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Abstract

Sparsely Mixture of Experts (MoE) has received great interest
due to its promising scaling capability with affordable com-
putational overhead. MoE models convert dense layers into
sparse experts, and utilize a gated routing network to make
experts conditionally activated. However, as the number of
experts grows, MoE with outrageous parameters suffers from
overfitting and sparse data allocation. Such problems are es-
pecially severe on tasks with limited data, thus hindering the
progress towards improving performance by scaling up. We
verify that there exists a performance upper bound of scal-
ing up sparse MoE. In this work, we propose Mixture of Ex-
pert Clusters — a general approach to enable expert layers to
learn more diverse and appropriate knowledge by imposing
variance-based constraints on the routing stage. Given this,
we could further propose a cluster-level expert dropout strat-
egy specifically designed for the expert cluster structure. Our
experiments reveal that MoEC could improve performance
on machine translation and natural language understanding
tasks. MoEC plays a positive role in mitigating overfitting
and sparse data allocation problems, thus fully releasing the
potential of large-scale sparse models.

Introduction
Scaling up the model capacity has shown to be promising
to achieve better performance on a variety of tasks, includ-
ing natural language understanding (Brown et al. 2020; Raf-
fel et al. 2019) and visual representation learning (Dosovit-
skiy et al. 2020; Bao, Dong, and Wei 2021). The continued
growth in model size and parameters brings higher compu-
tational cost, while large dense models have almost hit the
boundary of hardware capacity. In pursuit of better compu-
tational efficiency, sparse Mixture-of-Experts (MoE) is pro-
posed as an efficient alternative to dense models (Lepikhin
et al. 2020; Fedus, Zoph, and Shazeer 2021; Riquelme et al.
2021; Lewis et al. 2021). For the sparsely-gated MoE trans-
formers, the feed-forward network (FFN) sub-layer will be
replaced by a set of experts with independent parameters.

The sparsity of MoE is brought by experts and the gated
routing network. The gated routing network will calculate
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the routing score between input tokens and each expert and
activate experts with top-k routing scores. Most experts will
not be activated, thus forming a sparse structure. Since the
computation cost is only proportional to the activated top-k
sub-network, sparsely activated MoE models could scale up
model parameters without significantly increasing computa-
tional cost. With affordable computational overhead, MoE
models could achieve better performance than dense models
on various tasks such as neural machine translation (Lewis
et al. 2019; Conneau and Lample 2019; Lepikhin et al.
2020),image recognition (Riquelme et al. 2021) and speech
recognition (Kumatani et al. 2021).

Recent studies have reached a consensus that more ex-
perts mean more parameters and large model capacity,
which always bring improvements. However, some studies
show that more trainable parameters and sparse conditional
computation may introduce overfitting (Xue et al. 2021; Lou
et al. 2021; Xue et al. 2022), especially for downstream tasks
with limited data. As depicted in Figure 1, as the number of
experts grows, overfitting gradually becomes apparent in the
machine translation task. Moreover, we find that enlarging
the size of the MoE will not always lead to improvement.
There seems to exist a performance upper bound of scaling
up experts with limited data.

Besides, we find an unreasonable phenomenon in Fig-
ure 1: 64-expert MoE with more parameters and larger
model capacity has higher training loss than 32-expert MoE.
It implies that large-scale MoE not only suffers from over-
fitting, but also has other hidden problems that affect train-
ing. According to our analysis, the probability of each expert
getting a token reduces proportionately as the number of ex-
perts grows. With the same data, each expert will get less di-
verse samples. Insufficient data not only affects the training
of expert layers, but also aggravate overfitting. Therefore,
we want to explore ways in which experts could get diverse
samples and learn abundant knowledge, thereby alleviating
overfitting and sparse data allocation.

In this work, we propose Mixture of Expert Clusters
(MoEC), a general optimizing strategy for MoE models. All
the experts in MoE models are clustered to form several
static expert clusters by minimizing the clustering loss asso-
ciated with the routing probability among neighbor experts.
The inductive bias expects that the similarity of intra-cluster
experts is high while the similarity of inter-cluster experts is
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Figure 1: A simple demonstration of loss curves of MoE
models on WMT-14 English-to-German translation task. We
show the loss curve of MoE baseline models with different
experts. The value in the box represents the minimum loss.

low. Experts within a cluster are prone to tokens with simi-
lar hidden states and could “share” similar tokens. Given the
cluster structure, we further propose a cluster-level expert
dropout strategy. Several experts in the cluster will be ran-
domly dropped, and the dropped experts will not participate
in the routing stage. The activated experts are selected from
the remaining experts in the cluster. Implementing dropout
within clusters could make tokens always dispatched to suit-
able experts, no matter how random the dropout is.

