta-states,
then s should be assigned the meta-state Φi, i.e., s ∈ Φi. We
define below the number of shortest paths leaving Φi that a
fixed state s lies on. Denote T (s, s′) as the set of states that
lie on the maximum likelihood path between s and s′, i.e., the
set of states that define γ(s, s′). Then 1[s ∈ T (s′, s′′)] is the
indicator of whether state s lies on the maximum likelihood
path between s′ and s′′, and we compute the count of the
number of such paths for state s and meta-state Φ via

C(s,Φ) =
∑

s′ 6=s,s′∈Φ

∑
s′′ /∈Φ

1[s ∈ T (s′, s′′)]. (1)

One may also consider the likelihood (rather than count) of
out-paths by replacing the indicator in eq. (1) with γ(s′, s′′).
C(s, φ(s)) can be computed for all s ∈ S in O(|S|2) by iter-
atively checking if predecessors of shortest paths from each
node to every other node lie in the same meta-state as the
first node on the path. Approximating C(s, φ(s)) (through
sampling) can lead to significant computational savings while

9004



maintaining stability of the selected strategic states. The com-
putation of out-paths in equation (1) involves searching over
all paths between states in each meta-state with those states
in other meta-states. See Appendix1 B where stability is illus-
trated when randomly sampling a fixed fraction of the states
in other meta-states (second summation in equation (1)).

3.1 Learning Meta-States
We seek to learn meta-states that balance the criteria of having
high likelihood paths within the meta-state and having many
out-paths from states within the meta-state. It is important to
distinguish our goals from more classic cluster methods that
are solely state-based; such clusterings would be independent
of the expert policy that we want to explain and hence could
lead to states connected by low likelihood paths as per the
expert policy being in the same meta-state. Our meta-states
account for the expert policy by minimizing the following
objective for a suitable representation of s, which in our case
is the eigen-decomposition of the Laplacian of Γ:

argmin
Sφ

∑
Φ∈Sφ

∑
s∈Φ

[
(s− cΦ)2 − ηC(s,Φ)

]
(2)

where cΦ denotes the centroid of the meta-state Φ and η > 0
balances the trade-off between the criteria. Note that we are
optimizing Sφ over all possible sets of meta-states. Other
representations for s and functions for the first term could be
used; our choice is motivated from the fact that such formula-
tions are nostalgic of spectral clustering (Shi and Malik 2000)
which is known to partition by identifying well-connected
components, something we strongly desire. This representa-
tion connects the explanation to the policy because the matrix
Γ is determined by the policy and provides intuitions. Specif-
ically, in problem (2) when η → 0, the meta-states will tend
to be equi-sized where the likelihood of meta-state transitions
will be minimized leading to (approximate) optimization of
an NCut objective (von Luxburg 2007). For larger η, the
likelihood of meta-state transitions is still kept small (which
is desirable), with a tendency towards having a few large
meta-states. We found our method to be stable for η ∈ (0, 5].

Our method for solving eq. (2) is given by algorithm 1 and
can be viewed as a regularized version of spectral clustering.
In addition to clustering a state with others that it is connected
to, the regularization pushes a state to a cluster, even if there
are only a few connections to the cluster, if the policy dictates
that many paths starting in the cluster go through that state.

3.2 Identifying Strategic States
Next, strategic states are selected for each meta-state. Assume
that gΦ

1 , ..., g
Φ
m ∈ S are m strategic states for a meta-state

Φ that does not contain the target state. SSX finds strategic
states by solving the following problem for some λ > 0:

G
(m)
Φ = argmax

gΦ
1 ,...,g

Φ
m

m∑
i=1

C(gΦ
i ,Φ) (3)

− λ
m−1∑
i=1

m∑
j=i+1

max
(
γ(gΦ

i , g
Φ
j ), γ(gΦ

j , g
Φ
i )
)
.

1Appendix can be found at https://arxiv.org/abs/2202.03597.

