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Abstract
Arbitrary style transfer (AST) transfers arbitrary artistic
styles onto content images. Despite the recent rapid progress,
existing AST methods are either incapable or too slow to
run at ultra-resolutions (e.g., 4K) with limited resources,
which heavily hinders their further applications. In this pa-
per, we tackle this dilemma by learning a straightforward and
lightweight model, dubbed MicroAST. The key insight is to
completely abandon the use of cumbersome pre-trained Deep
Convolutional Neural Networks (e.g., VGG) at inference. In-
stead, we design two micro encoders (content and style en-
coders) and one micro decoder for style transfer. The content
encoder aims at extracting the main structure of the content
image. The style encoder, coupled with a modulator, encodes
the style image into learnable dual-modulation signals that
modulate both intermediate features and convolutional filters
of the decoder, thus injecting more sophisticated and flexible
style signals to guide the stylizations. In addition, to boost the
ability of the style encoder to extract more distinct and rep-
resentative style signals, we also introduce a new style signal
contrastive loss in our model. Compared to the state of the art,
our MicroAST not only produces visually superior results but
also is 5-73 times smaller and 6-18 times faster, for the first
time enabling super-fast (about 0.5 seconds) AST at 4K ultra-
resolutions.

1 Introduction
Style transfer has recently attracted ever-growing interest
in both academia and industry since the seminal work of
(Gatys, Ecker, and Bethge 2016). A central problem in this
domain is the task of transferring the artistic style of an ar-
bitrary image onto a content target, which is called arbitrary
style transfer (AST) (Huang and Belongie 2017; Li et al.
2017). By leveraging the remarkable representative power
of pre-trained Deep Convolutional Neural Networks (DC-
NNs) (e.g., VGG-19 (Simonyan and Zisserman 2014)), ex-
isting AST algorithms consistently achieve both stunning
stylizations and generalization ability on arbitrary images.
However, the large pre-trained DCNNs incur a high com-
putational cost, which impedes the current AST methods to
process ultra-high resolution (e.g., “4K” or 4096×2160 pix-
els) images with limited resources. It heavily restricts their
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Figure 1: A 4K (4096×2160 pixels) ultra-resolution stylized
result, rendered in about 0.5 seconds by our proposed Mi-
croAST on a single NVIDIA RTX 2080 (8GB) GPU. On the
upper left are the content and style images. Four close-ups
(256×128 pixels) are shown under the stylized image.

further applications in practical scenes, such as large posters,
ultra high-definition (UHD) photographs, and UHD videos.

Valuable efforts have been devoted to solving this
dilemma. One practice is to compress the large pre-trained
DCNN models without losing much performance. (Wang
et al. 2020a) used collaborative distillation to reduce the con-
volutional filters of VGG-19, successfully rendering ultra-
resolution images on a single 12GB GPU. While the mem-
ory consumption is significantly reduced, the pruned mod-
els are often not fast enough to run at ultra-resolutions.
Another solution is to stylize the images in a patch-wise
manner (Chen et al. 2022). This method, though achiev-
ing unconstrained resolution style transfer, still suffers from
the efficiency problem. Similar to our method, (Shen, Yan,
and Zeng 2018) and (Jing et al. 2020) likewise designed
lightweight networks for style transfer. However, since their
style features are still extracted from VGG, they are inher-
ently difficult to process ultra-resolution images. Therefore,
despite the recent progress, existing AST methods are still
incapable or too slow to run at ultra-resolutions.

