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Abstract

Graph-based methods have hitherto been used to pursue co-
herent patterns of data due to their ease of implementation
and efficiency. These methods have been increasingly applied
in multi-view learning and achieved promising performance
in various clustering tasks. However, despite their noticeable
empirical success, existing graph-based multi-view clustering
methods may still suffer the suboptimal solution considering
that multi-view data can be very complicated in raw feature
space. Moreover, existing methods usually adopt the similar-
ity metric by an ad hoc approach, which largely simplifies
the relationship among real-world data and results in an inac-
curate output. To address these issues, we propose to seam-
lessly integrate metric learning and graph learning for multi-
view clustering. Specifically, we employ a useful metric to
depict the inherent structure with linearity-aware of affinity
graph representation learned based on the self-expressiveness
property. Furthermore, instead of directly utilizing the raw
features, we prefer to recover a smooth representation such
that the geometric structure of the original data can be re-
tained. We model the above concerns into a unified learning
framework, and hence complement each learning subtask in a
mutual reinforcement manner. The empirical studies corrob-
orate our theoretical findings and demonstrate that the pro-
posed method is able to boost the multi-view clustering per-
formance.

Introduction

Learning the underlying similarity relationships contributes
to capturing the inherent information of data and thus fur-
ther facilitates the performance of downstream tasks. Con-
sidering the data points typically lying in latent subspaces,
the subspace clustering technique plays an essential role to
group data with respect to their underlying subspaces. These
methods first exploit a similarity graph to represent the re-
lationship of data by means of the self-expressiveness prop-
erty and then perform the spectral clustering on the obtained
graph to achieve the final clustering result (Ma et al. 2020).
These methods are essentially graph-based methods, among
which Sparse Subspace Clustering (SSC) (Elhamifar and Vi-
dal 2013), Least Squares Regression (LSR) (Lu et al. 2012)
and Low-Rank Representation (LRR) (Liu et al. 2012) are
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frequently employed in various practical fields of machine
learning.

It is widely known that real-world data generally con-
tain multiple views that are collected from multiple chan-
nels (Bickel and Scheffer 2004; Gao et al. 2015; Huang,
Kang, and Xu 2020). For instance, a face image might con-
sist of various features such as ambient light and a person’s
emotion, where one type of feature corresponds to a dis-
tinct view of data. Unlike traditional single-view algorithms,
multi-view subspace clustering methods can precisely re-
shape the correlation between data samples. Assuming that
a comprehensive latent representation can be generated from
multi-view data, (Zhang et al. 2017) designed a multi-view
subspace clustering method by searching the underlying la-
tent representation from multiple views. To better fit the real-
life data, the work (Luo et al. 2018) exploited one common
consistent structure and a group of view-specific representa-
tions simultaneously to construct subspace representations.
In (Huang et al. 2021), the diversity of multi-view data is re-
defined to represent a much broader concept than the noises
and a holistic design of the clustering method is adopted
by simultaneously considering the diverse parts and con-
sistent pure components. (Zhang et al. 2020) introduced a
one-step multi-view subspace clustering algorithm by inte-
grating the steps of similarity learning, multi-view informa-
tion fusion, and final clustering, which is distinguished from
existing methods with isolated learning. To reduce the com-
putational complexity of multi-view clustering, (Liu et al.
2022) employed the optimal anchor graph to directly output
the clustering labels and incorporated the processes of graph
construction and anchor learning into an integrated model to
facilitate subsequent clustering tasks.