Algorithm 1: Meta-states MS(S,A, πE ,Γ, k, εφ, η)

1) Get eigen representation of each state s from eigen
decomposition of the Laplacian of Γ

2) Randomly assign states s ∈ S to a meta-state in
Sφ = {Φ1, ...,Φk} and compute centroids c1, ..., ck
for meta-states

3) ξcur = current value of objective in eq. (2)
do

4) ξprev = ξcur

5) Reassign states s to the meta-states based on
smallest value of (s− cΦ)2 − ηC(s,Φ)

6) Compute centroids c1, ..., ck for meta-states
based on current assignment

7) ξcur = current value of objective in eq. (2)
while |ξcur − ξprev| ≥ εφ;
Output: Meta-states {Φ1, ...,Φk}

Algorithm 2: Strategic State function SS(Sφ,Γ, εg).
Finds Strategic States with Greedy Selection (w.l.o.g.
assume meta-state Φk contains the goal state).

for i = 1 to k − 1 do
1) Let ξcur = 0 and GΦi = ∅
do

2) ξprev = ξcur

3) GΦi = GΦi ∪ g where g solves eq. (3) over
states not in the set of strategic states GΦi

4) ξcur = evaluate eq. (3) with GΦi
while |ξcur − ξprev| ≥ εg;

end
5) GΦk = g, where g is the expert policy’s goal state
Output: Strategic states for each corresponding

meta-state {GΦ1 , ..., GΦk}

The first term favors states that lie on many out-paths from
the meta-state, while the second term favors states that are
far from each other. The overall objective tries to pick states
that explore different meta-states consistent with the expert
policy, while balancing the selection of states to be diverse .
The objective in eq. (3) is submodular as stated next (proof
in Appendix A) and hence we employ greedy selection in
algorithm 2. Note that for the meta-state that contains the
target state, the target state itself is its only strategic state.

Proposition 1. The objective to find strategic states in equa-
tion (3) is submodular.

3.3 Strategic State eXplanation (SSX) Method
Our method is detailed as follows. First, the maximum likeli-
hood path matrix Γ is computed. Then, algorithm 1 tries to
find meta-states that are coherent w.r.t. the expert policy, in
the sense that we group states into a meta-state if there is a
high likelihood path between them. If many paths from states
in a meta-state go through another state, then the state is bi-
ased to belong to this meta-state. Finally, algorithm 2 selects
strategic states by optimizing a trade-off between being on
many out-paths with having a diverse set of strategic states.

9005



3.4 Scalability and Complexity
Given our general method, we now discuss important details
for making our algorithm practical when applied to different
domains. SSX is applied in Section 4 to games with state
spaces ranging from small to exponential in size. SSX is
straightforward for small state spaces as one can pass the full
state space as input, however, neither finding meta-states nor
strategic states would be tractable with an exponential state
space. One approach could be to compress the state space
using VAEs as in (Abel et al. 2019), but as shown in Figure
1c, interpretability of the state space can be lost as there is
little control as to how states are grouped. Our approach is
to use local approximations to the state space; given a start-
ing position, SSX approximates the state space by the set of
states within some N > 0 number of moves from the starting
position. In this approach, Algorithms 1 and 2 are a function
of N , i.e., increasing N increases the size of the approximate
state space which is passed to both algorithms. One can con-
trast our approach of locally approximating the state space
with that of VIPER (Bastani, Pu, and Solar-Lezama 2018)
which uses full sample paths to train decision trees. While
the number of states in such an approximation is MN , where
M is the number of possible agent actions, the actual number
of states in a game such a pacman is much smaller in prac-
tice. Indeed, while pacman has 5 possible actions, growth
of the state space in our approximation as N increases acts
similar to a game with 2-3 actions per move because most
states in the local approximation are duplicates due to both
minipacman and the ghost going back and forth. See Figure 5
in Appendix B, where other practical considerations, includ-
ing approximating C(s,Φ), tractability of Γ and the eigen
decomposition of its Laplacian, are also discussed.