Facing the challenges above, in this paper, we propose a
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straightforward and lightweight model for super-fast ultra-
resolution arbitrary style transfer. The key insight is that we
completely abandon the use of cumbersome pre-trained DC-
NNs (e.g., VGG) at inference, whether for content extrac-
tion (Huang and Belongie 2017; Li et al. 2017), or style ex-
traction (Shen, Yan, and Zeng 2018; Jing et al. 2020). Our
model, dubbed MicroAST, uses two micro encoders and one
micro decoder for style transfer. The micro encoders consist
of a content encoder and a style encoder. The content en-
coder aims at extracting the main structure of the content im-
age. The style encoder, coupled with a modulator, encodes
the style image into learnable dual-modulation signals that
modulate both intermediate features and convolutional fil-
ters of the decoder. This novel dual-modulation strategy in-
jects more sophisticated and flexible style signals to guide
the stylizations, thus helping our model fully capture the
global attributes and local brushstrokes of the artistic styles.
The decoder generates the final stylized images under these
modulations. In addition, to boost the ability of the style en-
coder to extract more distinct and representative modulation
signals for each style, we also introduce a new style signal
contrastive loss in our model, which further improves the
quality. Comprehensive experiments have been conducted to
demonstrate the effectiveness of our method. Compared to
the state of the art, our MicroAST not only produces visu-
ally superior results but also is 5-73 times smaller and 6-18
times faster, for the first time enabling super-fast (about 0.5
seconds) AST on 4K ultra-resolution images (see an exam-
ple in Fig. 1).

In summary, our contributions are threefold:

• We propose a straightforward and lightweight framework
called MicroAST to achieve super-fast ultra-resolution ar-
bitrary style transfer for the first time.
• We introduce a novel dual-modulation strategy to inject

more sophisticated and flexible style signals to guide the
stylizations in our model.
• We also introduce a new style signal contrastive loss to

boost the ability of our style encoder.

2 Related Work
Neural Style Transfer. The seminal work of (Gatys, Ecker,
and Bethge 2016) has opened up the era of Neural Style
Transfer (NST) (Jing et al. 2019). In their work, the artis-
tic style of an image is captured by the correlations between
features extracted from a pre-trained DCNN. It is amazingly
effective and has inspired a lot of successors to improve the
performance in many aspects, including efficiency (John-
son, Alahi, and Fei-Fei 2016; Ulyanov et al. 2016), qual-
ity (Jing et al. 2018, 2022; Wang et al. 2020c, 2021, 2022a;
Lin et al. 2021; Cheng et al. 2021; An et al. 2021; Liu et al.
2021b; Chen et al. 2021b,a; Deng et al. 2020, 2021, 2022;
Lu and Wang 2022; Xie et al. 2022), generalization (Huang
and Belongie 2017; Li et al. 2017; Sheng et al. 2018; Li
et al. 2019; Park and Lee 2019; Lu et al. 2019; Zhang,
Zhu, and Zhu 2019; Chiu 2019; Hong et al. 2021; Zhang
et al. 2022a), diversity (Wang et al. 2020b, 2022c; Chen
et al. 2020a, 2021c), and user control (Champandard 2016;

Wang et al. 2022b; Zuo et al. 2022). Despite the monumen-
tal progress, existing NST methods all share a fundamental
flaw, i.e., they are unable to process ultra-resolution (e.g.,
4K) images with limited resources, since they all heavily
rely on the large DCNN models (e.g., VGG-19 (Simonyan
and Zisserman 2014)) to extract representative features.

Ultra-Resolution Style Transfer. To address the chal-
lenges above, (Wang et al. 2020a) used model compression
(called collaborative distillation) to reduce the convolutional
filters of VGG-19, firstly rendering ultra-resolution images
on a 12GB GPU. While the memory consumption is signif-
icantly reduced, the pruned models are still not fast enough
to run at ultra-resolutions. Besides, a large degree of com-
pression often leads to severe quality degradation.