Although the aforementioned multi-view clustering algo-
rithms showcase prominent performance, there are still two
major drawbacks. For one thing, they assume that each sam-
ple can be well represented from the original data space,
which may yield insufficient representation as real-world
data generally consist of redundancy and are easily cor-
rupted. Therefore, it is elusive to recover a separable repre-
sentation to facilitate the subsequent clustering module. For
another, blindly utilizing the Euclidean distance to measure
the similarity between samples ignores the inherent corre-
lation between samples to a large extent and thus fails to
explore the underlying data distribution accurately. In this



paper, we propose to seamlessly integrate metric learning
and graph learning for multi-view clustering. We first re-
cover a smooth representation by exploring the geometric
structure of data. Then we employ a useful metric to de-
pict the inherent structure with linearity-aware of the affin-
ity graph obtained based on the smooth representation. We
model the above concerns into a unified learning framework
and hence complement each learning subtask in a mutual
reinforcement manner. Our empirical experiments demon-
strate the effectiveness and the superiority of the proposed
method. The main contributions of our work are outlined as
follows:

* We propose to recover a separable representation and bet-
ter fit the inherent structure with the help of smooth rep-
resentation learning and linearity-aware metric module
respectively. We model the above concerns into a uni-
fied learning framework and hence lead to a novel model
termed metric multi-view graph clustering.

* An efficient algorithm is introduced to solve the opti-
mization problem. By leveraging the subtasks of smooth
representation learning, multiple similarity graphs recov-
ering, and the consensus graph fusing in our joint model,
each subtask is alternately boosted towards an overall op-
timal solution.

» Extensive experiments on benchmark datasets are con-
ducted to demonstrate the superiority of our model, com-
pared with other state-of-the-arts.

Notations. In this paper, we utilize the normal italic sym-
bols (e.g, z), boldface lowercase symbols (e.g, z), and bold
capital symbols (e.g, Z) to represent scalars, vectors, and
matrixes, respectively. 1 represents a column vector with all
its elements equal to 1. I is an identity matrix. ||-|| » denotes
the Frobenius norm of a matrix.

Related Work

It is well-known that subspace clustering methods aim to
exploit underlying subspaces in the form of the affinity
graph (Lu et al. 2018). In general, subspace learning is based
on the self-expression of data samples, i.e., each sample can
be reconstructed by a linear combination of the others in a
union of subspaces (Elhamifar and Vidal 2013; Huang et al.
2019). Given a data matrix X = [xi,...,%,] € R"¥4,
where n is the number of instances and d denotes the fea-
ture dimension. According to the self-expressiveness prop-
erty, we have

X; = Z j XjZij

s.t. VZ, Zij 2 0,
where the combination coefficient z;; denotes the similarity
between the original data sample x; and ;. Accordingly,

one can recover the coefficient matrix Z = [z;;] € R™*™ by
solving

ey

2
minz Z?:l ‘

s.t.

X; — Zj ijij

Vi7 Zij > 03

F

@

where Z can also be treated as a similarity graph.
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According to Eq. (2), the subspace clustering model can
be formulated as

ming | X — X2 + ¢ |1Z] )
st. Z >0,

where ¢ is a parameter to balance the corresponding regular-

ization term. Based on Eq. (3), plenty of subspace clustering

algorithms have been studied up to now (You, Robinson, and

Vidal 2016; Yang et al. 2020).

It is clear that Eq. (3) can be extended to the multi-
view domain. Given a multi-view data with m views
{X®, .., XM | X®) e RP*dv} where d, is the feature
number in the v-th view, the multi-view version of Eq. (3) is

ming S0, X - XOZO + 020
7, (v) >0,

s.t.

where Z (") represents the affinity matrix of the v-th view.

The Proposed Method

Considering that the raw data might not be separable into
subspaces due to the natural existence of redundancy and
corruption, we propose to recover a smooth representation
for each view, inspired by the graph filtering technique (Shu-
man et al. 2013). It is based on the fact that a signal is
smooth by nature and associated adjacent nodes often share
similar feature values. Since the smoother signals are of-
ten equipped with lower frequencies, retaining the low-
frequency components is much preferred rather than high-
frequency ones as they represent the smoothly changing
structure (e.g. background) and the rapidly changing details
(e.g. corruptions) respectively. Hence we employ a low-pass
filter to obtain a smooth representation for each view. By
taking each column of X(*) as a graph signal, the formula-
tion of k-order graph filtering on X (*) can be designed as

L\
X (0)
;) X

where X represents a smoothed representation, L") is the
normalized graph Laplacian and k is a positive integer to
consider the k-hop neighborhood relations (Zhang et al.
2019).