4 Experiments
This section illustrates the Strategic State eXplanation (SSX)
method on three domains: four rooms, door-key, and mini-
pacman. These domains represent different reinforcement
learning (RL) regimes, namely, 1) non-adversarial RL with a
small state space and tabular representation for the policy,
2) non-adversarial RL, and 3) adversarial RL, the latter two
both with a large state space and a deep neural network for
the policy. These examples illustrate how strategic states can
aid in understanding RL policies. A fourth domain, pong,
represents adversarial RL where the environment has no
access to the adversary and is in Appendix C. Lack of access
to the adversary means that the maximum likelihood path
matrix Γ requires simulation. Experiments were performed
with 1 GPU and up to 16 GB RAM. The number of strategic
states was chosen such that additional strategic states
increased the objective value by at least 10%. The number
of meta-states was selected as would be done in practice,
through cross-validation to satisfy human understanding.
Experiments demonstrating stability of strategic states to
changes in the initial state, i.e. robustness of SSX to the
initial state, as well as how sensitive strategic states are
to the size of the local approximation, using measures of
stability and faithfulness, are in Appendix E. Details about
environments are in Appendix F.

Four Rooms: The objective of Four Rooms is to move
through a grid and get to the goal state (upper right cor-
ner). The lack of a marker in a position represents a wall. Our
grid size is 11× 11. The state space consists of the player’s
current position and the policy is learned as a tabular rep-
resentation, since the state space is not large, using Value
Iteration (Martino and Mostofsky 2016).

SSX is displayed in Figure 1a with settings that learn four
meta-states. Clustering the states using algorithm 1 according
to the policy dynamics (i.e. maximum likelihood path matrix
Γ) results in an (almost) perfect clustering of states according
to the rooms. Larger markers denote strategic states learned
in each meta-state, with the larger strategic state in each room
corresponding to the first strategic state found. Clearly either
door in each room could lead to the goal state in the upper
right corner (black X), but it is important to note that higher
valued strategic states in the red and black rooms are those
that lead directly to the blue room containing the goal state.

Figure 1b illustrates the results of VIPER (Bastani, Pu,
and Solar-Lezama 2018). The explanation is illustrated
using different colors per action which effectively offers
decision tree rules. While an explanation based on rules can
be informative in continuous state spaces (as demonstrated
in (Bastani, Pu, and Solar-Lezama 2018)), such rules applied
to a discrete state space as done here may lead to confusion,
e.g., groups of reds states are split by black states in the
lower left room and allow for an optimal policy but it is
not clear how to describe the cluster of states in which to
take each action. Figure 1c illustrates the difference between
explainability and compression (Abel et al. 2019) where one
wants to learn abstract states upon which a proxy policy
replicating the expert policy can be efficiently learned on the
full state space. The lack of interpretability of the abstract
states is not of concern in that context.

Door-Key: Door-Key is another non-adversarial game, but
differs from Four Rooms because the state space is expo-
nential in the size of the board. The policy is learned as a
convolutional neural network with three convolutional and
two linear layers. In this game, one must navigate from one
room through a door to the next room and find the goal loca-
tion to get a reward. Policies are trained under two scenarios.
In the first scenario, a key in the first room must be picked up
and used to unlock the door before passing through. In the
second scenario, the door is closed but unlocked, so one does
not need to first pick up the key to open the door.

SSX is run with local approximations to the state space
with the maximum number of steps set to 6 as discussed in
Section 3.4. Results are shown in Figure 2. The state space
is a 7 × 7 grid reflecting the forward facing perspective of
the agent. Walls are light gray and empty space visible to
the agent is dark gray. Grid positions blocked from view by
walls are black. The scenes in Figure 2 are exactly what a
user sees. To better understand why scenes do not appear
easily connected, consider the first two states in the first
row - the only difference is that the agent changed directions.
When facing the wall, the agent’s view only includes the three
positions to the right and one position to the left. Positions on
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Locked Door Unlocked Door

Figure 2: Illustration of our SSX method on Door-Key. Policies were trained on two different environments: Locked Door and
Unlocked Door. Each row corresponds to a meta-state and strategic state (outlined in pink) from running SSX starting at a
different number of moves into the same path (one path for completing the task in each of the two environments).

the other side of the wall are not visible to the agent, which is
depicted as black. When the agent changed directions, many
more positions in the room become visible to the agent.