Another solution is to design a lightweight model di-
rectly. (Johnson, Alahi, and Fei-Fei 2016) and (Sanakoyeu
et al. 2018) learned small feed-forward networks for a spe-
cific style example or category for high-resolution (e.g.,
1024×1024 pixels) style transfer. However, they are not gen-
eralized to other unseen styles and not capable of running at
ultra-resolutions. (Shen, Yan, and Zeng 2018) and (Jing et al.
2020) designed lightweight networks for AST, but they still
used pre-trained VGG to extract style features, leading to the
expensive cost of extra memory and slow inference speed.
Unlike these methods, our approach completely gets rid of
the high-cost pre-trained VGG at inference, for the first time
achieving super-fast ultra-resolution style transfer for arbi-
trary styles with one model only.

Recently, (Chen et al. 2022) provided a possible solu-
tion for unconstrained resolution style transfer. They divided
input images into small patches and performed patch-wise
stylization with a Thumbnail Instance Normalization to en-
sure the style consistency among different patches. How-
ever, this method does not consider the time cost problem
and cannot achieve super-fast ultra-resolution style transfer.

Contrastive Learning. Contrastive learning has been
widely used in self-supervised representation learning for
high-level vision tasks (He et al. 2020; Chen et al. 2020b;
Tian, Krishnan, and Isola 2020). Recently, in low-level gen-
erative tasks, some works investigate the use of contrastive
loss for different objectives, such as image-to-image trans-
lation (Park et al. 2020), image generation (Kang and Park
2020; Liu et al. 2021a), image dehazing (Wu et al. 2021),
and style transfer (Chen et al. 2021a; Zhang et al. 2022b; Wu
et al. 2022), etc. Unlike these works, we introduce a novel
mini-batch style signal contrastive loss to help address the
problem of ultra-resolution style transfer, which considers
relations between multiple style modulation signals in the
same training mini-batches. Therefore, it can significantly
boost the ability of the micro style encoder to extract more
distinct and representative style signals.

3 Proposed Approach
Given arbitrary ultra-resolution (e.g., 4K) content image C
and style image S, our goal is to produce the corresponding
ultra-resolution stylized output O in a very short time (e.g.,
within one second). The challenges mainly lie in three as-
pects. (i) The method should be capable of processing ultra-
resolution images with limited resources (e.g., on an 8GB
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Figure 2: Overview of MicroAST. C denotes the content image. Si denotes the ith style image in a training mini-batch (we
put four style images for illustration). O denotes the stylized output. f{... } denote the encoded feature maps. m{... } denote the
style modulation signals.

GPU). (ii) The method should generate the ultra-resolution
results at a super-fast speed. (iii) The method should be able
to produce pleasing stylizations for arbitrary contents and
styles. To achieve these goals, we propose a novel MicroAST
framework, which will be introduced in detail.

3.1 Overview of MicroAST
As illustrated in Fig. 2, our MicroAST consists of three main
components: a micro content encoder Ec, a micro style en-
coder Es (coupled with a modulator M), and a micro de-
coder D. In details, Ec and Es have the same lightweight
architecture which comprises 1 standard stride-1 convolu-
tional (Conv) layer, 2 stride-2 depthwise separable convo-
lutional (DS Conv) layers, and 2 stride-1 residual blocks
(ResBlocks). The micro decoder D is mostly symmetrical
to the encoders. The modulatorM consists of two subnets
as shown in Fig. 4 (see later Sec. 3.2). More detailed ar-
chitectures can be found in supplementary material (SM)1.
Note that since our model is based on MobileNet (Howard
et al. 2017), it can be easily applied to mobile devices. The
overall pipeline is as follows:

(1) Extract the main structure of the content image C using
the micro content encoder Ec, denoted as fc := Ec(C).

(2) Extract the style feature of the style image S using the
micro style encoder Es, denoted as fs := Es(S).

(3) Convert the style feature fs into the style modulation sig-
nals (a set of learnable parameters) using the modulator
M, denoted as ms :=M(fs).

(4) Stylize fc using the micro decoder D, under the dual-
modulations (Sec. 3.2) of ms, i.e., O := D(fc,ms).