It is common knowledge that the core of clustering is to
measure the similarity and dissimilarity among the given
samples. Therefore, what kind of metric should be utilized
to measure the distance between two data points is critical
for the clustering task. As shown in Figure 1, Shiba inu 1
(S1) is closer to the golden retriever 1 (G1) than Shiba inu 3
(S3) under the metric of Euclidean distance, i.e., d1 > d2.
However, it is obvious that both S1 and S3 belong to the
same kind of dog, while S1 and G1 are not. In this paper,
we employ a useful metric to depict the inherent similarity
relationship with linearity-aware of the affinity graph. Here
we first introduce the Pearson Correlation Coefficient (Ben-
esty et al. 2009; Schober, Boer, and Schwarte 2018; Xu et al.
2022) as follows:

(&)

% = (I _



C1

Figure 1: According to the picture, d2 < d1 shows that S1
is closer to G1 than to S3 under the Euclidean distance met-
ric. However, it is obvious that S1 and S3 are both Shiba
inu, while G3 is a golden retriever. On the contrary, under
our proposed metric, §; < 63 leads to PCC(S1,S3) >
PCC(S1, G1). Therefore, S1 accurately owns a larger sim-
ilarity with S3 than with G1.

Definition 1 (Pearson Correlation Coefficient) Assumed a
data matrix X € R™*" where m stands for the fea-
ture dimension and n represents the number of instances.
Choosing two arbitrary samples x;,x; from X, making sure
X, — T, X; —Z; # 0, where T; = % kazl x¥. The Pearson
Correlation Coefficient between them is formally defined as:

PeC () = (=T ) ©

o lxi — fz”g lIx; — fj”z.

The boundedness of Eq. (6) is given below.

Theorem 1 (Boundedness of the Coefficient) As for two
arbitrary instances X;,X; € X, one of the most fundamental
properties is that:

—1 < PCC (x4,%;) < 1 )

Proof 1 Focusing on the formulation of PCC and without
loss of generality, we reformulate Eq. (6) as:

(Xi — fl)T ()\Xz — )\(fl)
l[xi = @il [|Axs = Azl

PCC = ®)

where Ax; equals X; to depict the linear relationship be-
tween these two samples. And by simple algebra, we have:

~N\ T ~
PCC — Axi — @) (% — @) _ i ©)

A (b —23) W

Therefore, the range of PCC varying from -1 to 1 is proven.

Based on the Pearson Correlation Coefficient(PCC) in
Eq. (6), we take a step forward that considers the linear re-
lationship as a metric to evaluate the similarity among sam-
ples. The linearity-aware metric is explained in Definition 2.

Definition 2 Linearity-Aware Metric According to theo-
rem I, PCC succeed in depicting the linear relationship be-
tween instances. In light of this, to pursue a novel metric
that is suitable for the following optimization framework, we
have:

ﬁ(Xi7Xj) =1-"PCC. (10)
In this way, we establish a much more discriminating model
and we are now able to separate those samples which are
closer under the Euclidean distance metric but do not have
much linear relation. Therefore, we will obtain a more accu-
rate and linear distinguishable outcome. The illustration of
the improvement obtained by our method is shown in Fig-
ure 1. The conditions for the linearity-aware metric are:

* L (x;,x;) = 2. It suggests that z; and x; are completely
negative correlated.

* 1 < L£(x;,%x;) < 2. It suggests that there is a "certain
degree” of negative linear relationship between x; and
Zj.

* L (x;,%;) = 1. 2; and x; are not correlated.