In Figure 2, a sample path was generated using each policy.
SSX was run at three different states along these paths, and
one meta-state and corresponding strategic state (outlined
in pink) from each SSX explanation is displayed. The two
strategic states for the locked door environment correspond to
the agent looking for the key (row 1) and getting the key (row
2). The two strategic states for the unlocked door environment
correspond to the agent looking for the door (row 1) and
making it through the door (row 2). An additional scenario
can be found in Appendix G.

For intuition on how a human would use these explana-
tions, consider the cluster in row 1 for the Locked Door.
Comparing the first three states in the cluster to the strategic
state, a human sees that the policy is suggesting to face the
key and move closer to it. As this is a local explanation, it is
limited by the initial state being explained as to how close
one get to the key. The cluster in row 1 for the Unlocked
Door shows that the policy at these states is to face the door.
Facing the door within a certain distance seems how the
policy breaks down the ultimate strategy. While one might
wonder why the strategy is not to get closer to the door (e.g.,
move up from the second column), recall that the strategic
state is explaining the policy and not human intuition.

Minipacman: Minipacman is a small version of the classic
Pacman game. This game differs from Door-Key with the
addition of an adversary - the ghost. The state space is again
exponential in the size of the board and the policy is learned
as a convolutional neural network with two convolutional
and two linear layers. Two policies are trained with different
scenarios. The first scenario, denoted EAT, is for minipacman
to eat all the food with no reward for eating the ghost. The
second scenario, denoted HUNT, is for minipacman to hunt
the ghost with no reward for eating food.

SSX is again run with local approximations to the state
space with the maximum number of steps set to 8. The state
space is a 10× 7 grid reflecting where food, pacman, a ghost,
and the pill are located. Figure 3 displays one sample scenario
under both the EAT and HUNT policies, with two meta-states
and corresponding strategic states highlighted in pink. In
order to interpret the figures, one needs to consider black

vs blue pixels. The two strategic states of EAT Scenario 1
show pacman eating the food (row 1), i.e. columns 2/3 show
blue pixels to the right of the pill meaning those pixels were
not yet eaten before the strategic state is reached, but then
avoiding the ghost and ignoring the pill (row 2). In HUNT
Scenario 1, pacman is either directly moving towards the
ghost after having eaten the pill (row 1) or heading away
from the pill while the ghost is near it (row 2), i.e. going back
to pixels already visited when waiting out the ghost near the
pill. Additional scenarios and an experiment with a baseline
motivated by (Amir and Amir 2018) appear in Appendix H
and D, respectively.

5 User Study
We designed a user study to evaluate the utility of our ap-
proach relative to the more standard approach of explaining
based on grouping actions. While SSX has thus far been used
to give users local explanations about particular scenarios, we
use it here to gain insight as to the general goal of a policy be-
cause the relevant explanations to compare with are global; as
previously discussed, other local literature is about learning
inherently explainable models rather than explaining a fixed
model or learning contrastive explanations which should be
used complementary to our methods. The global applicability
of SSX can also be seen as another advantage. As with Four
Rooms, we again compare with VIPER – a state-of-the-art
explanation method for reinforcement learning policies – but
use a visual output tailored for the discrete state space and
label it Viper-D. We do not compare with methods that output
trajectories (Amir and Amir 2018) as they require estimating
Q-values to determine state importance; while this measure
can successfully be used to select important trajectories that
give users an idea of what a policy is doing, such important
states are not necessarily good representatives of states that
one should aim for, as is the goal of strategic states in SSX
(see Appendix D for further discussion and related experi-
ments). Among explanation methods, VIPER makes for the
best comparison as it requires a similar amount of human
analysis of the explanation (by observing states), and while
meant for global explainability, also gives local intuitions, as
opposed to other global methods. The utility of each approach
is measured through a task posed to study participants: users
must guess the intent of the expert policy based on provided
explanations which are either output by SSX or VIPER. Such
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EAT Scenario 1 HUNT Scenario 1