We evaluate our MoEC on machine translation and natu-
ral language understanding tasks. Experiment results show
that MoEC outperforms dense models and baseline MoE
models. It indicates that MoEC retains the advantages of the
sparse structure of MoE, and alleviates overfitting and sparse
data allocation problems. Our contributions are summarized
as follows:

• We point out the overfitting and sparse data allocation
problems for large-scale MoE models, and experts get-
ting less diverse samples could be the common cause of
both problems.

• We propose to build expert clusters by variance-based
constraints, which allows experts to get a more diverse
set of similar tokens. We also implement cluster-level ex-
pert dropout as a regularization method.

• We conduct experiments on machine translation and nat-
ural language understanding tasks. MoEC could improve
performance and alleviate problems caused by scaling up
experts without changing the model structure and routing
strategy.

• We find that there exists a performance upper bound for
scaling up MoE models with limited data. MoEC could
raise the performance upper bound, thus exploiting the
potential of large-scale sparse models.

Related Work
In the context of modern deep learning architectures, scal-
ing up transformers using sparse Mixture of Experts (MoE)
is proven to be effective to achieve state-of-the-art perfor-
mance on various NLP and CV tasks (Shazeer et al. 2017;
Lepikhin et al. 2020; Riquelme et al. 2021; Fedus, Zoph, and
Shazeer 2021). Compared with dense transformers, an MoE
model contains several experts (feed-forward networks), and
a router to select top-k experts for input tokens. It increases
the model capacity by such conditional computation while
maintaining computational efficiency. To future explore the
potential of MoE, some studies focus on router assignment
algorithm (Lewis et al. 2021; Roller et al. 2021; Dai et al.
2022). Besides, some work focus on optimizing training
methods for MoE models. Dua et al. (2021) applied a tem-
perature heating mechanism for sparse MoE models on the
translation task. Chi et al. (2022) proposed a dimension re-
duction to estimate the routing scores between tokens and
experts on a low-dimensional hyper-sphere. Our work is also
proposed to optimize the MoE model. Instead of changing
the model structure and routing strategy, MoEC establishes
static expert clusters, which allows experts to be assigned
similar and more diverse tokens.

Although MoE models have achieved promising results,
they are proven to have overfitting problems (Fedus, Zoph,
and Shazeer 2021; Wu et al. 2022; Xue et al. 2022) on down-
stream tasks with limited data. To mitigate overfitting, some
works use knowledge distillation to distill MoE models into
small-sized MoE models or dense models (Xue et al. 2022;
Dai et al. 2022). Another approach is to apply the dropout
strategy during training. Fedus, Zoph, and Shazeer (2021)
set a small dropout rate at non-expert layers and a larger
dropout rate at expert layers. Liu et al. (2022) propose gat-
ing dropout, which allows some tokens to ignore the gated
routing network and stay at their local machines to reduce
cross-machine communication. In our work, we propose the
cluster-level expert dropout. Randomly selected experts in
the cluster will be dropped so that they will not participate
in the routing stage.

Preliminary
To build MoE transformers, it is a common practice to re-
place feed-forward network (FFN) sub-layers with a set of
experts. The experts share the same structure with the FFN
layer in the dense transformer model. We denote the hidden
representation of input token x as h, and the embedding for
the i-th expert as ei. The router computes the routing score
si = hTei to compare the similarity between h and the set
of experts E. Then, the router utilizes a gating function α(·)
to compute the gated value of expert i.

αi =


exp(si)∑E
j=1 exp(sj)

, softmax gating

1

1 + exp(−si)
, sigmoid gating

(1)

The gating function αi represents the probability of dis-
patching input token to expert i. The top-k gated-value is
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Figure 2: Illustration of a classic MoE layer and our pro-
posed static MoEC layer. The similarity between hidden
states Hi is represented by the color.

used for dispatching the token x according to αi. The corre-
sponding k expert networks are conditionally activated. We
denote the set of selected top-k indices as K.

y =
∑
i∈K

αi · Ei(x) (2)

where Ei(x) is the i-th expert network, which is a feed-
forward network. The output of the gated routing network is
the linearly weighted combination of each expert’s compu-
tation on the token by the gate value.