* 0 < L£(x;,%j) < 1. It suggests that there is a certain
degree of positive linear relationship between x; and ;.

* L (x,%;) = 0. z; and z; are completely positive corre-
lated.

Taking Figure 1 as an example, 62 between S1 and W1 is 90
degrees, which means they are not correlated. 6, between
S1 and C1 is larger than 90 degrees but smaller than 180
degrees, which means they have a certain degrees of nega-
tive correlation. And 03 between S1 and G1 is smaller than
90 degrees. But 0, between S1 and S3 is smaller than 63.
Therefore, S1 and S3 have a much stronger correlation. In
this regard, this showcases the feasibility of the linearity-
aware metric. Intuitively, we learn the inherent similarity
graph S(*) for each view with linearity-aware as follows

ming 27, 0, S £2 (2,2 ) s 483

s.t. szl =1,0< sl(;) <1,
(11)

where vy represents the trade-off parameter.
Combining Eq. (4), Eq. (5) and Eq. (11), we arrive at

ming g L1 (X2, 80 =
Sy [X® = XWZO[ 4 6|20

L S S 22 (A, 27) 5+ 1S3

stsiT1=10<s <1,
(12)
One of the most critical procedures in multi-view clus-
tering is to effectively integrate information from different
views. In light of (Nie et al. 2017), we utilize an adaptive
weight strategy to meet the consistency among all views:

ming £z (8;C) = T w € = S@|; (13)



where C is the consensus graph, and w(*) is a self-tuned

parameter used to weigh the importance of S(*) which can
be defined as

- 1
~2[c-so,

Note that Eq. (14) is essentially an inverse distance weight-
ing.

With the coefficient matrix and similarity graphs learned
in Eq. (11), and the consensus graph achieved in Eq. (13),
our model can be finally modeled as

minZ(”),S(v),c ﬁl (X(U)’ Z('U)7 S(U)) +£2 (S(U), C)

graph learning
st 20 >0,5T1=1,0<sY) <1,
17¢;=1,0<¢; <1.

graph fusion

15)

Optimization
Since Eq. (15) is not jointly convex in all variables, we pro-
pose to solve this non-convex problem by adapting an alter-
native optimization algorithm.
update Z(*): To obtain the coefficient matrix Z(*) of each
view, we need to solve

ming. Y7 [|X® - XOZO|? 4 6|20,

(16)
7.@) >0,

s.t.

since Eq. (16) is independent for each v, we can solve it
separately
minge

%0 - X0z} + 620
7,(v) >0,

(17)
s.t.

Taking the derivative of Eq. (17) and setting it to zero, we
then have

_ _ -1 _ _
Z") = max ((X(”)TX(”) + ¢I) XOTX ), 0> .

(13)
update S(*): With other variables fixed, the correspond-
ing optimization problem of each view becomes

minge) Yy >0 L2 <Z1(:U)7 ng)) Sz(';‘))Jr
2 (19)

S |[2, 4 @)
YIS +w .

‘C _sw

For the simplicity of calculation, we denote £ (zz(-v), z(,”))

J
as d\

i thus Eq. (19) can be written in a convenient form
(dgv) — 2w(”)ci)

2 ('y + w(”))

(v)

i (t+1)

=arg min S(U)
g 3 (t)
<
i ()

S +

(20)

)T

stsi”T1=1,0<s;; <1,
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Algorithm 1: Algorithm for Metric Multi-view Subspace
Clustering

Input: Feature matrix of m views {X(1), X®) X1,

the number of clusters p; balance parameters ¢ and ~.
Initialize: w(*) = L S = L. Construct the initial subspace
Z() of X(*) by solving Eq. (4).
Output: The consensus graph C and the final clustering re-
sult.
1: repeat
2:  Update X(*) according to Eq. (5), where L(*) is the
normalized graph Laplacian of S(*).
3:  Update the coefficient matrix Z() according to
Eq. (18).
4:  Update the similarity graph S(*) by solving Eq. (21).
5. Update consensus similarity graph C by solving
Eq.(25).
6:  Update the self-tuned weight parameter w(*) accord-
ing to Eq. (14).
7: until converge
8: Perform the standard spectral clustering on C to obtain
the final clustering results.