Training Losses. To achieve style transfer, similar to
previous works (Gatys, Ecker, and Bethge 2016; Johnson,

1https://github.com/EndyWon/MicroAST/releases/download/
v1.0.0/MicroAST SM.pdf

Alahi, and Fei-Fei 2016; Huang and Belongie 2017), we
leverage a pre-trained VGG-19 (Simonyan and Zisserman
2014) as our loss network to compute the content loss
and style loss. We use the perceptual loss (Johnson, Alahi,
and Fei-Fei 2016) as our content loss Lc, which is com-
puted at layer {relu4 1} of VGG-19. The style loss Ls

is defined to match the Instance Normalization (IN) statis-
tics (Huang and Belongie 2017), which is computed at layer
{relu1 1, relu2 1, relu3 1, relu4 1}. Note that the VGG-
19 is only used in our training phase, and our model does
not involve any large network at inference.

To further improve the stylization quality, we also intro-
duce a novel style signal contrastive (SSC) loss Lssc to train
our model. This loss could help boost the ability of the mi-
cro style encoder to extract more distinct and representative
modulation signals for each style (see details in Sec. 3.3).

To summarize, the full objective of our MicroAST is:

Lfull := λcLc + λsLs + λsscLssc, (1)

where hyper-parameters λc, λs, and λssc define the relative
importance of the components in the overall loss function.

3.2 Dual-Modulation
Revisiting Modulation Strategies in AST

(1) AdaIN. (Huang and Belongie 2017) first provided a
generic modulation strategy for AST, namely Adaptive In-
stance Normalization (AdaIN). As illustrated in Fig. 3 (a),
AdaIN modulates the content feature fc with the channel-
wise mean µ(·) and standard deviation σ(·) of the style fea-
ture fs.

AdaIN(fc, fs) := σ(fs)(
fc − µ(fc)
σ(fc)

) + µ(fs). (2)

While AdaIN has obtained great success in recent generative
models (Karras, Laine, and Aila 2019; Karras et al. 2020),
in style transfer, (Jing et al. 2020) pointed out that there are
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two critical requirements for AdaIN. (1) The content and
style encoders should be identical. (2) The network architec-
ture of the encoders should be complex enough, like VGG.
Obviously, requirement (2) is contrary to our task, and re-
quirement (1) hinders the ability of the encoders to extract
domain-specific features, especially when they are micro.
Therefore, the AdaIN system is not suitable for our task.

(2) DIN. To address the requirement (1) of AdaIN and
also train a lightweight network, (Jing et al. 2020) proposed
Dynamic Instance Normalization (DIN). As illustrated in
Fig. 3 (b), DIN uses a micro content encoder to extract the
content feature fc. The style feature fs is extracted from a
pre-trained sophisticated VGG encoder, along with two sub-
nets to generate the dynamic normalization weight w and
bias b.

DIN(fc, fs) := w(
fc − µ(fc)
σ(fc)

) + b. (3)

These learned dynamic parameters lead to a more accu-
rate alignment of the real complex statistics of style fea-
tures (Jing et al. 2020), and the micro content encoder and
decoder drastically reduce the model size. However, since
it still uses the high-cost VGG encoder to extract the style
features, the DIN system also cannot be adopted in our task.

(3) MetaNets. Like DIN, (Shen, Yan, and Zeng 2018) also
trained a lightweight network for AST. The difference is that
they modulate the networks directly instead of the features.
As illustrated in Fig. 3 (c), the style image S is first fed
into the fixed pre-trained VGG to get the style feature fs,
and then goes through fully connected (FC) layers to con-
struct the filters for each Conv layer in the corresponding
image transformation network. The VGG and the FC layers
are called “MetaNets”. While they can convert an arbitrary
new style into a lightweight image transformation network,
the high-cost VGG and FC layers lead to the expensive cost
of extra memory and slow genuine inference time. Again,
the MetaNets system cannot be used for our task.