Method
In this work, our goal is to give experts access to more di-
verse training samples, thus mitigating overfitting and sparse
data allocation. We encourage the static clustered structure
by minimizing the clustering loss associated with the routing
probability among neighbor experts. We apply the variance-
based clustering loss to implement constraints. Besides, we
further propose a cluster-level expert dropout strategy.

In our work, we use top-1 gating. Only the expert with the
largest routing score is activated. And we choose softmax
as our activation function. Experts in a cluster will be dis-
tributed on the same device to reduce communication costs.

Mixture of Expert Clusters
We illustrated our MoEC (Mixture of Expert Clusters) in
Figure 2. For classic MoE, the routing probability of tokens
will not be constrained. The router will always dispatch in-
put tokens to their best-matched experts, while other similar
tokens have little chance of being selected. When scaling
up the number of experts, the sparse data distribution will
cause each expert to get less diverse tokens. Expert layers
could not get adequately trained. Also, the amount of data
is insufficient to match the growing number of parameters,
which is the main reason for overfitting. In order to solve the
problems of classic MoE, our MoEC allows each expert to
get more rich and diverse tokens. We impose variance-based
constraints on the routing stage, aiming to make neighbor
experts have similar routing probabilities for input tokens,

thus forming expert clusters prone to tokens with similar
hidden states. In MoEC, experts will get a more diverse set
of similar input tokens by “sharing” input tokens with other
experts in the cluster.

Compared with previous work related to MoE, our train-
ing objective added an extra term - cluster loss. The overall
training objective is to minimize:

L = Ltask + Lbalance + Lcluster (3)

Ltask is determined by the specific task. In our work, we
employ the label smoothed cross-entropy loss for neural ma-
chine translation, masked language modeling loss for pre-
training language model, and negative log-likelihood loss
(NLL loss) or mean-squared loss (MSE loss) for GLUE
tasks. In the following, we will introduce Lbalance and
Lcluster.

Load Balancing Loss. During training, there exists a load
imbalance issue between experts (Shazeer et al. 2017; Lep-
ikhin et al. 2020): Most tokens are dispatched to a small
number of experts, while many other experts do not get suf-
ficiently trained at all. Besides, imbalanced assignments will
result in a high computational bottleneck in the MoE layer
and thus limit the computational efficiency. We follow the
work in (Fedus, Zoph, and Shazeer 2021) and add the bal-
ance loss to the training objective to encourage a balanced
load across experts. Given N experts indexed by i=1 to N ,
the balance loss is computed as follows:

Lbalance = αN ·
N∑
i=1

fi · pi (4)

where fi is the fraction of tokens dispatching to expert i.
We denote the number of tokens dispatched to the i-th expert
as Counti. Given a batch B with T tokens, fi = Counti/T .
pi is the fraction of the routing probability allocated for ex-
pert i in the batch B. It is calculated by averaging the prob-
ability of routing token x to expert i in the batch B.

pi =
1

T

∑
x∈B

αi(x) (5)

where αi(x)is the gating function depicted in Equation 1,
which represents the probability of dispatching token x to
expert i. The balance loss in Equation 4 encourages uniform
routing since it would be minimized under a uniform distri-
bution. To control the impact of balance loss in the training
process, a hyper-parameter α is applied as a multiplicative
coefficient for the loss. Throughout this work, we use an
α = 10−2 which was sufficiently large to ensure load bal-
ancing while small enough not to overwhelm the primary
cross-entropy objective.

Clustering Loss. In our work, we find the sparse alloca-
tion of data severely hinders the adequate training of MoE
layers and exacerbates overfitting. In order to allow experts
to get rich and diverse tokens to mitigate the impact of sparse
allocation, we design the clustering loss. The loss is de-
signed to constrain certain neighbor experts so that they will
share similar routing probabilities to tokens, thus forming
a static cluster-like distribution. For input tokens originally
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dispatched to the best-matched experts, clustering loss will
give them more opportunities to access other experts in the
cluster. As a result, experts will be assigned a more diverse
set of similar tokens, thus alleviating the problem of sparse
allocation.