(v)

i

in the (¢ + 1)-th iteration. Since
o, w®), d? and c; are constant values when updating s,
we further simplify Eq. (20) by letting A = (’y + w(”)) and
h{") = (dl(.v) - 2w<”)ci). In this way, Eq. (20) can be writ-
ten as

where s'°). . means s
3(t+1)

2

o1
Sf;(t)> oy hi

T

sl(,ft)Jrl) =arg min
s
i (1)
S.t. Sl(-v)T]. = 1,0 < Sij < 1.
Eq. (21) can be solved by off-the-shelf algorithm proposed
in (Duchi et al. 2008; Huang, Nie, and Huang 2015).
update C: While other variables are fixed, Eq. (15) is
equivalent to

ming Y0, w® [|C — S@||7

2 21

(22)
S.t. chi =1,C>0.
Eq. (22) can be reformulated in an element-wise form
. m v n (v) 2
ming ) 0, w' )Zi,jzl (Cij — S ) (23)

st.17¢;=1,C > 0.

It’s self-evident that each view of Eq. (23) is independent
from one another. Therefore we optimize it by each row i:

2
mine, 3350y Yo7y w) (Cz‘j - 31(‘;'}))
st.17¢;=1,C >0,

where c;; stands for the j-th element with respect to the row
vector c¢;. Thus, Eq. (24) can be rewritten as

(24)

2

c; — s
il 25)

minci Z:}nzl w(v)

st.17¢;=1,C > 0.



Eq. (25) can be solved by utilizing the algorithm proposed
in (Wang, Yang, and Liu 2019).

The detailed algorithm to solve Eq. (15) is summarized in
Algorithm 1.

Time Complexity Analysis

Obviously, there are five steps that mainly resolve the time
complexity of Algorithm 1. Recall that n, m, and p repre-
sent the number of data samples, views, and clusters, respec-
tively. Let N, be the number of nonzero entries of S(*) (both
S(®) and Z(*) are sparse). The time complexity of each step
is given in Table 1.

Steps Calculation Complexity
Eq. (5) graph filtering O (N, mp)
Eq. (18) update Z) O (n*mp)
Eq. (21) || update each column of S®) O (np)
Eq. (25) update each column of C O (nmp)
Eq. (14) w® = m @ (n2m)
Total ~ O (n?)

Table 1: Time complexity of Algorithm 1.

In practical, we have m < n and p < n, thus the overall
time complexity is bounded by O (n2)

Experiment

In this section, we demonstrate the efficiency and the supe-
riority of our proposed method on several benchmark data
sets, compared with other state-of-the-art multi-view clus-
tering methods.