Dual-Modulation: FeatMod and FilterMod
As analyzed above, the main problem preventing DIN and

MetaNets from being applied to our task is the high-cost

VGG style encoder. Hence, a simple solution is to replace
VGG with a micro encoder to extract the style features. Un-
fortunately, since the complex pre-trained VGG is also the
key of these methods to achieve satisfactory stylizations, the
alteration will severely degrade the quality. As shown in the
2nd and 3rd columns of Fig. 5, the VGG style encoder helps
DIN and MetaNets to capture complex style patterns like the
punctate brushstrokes (top row, best viewed in insets below).
However, when replacing VGG with a micro style encoder,
these methods consistently learn few texture patterns (bot-
tom row). We attribute it to two main factors: (1) The micro
style encoder has limited ability to extract sufficiently com-
plex style features due to the simple network architecture.
(2) The style signals injected to guide the stylizations are
unitary and inflexible. To address these two problems, we
introduce two critical designs in our MicroAST. For the for-
mer, we propose a novel contrastive loss to boost the abil-
ity of the micro style encoder, which will be presented in
later Sec. 3.3. For the latter, we propose an innovative dual-
modulation strategy to inject more sophisticated and flexible
style signals to guide the stylizations, which will be intro-
duced in the following.

Our dual-modulation/DualMod strategy seeks to modu-
late the stylization process from two different dimensions,
i.e., intermediate features (feature modulation/FeatMod) and
network filters (filter modulation/FilterMod). The motiva-
tion comes up from the literature that FeatMod mainly cap-
tures the global attributes like rough textures, colors, con-
trast, and saturation (Huang and Belongie 2017), while Fil-
terMod is particularly good at capturing local changes like
different brushstrokes (Alharbi, Smith, and Wonka 2019).

FeatMod. Concretely, our FeatMod adopts the learned
channel-wise mean and standard deviation as style signals
to modulate the intermediate features.

µs := µ(fs), σs := σ(fs),

F eatMod(fc, (µs,σs)) := σs(
fc − µ(fc)
σ(fc)

) + µs.
(4)

Note that it is different from the AdaIN system, as our style

2745



Weight Net

𝑓!

Conv 3×3

Relu

Conv 3×3
ResBlock_1

ResBlock_2

Upsample + DS Conv 3×3

Conv 9×9

Modulator

𝑂𝑢𝑡𝑝𝑢𝑡

Micro Decoder
𝑓"

Filter Modulation

Feature Modulation

Bias Net

Upsample + DS Conv 3×3

Mean & Std

Figure 4: Details of our dual-modulation strategy.

signals are dynamically learned from the trainable style en-
coder Es, while AdaIN’s are statically computed from the
fixed pre-trained VGG. Also, it is unlike the DIN system,
as we use the learned channel-wise mean and standard de-
viation as style signals, while theirs are computed by two
subnets. The reason for using mean and standard devia-
tion is that these statistics can capture the global attributes
more effectively (Huang and Belongie 2017), as verified in
Fig. 5 (g). By contrast, DIN learns poor on global effects like
colors (see Fig. 5 (e)), even with the VGG style encoder (see
Fig. 5 (a)).

FilterMod. While FeatMod has been able to capture the
global attributes well, it is not enough for style transfer, since
the local textures like brushstrokes are also important for
artistic styles (Kotovenko et al. 2021). To combat this limi-
tation, we propose a novel FilterMod method in our model.

As illustrated in Fig. 4, the encoded style feature fs is
first converted to the weight ws and bias bs parameters via
two simple subnets (weight net ξw and bias net ξb ). Then,
these parameters are injected into decoderD to modulate the
Conv filters of the ResBlocks.

ws := ξw(fs), bs := ξb(fs),

F ilterMod(D, (ws,bs)) := ResBlock(fc, (ws,bs))

:= Conv(Relu(Conv(fc, (ws,bs))), (ws,bs)) + fc.
(5)

We modulate ResBlocks since they occupy the main com-
plexity of the decoder and dominate the style transfer pro-
cess (Johnson, Alahi, and Fei-Fei 2016).