In MoE models with N experts, the clustering loss will
guide experts to form m clusters (N should be divisible
by m), and each cluster contains L = N

m experts. We use
Ej

i to represent the j-th expert in the i-th cluster, while pji
represents the routing probability allocated for Ej

i (i =
0, 1, ...,m − 1; j = 0, 1, ..., L − 1). According to the size
and number of clusters, p0i , p

1
i , ..., p

L−1
i will compose a one-

dimensional matrix P̃i ∈ RL to represent the routing proba-
bilities of the L experts in the i-th cluster, and we denote the
mean value of them as pi. We define the clustering loss as
follows:

Lclustering = βN · Cintra · Cinter

= βN ·
∑m−1

i=0 δ(P̃i)

m
· e−µ

max {pi}−max2{pi}
max {pi}

(6)
As can be seen from Equation 6, clustering loss is mainly

composed of two parts: the variance-based intra-cluster con-
straint Cintra and the difference-based inter-cluster con-
straint Cinter. δ(P̃i) =

(p0
i−pi)

2+(p1
i−pi)

2+...+(pL−1
i −pi)

2]

L
represents the variance of the routing probability in the i-
th cluster. We compute the mean variance of m clusters as
the intra-cluster constraint Cintra, which will be minimized
when the routing probabilities of experts within the same
cluster are balanced.

Besides, we use Cinter to measure the probability dif-
ference between the dispatched cluster and the sub-optimal
cluster. max {·} means the max value of pi (i=0,1,...,m-1)
and max2{·} means the second max value. Cinter will be
minimized when the probability of a token being dispatched
to a suboptimal cluster is low. µ is the coefficient used to
control the value of Cinter. When we set µ = 0, the prob-
ability difference between clusters will not be considered.
We could also set µ to a non-zero value to activate Cinter.
We will conduct in-depth experiments and analysis on it in
Section 5.6.

To minimize clustering loss, the probability distribution
within the cluster should be uniform, and the probability dif-
ference between the clusters should be more apparent (op-
tional). In the initial training steps, the variance among ex-
perts will be very high, so the clustering loss will dominate
the optimization and guide the rapid formation of expert
clusters. When the intra-cluster variance is stable, the clus-
tering loss will become relatively small to maintain the ex-
pert clusters. Similar to the practice in balance loss, a hyper-
parameter β is applied. The value of the β should be rel-
atively small, because a large β means a strong clustering
constraint, thus making experts in the cluster too similar. It
will cause these experts to lose their characteristics, and the
contributions of multiple similar experts are only approxi-
mately equal to one expert. In our work, we set the value
of β as 10−2 by default. Experiments on the selection of β

Figure 3: Illustration of global-level expert dropout and
cluster-level expert dropout. The similarity between hidden
states Hi is represented by the color.

values could be found in Appendix A.

Cluster-level Expert Dropout
When applying large-scale MoE models on tasks with lim-
ited data, overfitting issues naturally arise. Previous MoE-
related work (Raffel et al. 2019; Fedus, Zoph, and Shazeer
2021) used dropout (Srivastava et al. 2014) at each layer to
prevent overfitting. Here, cluster-level expert dropout acts as
a regularization technique completely different from tradi-
tional dropout. It does not drop parameters, but drops some
experts in the cluster, which makes the dispatching of tokens
more random.

Implementation in Clusters. First, our cluster-level ex-
pert dropout works at the routing stage, so it will only be
implemented at expert layers. For experts in a cluster, we
randomly drop some of them by deleting the expert ids from
the candidate expert list when calculating the routing prob-
ability. Thus, the corresponding experts will be ignored in
the routing stage. Assume the dropout rate as γ, only the re-
maining N(1− γ) experts will participate in the calculation
of routing probability during training. The dimension of the
matrix P will decrease from RN to RN ·(1−γ). All clusters
implement the dropout simultaneously. It allows tokens to
have more opportunities to be dispatched to other experts in
the same cluster, instead of being repeatedly dispatched to
the expert with the highest probability. From another per-
spective, each expert will receive more diverse tokens with-
out adding training data.