Experimental Setup

Intending to achieve a comprehensive evaluation, we com-
pare our proposed method with several competitors: Multi-
view Spectral Clustering with Co-training strategy(Co-
train) (Kumar and Daumé 2011), Multi-view Spectral
Clustering with Co-regularized strategy(Co-reg) (Kumar,
Rai, and Daume 2011), Self-Weighted Multi-view Cluster-
ing(SWMC) (Nie et al. 2017), Generalized Latent Multi-
View Subspace Clustering(LRMSC) (Zhang et al. 2018),
Consistent and Specific Multi View Subspace Cluster-
ing(CSMSC) (Luo et al. 2018), Multi-view Consensus
Graph Clustering(MCGC) (Zhan et al. 2019), Graph
based Multi-view Clustering(GMC) (Wang, Yang, and Liu
2019), Consensus One-step Multi-view Subspace Cluster-
ing(COMVSC) (Zhang et al. 2020), Large-scale Multi-
view Subspace Clustering in Linear Time(LMVSC) (Kang
et al. 2020), multi-view clustering via Cross-view Graph
Diffusion(CGD) (Tang et al. 2020), Multi-view Sub-
space Clustering via Co-training Robust Data Represen-
tation(CoMSC) (Liu et al. 2021a), One-pass Multi-view
Clustering for Large-scale Data(OPMC) (Liu et al. 2021b),
Scalable Multi-view Subspace Clustering with Unified An-
chors(SMVSC) (Sun et al. 2021), Fast Parameter-free Multi-
view Subspace Clustering with Consensus Anchor Guid-
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Method ACC NMI | Purity | F-score
SC(AllFea) | 65.51 | 61.88 | 67.59 59.42
Co-train 5442 | 47.60 | 55.48 45.26
Co-reg 59.52 | 5594 | 59.82 | 53.85
SWMC 37.19 | 42.88 | 40.62 49.28
LRMSC 5493 | 57.25 | 62.64 | 55.07
CSMSC 62.11 | 64.01 | 70.61 59.19
GMC 35.19 | 41.21 | 37.63 | 49.13
COMVSC | 59.21 | 50.53 | 62.75 53.23
LMVSC | 70.59 | 65.71 | 70.98 | 62.73
CGD 41.84 | 47.02 | 45.20 50.88
CoMSC 60.63 | 53.34 | 61.07 50.05
OPMC 59.09 | 55.74 | 70.60 52.52
SMVSC 45.72 | 43.28 | 47.73 48.09
FPMVS 4246 | 43.83 | 45.18 48.00
CGL 39.86 | 44.64 | 47.63 46.23
Ours 67.90 | 68.69 | 74.24 68.77
Table 2: The clustering results on HAR dataset (%)
Method ACC NMI | Purity | F-score
SC(AllFea) | 55.14 | 45.04 | 57.19 | 42.13
Co-train 64.95 | 54.27 | 66.52 52.59
Co-reg 63.95 | 57.89 | 67.24 | 55.31
SWMC 7238 | 71.78 | 77.14 66.19
LRMSC 71.81 | 6242 | 74.14 | 60.08
CSMSC 80.43 | 71.36 | 80.43 70.06
MCGC 80.48 | 70.18 | 80.95 72.46
GMC 74.76 | 74.21 | 79.05 69.68
COMVSC | 78.38 | 67.70 | 79.24 67.28
LMVSC 7724 | 67.02 | 77.76 65.75
CGD 82.38 | 73.14 | 82.38 71.24
CoMSC 81.71 | 75.28 | 83.10 73.02
OPMC 84.33 | 72.95 | 84.43 72.47
SMVSC 81.43 | 70.18 | 81.43 | 69.36
FPMVS 78.57 | 66.84 | 78.57 68.36
CGL 82.86 | 7578 | 82.86 | 73.30
Ours 91.43 | 83.91 | 9143 | 83.83

Table 3: The clustering results on MSRC dataset (%)

ance(FPMVS) (Wang et al. 2021),m Consensus Graph
Learning for Multi-view Clustering(CGL) (Li et al. 2021).

We compare the above-mentioned methods with our pro-
posed algorithm on several benchmark datasets: HAR is a
Human Activity Recognition dataset which consists of 2941
samples and 6 classes. Cora is a popular dataset which is
composed of 2708 instances and 7 categories, MSRC in-
cludes 240 images and 8 classes. Each class contains 30 im-
ages. Inspired by (Nie, Cai, and Li 2017), we extract 5 fea-
tures from MSRC to comprehensively capture the intrinsic
character within each image. Newsgroups (NGs) stands for
one of the subsets of 20 Newsgroups datasets. It contains
500 newsgroups which are described from 3 different views.
ORL is a well-known human face dataset that includes 400
images from 20 individuals. Yale contains 165 samples with
15 classes and is depicted from 3 different views.