Moreover, in many deep learning platforms, it is easier to
handle feature maps than filters. Therefore, by the distribu-
tive and associative property of convolution, we deduce our
FilterMod to an equivalent pseudo FeatMod form as follows:

Conv(fc, (ws,bs)) := (ws ∗ F + bs)~ fc
:= (ws ∗ F)~ fc + bs ~ fc
:= ws ∗ (F ~ fc) + bs ∗ fc,

(6)

where F denotes the convolutional filter, ∗ is the element-
wise multiplication with broadcast over the spatial dimen-
sions, and ~ stands for convolution.

As shown in Fig. 5 (c), under the FilterMod, our Mi-
croAST can capture the challenging punctate brushstrokes
well even with the micro style encoder, but the global at-
tributes like colors and contrast are not so good as FeatMod.

Content (a) DIN-v (b) MetaNets-v (c) FilterMod-m (d) DualMod-v

Style (e) DIN-m (f) MetaNets-m (g) FeatMod-m (h) DualMod-m

Figure 5: Comparisons of VGG style encoder (marked by
“-v”) vs. micro style encoder (marked by “-m”), and mod-
ulation vs. dual-modulation (last two columns). Please see
SM for quantitative comparisons and more ablation studies.

DualMod. Finally, our DualMod is a combination of
FeatMod and FilterMod so as to absorb both their merits.

ms := (µs,σs,ws,bs),

DualMod(D, fc,ms) :=FeatMod(fc, (µs,σs))+

FilterMod(D, (ws,bs)),

(7)

where ms are the style modulation signals.
As validated in Fig. 5 (h), DualMod helps our MicroAST

capture both global attributes and local brushstrokes well.
The result is very encouraging and almost on a par with that
produced by using VGG style encoder (see Fig. 5 (d)).

3.3 Style Signal Contrastive Learning
As analyzed in Sec. 3.2, due to the simplicity of network
architecture, the micro style encoder Es has limited abil-
ity to extract sufficiently complex style representations. In-
spired by recent contrastive learning (He et al. 2020; Chen
et al. 2020b; Tian, Krishnan, and Isola 2020; Wu et al. 2021)
which aims at improving the representative power of neural
networks, we propose a novel style signal contrastive (SSC)
loss Lssc to boost the style representative ability of Es.

The core idea of contrastive learning is to pull data points
(called “query”) close to their “positive” examples, while
pushing them apart from other examples that are regarded
as “negatives” in the representation space. Therefore, how
to construct the “positive” pairs and “negative” pairs is a
key problem we need to consider. Intuitively, in our Mi-
croAST, every stylized result is generated under the mod-
ulations of a set of specific style signals extracted from a
target style image. Therefore, it should possess the simi-
lar style signals with the target style image while exhibit-
ing the distinct style signals from other style images. Based
on this intuition, given a training mini-batch including N
content images φc = {C1, C2, . . . , CN} and N style im-
ages φs = {S1, S2, . . . , SN}, we first generate N stylized
outputs φo = {O1, O2, . . . , ON} (Oi is generated by using
Ci as content and Si as style). Then, for each “query” Oi,
we can construct φp = {Si} as its “positive” example, and
φn = {Sj ∈ φs|j 6= i} as “negative” examples. Finally,
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Figure 6: Qualitative comparison with the state of the art on ultra-resolution (4K) images. See more in SM.