Figure 3: Illustration of our SSX method on minipacman. Two policies, EAT and HUNT, are displayed. Two clusters, one per row,
are shown as part of the SSX result. The last board with pink background is a strategic state for each cluster. The color scheme is
as follows: green = pacman, red = ghost, yellow = edible ghost, cyan = pill, blue = food, black = food eaten, white/pink=wall.

Figure 4: Above we see the percentage (human) accuracy in
predicting if the expert policy is Eat or Hunt based on SSX
and Viper-D. Performance difference is statistically signifi-
cant (paired t-test p-value=0.01). Error bars are 1 std error.

a task oriented setup for evaluation is heavily encouraged in
seminal works on XAI (Doshi-Velez and Kim 2017; Lipton
2016; Dhurandhar et al. 2017).
Setup: We use the minipacman framework with the EAT
and HUNT policies trained above and each question shows
either an SSX explanation or Viper-D explanation and asks
the user “Which method is the explanation of type A (or
B) explaining?” to which they must select from the choices
Hunt, Eat, or Unclear. Methods are anonymized (as A or B)
and questions for each explanation type are randomized. Ten
questions (five from both the EAT and HUNT policies) are
asked for each explanation type giving a total of twenty ques-
tions to each participant. At the end of the study, we ask users
to rate each explanation type based on a 5-point Likert scale
for four qualitative metrics - completeness, sufficiency, satis-
faction and understandability - as has been done in previous
studies on explainable RL (Madumal et al. 2020). For users
to familiarize themselves with the two types of explanations
we also provided training examples at the start of the survey,
one for each type.

To be fair to VIPER explanations, rather than just display-
ing rules in text which may not be aesthetically pleasing, we
created a visualization which not only displayed the (five)

rules to the user, but also three boards, one each for pacman,
the ghost, and the pill, highlighting their possible locations as
output by the rule. This visualization, which we call Viper-D,
is beyond the typical decision tree offered by VIPER and bet-
ter renders explanations in our discrete setting. Screenshots
of sample visualizations along with the instruction page and
optional user feedback can be found in Appendix I.

The study was implemented using Google Forms and we
received 37 responses from people with quantitative/technical
backgrounds, but not necessarily AI experts. We removed 5
responses as they were likely due to users pressing the submit
button multiple times as we twice received multiple answers
within 30 seconds that were identical.
Observations: Figure 4 displays user accuracy on the task
for method SSX and Viper-D. Users were able to better dis-
tinguish between the EAT and HUNT policies given expla-
nations from SSX rather than Viper-D and the difference
in percentage correct is statistically significant (paired t-test
p-value is 0.01). Another interesting note is that less than
5% of SSX explanations were found to be Unclear whereas
more than 25% of Viper-D explanations were labeled Unclear,
meaning that, right or wrong, users felt more comfortable
that they could extract information from SSX explanations.
See Appendix I for results of qualitative questions to which
users scored SSX higher than VIPER.

6 Discussion

We have seen in this work that our novel approach of identi-
fying strategic states leads to more complete, satisfying and
understandable explanations, while also conveying enough
information needed to perform well on a task. Moreover, it ap-
plies to single agent as well as multi-agent adversarial games
with large state spaces. Further insight could be distilled from
our strategic states by taking the difference between the vari-
ables in some particular state and the corresponding strategic
state and conveying cumulative actions an agent should take
to reach those strategic states (viz. go 2 steps up and 3 steps
right to reach a door in Four Rooms). This would cover some
information conveyed by typical action-based explanations
while possibly enjoying benefits of both perspectives. Other
future directions include seeing if strategic states could be
used as intermediate goals for efficiently training new policies
and extending our idea to continuous state spaces.
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