To achieve the fairness of our experiment, the parame-
ters of all compared algorithms are tuned to optimal values.
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Figure 2: Visualization of the clustering results with t-SNE on NGs.
Method ACC NMI | Purity | F-score Method ACC NMI | Purity | F-score
SC(AllFea) | 56.24 | 60.89 | 58.00 | 41.88 SC(AllFea) | 63.27 | 79.82 | 67.38 | 52.33
Co-train 5394 | 57.90 | 5552 | 38.68 Co-train 61.90 | 79.23 | 65.60 | 50.88
Co-reg 56.36 | 60.30 | 57.64 | 41.43 Co-reg 61.65 | 79.38 | 66.22 | 51.39
SWMC 65.45 | 68.35 | 6545 | 47.41 SWMC 70.75 | 83.31 | 76.75 | 43.33
LRMSC 68.36 | 70.36 | 68.55 | 52.27 LRMSC 79.63 | 90.49 | 8342 | 73.99
CSMSC 64.06 | 68.22 | 64.12 | 51.84 CSMSC 77.57 | 89.20 | 80.77 | 71.69
MCGC 67.27 | 68.92 | 67.27 | 48.33 MCGC 77.00 | 87.22 | 82.75 | 56.25
GMC 65.45 | 67.36 | 66.06 | 48.01 GMC 63.25 | 80.35 | 71.50 | 35.99
COMVSC | 71.27 | 71.70 | 71.33 | 55.01 COMVSC | 78.83 | 89.10 | 8342 | 71.52
LMVSC 61.45 | 61.96 | 68.24 | 40.57 LMVSC 65.65 | 80.37 | 75.00 | 49.64
CGD 47.88 | 55.70 | 49.15 | 37.61 CGD 57.80 | 73.12 | 6342 | 31.59
CoMSC 63.58 | 65.17 | 70.36 | 44.35 CoMSC 70.15 | 83.95 | 76.85 | 58.98
OPMC 58.36 | 64.82 | 71.58 | 46.90 OPMC 61.90 | 78.73 | 68.83 | 49.39
SMVSC 60.36 | 62.23 | 60.73 | 43.05 SMVSC 58.28 | 76.07 | 61.75 | 43.96
FPMVS 4424 | 49.76 | 46.67 | 30.45 FPMVS 5545 | 73.72 | 59.27 | 41.02
CGL 75776 | 7723 | 75776 | 65.35 CGL 86.00 | 9231 | 87.48 | 80.61
Ours 78.00 | 80.72 | 78.00 | 69.17 Ours 88.30 | 94.38 | 89.98 | 84.76

Table 4: The clustering results on Yale dataset (%)

Moreover, we run each method 10 times with the average
results being recorded. The parameter setting of our method
will be discussed in later subsection.

Results and Analysis

In order to adequately evaluate our method and compared al-
gorithms, we adapt four widely used criteria including nor-
malized mutual information (NMI), accuracy (ACC), Purity,
and F-score. The clustering results are reported in Tables 2-
7. We can arrive at a conclusion that our method is very
effective and competitive, in view of the fact that the pro-
posed method outperforms other competitors in the majority
of cases. In detail, our method consistently obtains the best
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Table 5: The clustering results on ORL dataset (%)

results in terms of NMI, Purity, and F-score on all datasets.
While for ACC, the proposed method surpasses the com-
pared methods except in one case on dataset HAR, where
the second best performance is achieved.

We further visualize the clustering results of NGs with
t-SNE (Van der Maaten and Hinton 2008). As shown in Fig-
ure 2, we can see CoMSC, CSMSC and LRMSC are able to
divide the data samples into different clusters, yet there are
no clear boundaries between them. What’s worse, MCGC
and SWMC even cannot find a clear clustering structure,
which obviously fails to achieve a good performance. On
the contrary, the clustering results obtained by our method
showcase a more compact structure with clear boundaries,
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Figure 3: The influence of parameters v, ¢ and & on ORL.