Method (a) #Params/106 (b) Storage/MB (c) GFLOPs (d) Time/sec (e) SSIM ↑ (f) Style Loss ↓ (g) Preference/%

AdaIN-U 7.011 94.100 5841.9 2.884 0.322 2.401 10.0
LST-U 12.167 48.600 6152.1 2.892 0.441 2.420 24.2
WCT-U 34.239 120.268 19390.1 9.528 0.248 2.226 16.2

Collab-Distill 2.146 9.659 1338.9 7.139 0.292 2.183 20.5

MicroAST 0.472 1.857 374.9 0.522 0.531 2.342 29.1

Table 1: Quantitative comparison with the state of the art. Storage is measured in PyTorch model. GFLOPs and Time are
measured when the content and style are both 4K images and tested on an NVIDIA RTX 2080 (8GB) GPU. The best results
are set in bold. ↑: Higher is better. ↓: Lower is better.

our SSC loss Lssc is formulated based on the extracted style
modulation signals (Eq. (7)) of them.

Lssc :=
N∑
i=1

‖ moi −msi ‖2∑N
j 6=i ‖ moi −msj ‖2

. (8)

Lssc plays a role of opposing forces pulling the style sig-
nals of Oi to those of its target style image Si, and push-
ing them away from those of other style images. Therefore,
it could boost the ability of the micro style encoder to ex-
tract more distinct and representative style modulation sig-
nals, further improving the stylization quality (see Sec. 4.3).

Discussion. Recently, (Chen et al. 2021a) also introduced
contrastive learning for style transfer. There are three main
differences: (1) Their contrastive losses are optimized on
the generator of SANet (Park and Lee 2019) to improve
the quality, and their encoders are fixed pre-trained VGG.
In contrast, our Lssc is optimized mainly on the micro style
encoder to boost its ability in ultra-resolution style transfer.

(2) They construct the “positive” pairs and “negative” pairs
only within the stylized results, while ours are constructed
between the style images and the stylized results. (3) Their
contrastive losses are InfoNCE losses (Oord, Li, and Vinyals
2018), which we found is less effective in our task. Thus,
we provide a different form of contrastive loss for our Lssc,
which is more straightforward and effective in our task.

4 Experimental Results
4.1 Implementation Details
We implement a multi-level DualMod which modulates both
the two ResBlocks of the micro decoder D (we omit the
modulations for ResBlock 2 in Fig. 2 and Fig. 4 for brevity).
The loss weights in Eq. (1) are set to λc = 1, λs = 3, and
λssc = 3. We train our MicroAST using MS-COCO (Lin
et al. 2014) as content images and WikiArt (Phillips and
Mackintosh 2011) as style images. We use the Adam opti-
mizer (Kingma and Ba 2015) with a learning rate of 0.0001
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and a mini-batch size of 8 content-style image pairs. During
training, all images are loaded with the smaller dimension
rescaled to 512 pixels while preserving the aspect ratio, and
then randomly cropped to 256×256 pixels for augmentation.
Since our MicroAST is fully convolutional, it can handle any
input size during testing.

4.2 Comparisons with Prior Arts
We compare our MicroAST with two types of state-of-the-
art ultra-resolution AST methods based on (1) model com-
pression (Wang et al. 2020a) and (2) patch-wise styliza-
tion (Chen et al. 2022). We directly run the author-released
codes with default settings for the compared methods.

Qualitative Comparison. Fig. 6 shows the qualitative
comparison results. The patch-wise stylization of URST
(Chen et al. 2022) (marked by “-U”) can help existing AST
methods AdaIN (Huang and Belongie 2017), WCT (Li et al.
2017), and LST (Li et al. 2019) achieve ultra-resolution style
transfer. However, AdaIN-U and LST-U often produce less
stylized results which retain the colors of content images
(e.g., the river color in the 1st row) or transfer insufficient
colors of style images (e.g., the 2nd row). WCT-U can trans-
fer more faithful colors, but it often highlights too many
textures, resulting in messy stylizations. Built upon WCT,
Collab-Distill (Wang et al. 2020a) compresses the VGG-19
models, leading to better-stylized results. Nevertheless, the
stylizations are still messy, with spurious boundaries (e.g.,
the 1st row) and distorted contents (e.g., the 2nd row). In
contrast, our MicroAST achieves very promising stylization
effects. The contents are sharper and cleaner than WCT-U
and Collab-Distill, while the colors and textures are more
diverse and adequate than AdaIN-U and LST-U. Moreover,
as shown in the bottom two rows2, it can better preserve the
content structures during style transfer, while others either
lose the structural details or distort the content structures.