Method ACC NMI Purity | F-score
SC(AllFea) | 46.76 40.28 54.50 46.94
Co-train 89.62 78.75 90.54 83.28
Co-reg 84.76 70.32 85.46 74.53
LRMSC 96.42 88.90 96.42 92.97
CSMSC 98.40 94.61 98.40 96.82
GMC 98.20 93.92 98.20 96.43

COMVSC | 38322 | 26442 | 42262 | 41445
LMVSC 44.96 2466 | 57.621 | 3435
CGD 95.20 85.51 95.20 90.68
CoMSC 98.40 94.61 98.40 96.81
OPMC 33.94 15.06 92.16 35.52
SMVSC 67.60 53.95 71.20 61.15
FPMVS 73.80 58.07 73.80 65.68
CGL 68.80 69.12 76.20 70.72
Ours 99.20 97.21 99.20 98.40

Table 6: The clustering results on NGs dataset (%)

Method ACC | NMI | Purity | F-score
SC(AllFea) | 33.05 | 13.67 | 39.17 | 24.63
Co-train 50.95 | 31.32 | 5645 | 36.64
Co-reg 3541 | 20.05 | 4337 | 27.44
LRMSC 48.88 | 32.89 | 54.40 | 36.27
CSMSC 5439 | 45.68 | 61.57 | 47.48
LMVSC 4340 | 25.33 | 49.14 | 31.59
CGD 4394 | 21.02 | 4642 | 35.86
CoMSC 64.16 | 46.49 | 68.67 | 49.46
OPMC 4997 | 2692 | 66.87 | 3847
SMVSC 65.14 | 4143 | 65.14 | 45.73
FPMVS 64.84 | 40.23 | 64.84 | 45.09
CGL 50.92 | 29.53 | 5480 | 38.14
Ours 71.83 | 50.80 | 73.19 | 57.95

Table 7: The clustering results on Cora dataset (%)

which demonstrates the superiority of our method.

Sensitivity Analysis

With the aim of studying what impact different parameter
settings will have on the clustering results, we vary three
parameters: v and ¢ in the ranges[1, 1el, 1e2, 1e3, 1e4, 1e5],
and the filter order & in [1, 2, 3,4, 5, 6] respectively. Taking
the ORL dataset as an example, we can see the clustering
performance is relatively stable with respect to different k
and ¢, whereas it is a little sensitive to different -y, as shown
in Figure 3. Considering that -y is the balance parameter for
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Figure 4: Convergence curve of our algorithm.

metric learning, we can come to a conclusion that the best
metric differs from data to data. Generally, we can achieve
superior performance when + varies in the range [lel,1e3].

Convergence Analysis

Since our model is essentially a nonconvex problem and is
optimized with an iterative algorithm, it is critical to validate
its convergence property. This section empirically show-
cases the convergence property and studies how fast the pro-
posed algorithm can converge. As can be seen in Figure 4,
our algorithm converges fast and the objective value varies
little within a few iterations, which demonstrates the effi-
ciency of the proposed algorithm. Note that despite the non-
convexity of our objective function described in Eq. (15), we
can still search for the optimal solution for each variable and
finally, the algorithm will converge to a local minima.

Conclusion

In this paper, we introduce a novel graph-based multi-view
clustering method that measures the distance between in-
stances from an innovative perspective. Unlike most exist-
ing methods considering Euclidean distance as the measure-
ment of similarity between samples, our proposed method
is capable of both the global structure of the input data and
exploring the linear relationship between two local neigh-
bors. Meanwhile, the graph filter that we used significantly
boosts the robustness of the method. Finally, we integrate
filter learning, subspace learning, and linearity-aware met-
ric learning into one unified framework to achieve collabo-
rative learning. Therefore, our method generates outstand-
ing results on several authoritative benchmark datasets and
is proven to outperform current state-of-the-art methods.
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