Quantitative Comparison. Tab. 1 shows the quantita-
tive comparison with the state-of-the-art models. We col-
lect 50 ultra-resolution (about 4K) content images and 40
ultra-resolution style images from (Wang et al. 2020a; Chen
et al. 2022) and Internet to synthesize 2000 ultra-resolution
results, and compute the average Structural Similarity In-
dex (SSIM) (An et al. 2021) and Style Loss (Huang and
Belongie 2017) to assess the stylization quality in terms of
content preservation and style transformation, respectively.
As shown in columns (e) and (f), our method achieves the
highest SSIM score and comparable Style Loss, indicating
that it can transfer adequate style patterns while better pre-
serving the content affinity. For efficiency (columns (a-d)),
our MicroAST is 5-73 times smaller (column (a)) and 6-18
times faster (column (d)) than the state of the art, for the first
time enabling super-fast AST on 4K ultra-resolution images.

User Study. It is highly subjective to evaluate stylization
results. Hence, we conducted a user study for the five ap-
proaches. We randomly showed each participant 30 septets
of images consisting of the content, style, and five randomly
shuffled outputs (AdaIN-U, LST-U, WCT-U, Collab-Distill,

2To better compare the structures, we perform the same post-
processing operations for the images in the bottom two rows.

(a) Training Curves (b) Full Model (c) w/o ℒ!!" (d) Single-level

SSIM ↑ / Style Loss ↓ : 0.482 / 2.8970.531 / 2.342 0.554 / 2.686

Figure 7: Ablation study of (a, c) contrastive loss Lssc and
(d) single-level DualMod.

and ours). In each septet, they were given unlimited time to
select their favorite output in terms of content preservation
and stylization effects. We collect 1260 valid votes from 42
subjects and detail the preference percentage of each method
in the last column of Tab. 1. The results demonstrate that our
stylized images are more appealing than competitors.

4.3 Ablation Study
With and Without Contrastive LossLssc. We demonstrate
the effect of our proposed style signal contrastive loss Lssc

in Fig. 7. As shown in column (c), when training our Mi-
croAST without Lssc, the stylization quality is significantly
degraded where the colors from one style image may leak
into the results stylized by other style images (e.g., the pink
color in the red box areas). It indicates that the micro style
encoder Es is floundering in a compromised style repre-
sentation that may map different styles to similar signals.
This problem is alleviated after introducing Lssc into train-
ing, which verifies that contrastive learning indeed helps Es

to learn more distinct and representative style signals. Fur-
thermore, it can also lead to faster and better convergence
of content and style optimization and achieve higher SSIM
score and lower Style Loss, as validated in column (a) and
the bottom row of Fig. 7. More studies can be found in SM.

Single-level DualMod vs. Multi-level DualMod. We
also compare the results of using single-level DualMod and
multi-level DualMod in Fig. 7 (columns (d) and (b)). The
multi-level design helps transfer more diverse colors and
finer texture details, further improving stylization effects.

5 Conclusion
In this paper, we propose a straightforward and lightweight
framework, dubbed MicroAST, for super-fast ultra-
resolution arbitrary style transfer. A novel dual-modulation
strategy is introduced to inject more sophisticated and
flexible style signals to guide the stylizations. In addition,
we also propose a new style signal contrastive loss to boost
the ability of the style encoder to extract more distinct
and representative style signals. Extensive experiments are
conducted to demonstrate the effectiveness of our method.
Compared to the state of the art, our MicroAST not only
produces visually superior results but also is 5-73 times
smaller and 6-18 times faster.
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