Cluster-Level Expert Dropout vs Traditional Expert
Dropout. Traditional expert dropout is recommended in Fe-
dus, Zoph, and Shazeer (2021). It is a dropout tech-
nique (Srivastava et al. 2014) to regularize MoE models,
which acts on the feed-forward layer to reduce overfitting
caused by too many parameters. By setting a relatively small
dropout rate at non-expert layers (0.1), expert dropout in-
creases the dropout rate by an explicit amount at the interim
feed-forward computation at each expert layer (0.4). Our ex-
pert dropout acts completely different from it. We perform
random dropout on the candidate list of experts during the
routing stage. It does not reduce the number of parameters
during training but allocates tokens more diversely and flexi-
bly. While traditional expert dropout is usually used for fine-
tuning on downstream tasks, our cluster-level expert dropout
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NMT GLUE Tasks

WMT14 En-De MNLI CoLA SST-2 QQP QNLI MRPC STS-B GLUE Avg

Dense 27.10 85.97 57.10 92.87 91.20 92.23 87.50 89.18 85.16
MoE Baseline 30.59 87.27 75.60 93.30 91.37 92.33 86.30 88.28 87.78

MoEC (w/o expert dropout) 32.21 87.37 75.93 93.43 91.45 92.40 88.07 89.11 88.25
MoEC 32.50 87.37 76.80 93.37 91.40 92.45 88.23 89.24 88.41

Table 1: The performance on machine translation and GLUE tasks for baselines and MoEC models. WMT-14 is measured
on the test set, while GLUE tasks are measured on the development sets. We report the average results by a set of seeds (see
Appendix C). All experiments are conducted with 64 experts.

is a general regularization mechanism with strong general-
ity. In addition, our dropout can be applied together with Fe-
dus’ expert dropout, and they can work together to improve
the performance of MoE.

Why Cluster-Level Is Better? It is natural to think that
expert dropout could be implemented at the global level,
which provides more opportunities for tokens to access other
sub-optimal experts. But for global-level expert dropout, as
shown in Figure 3, if a random dropout happens to drop
suitable experts, tokens may be dispatched to less relevant
experts. Inappropriate dispatching may negatively impact
the learning of experts. In MoEC, We address this problem
by exploiting the cluster-like structure and design a cluster-
level expert dropout. Cluster-level dropout could give tokens
the option to be randomly re-dispatched while confining the
routing results to a more reasonable range. No matter how
random the dropout is implemented, tokens will always be
dispatched to experts with similar routing probability. We
will conduct in-depth experiments and analysis in Section
5.5.

Experiments
We name our model MoEC (Mixture of Expert Clusters),
and evaluate the performance on bilingual machine transla-
tion and natural language understanding tasks. We use the
X-MoE model from Chi et al. (2022) as our backbone ar-
chitecture, which has shown better performance than prior
MoE models such as Switch Transformers (Fedus, Zoph,
and Shazeer 2021) on widely-used cross-lingual understand-
ing benchmarks.

Evaluation Dataset
WMT 2014 English-to-German. Ninth Workshop on Sta-
tistical Machine Translation (WMT 2014) releases a collec-
tion of datasets used in shared tasks including machine trans-
lation. We add additional news-commentary-v12 data from
WMT-17 for training and validation. The total training data
contains 3.96M English-to-German sentence pairs.
GLUE. General Language Understanding Evalua-
tion (Wang et al. 2018) benchmark is a collection of
tools for evaluating the performance of models across a di-
verse set of existing NLU tasks, including MNLI (Williams,
Nangia, and Bowman 2017), CoLA (Warstadt, Singh,
and Bowman 2019), SST-2 (Socher et al. 2013), QQP,
QNLI (Rajpurkar et al. 2016), MRPC (Dolan and Brockett

2005) and STS-B (Cer et al. 2017). We do not perform
experiments on RTE because previous work (Chen et al.
2022) demonstrated that MoE is not suitable for this task.
It is worth mentioning that we will pre-train our model on
the BooksCorpus (Zhu et al. 2015) and English Wikipedia
corpus for 120k steps before fine-tuning on GLUE tasks.

Experiments Setup

Model Architecture. For our MoEC and all baseline mod-
els, we follow the recommended settings in Vaswani et al.
(2017) and use Transformer-big as the unified backbone ar-
chitecture on WMT 2014 English-German translation task.
For GLUE tasks, we use Transformer-base as the back-
bone architecture. For MoE layers, we apply the 64-expert
MoE model with 3 FFN sub-layers in the 3rd encoder block
and 3rd decoder block (same as the setting in Lewis et al.
(2021)). A more detailed model hyper-parameters could be
found in Appendix B.
Baselines. We conduct two baselines in our experiments.
The first is dense transformer (Vaswani et al. 2017). For
another, we follow the work in Chi et al. (2022) and ap-
ply X-MoE as our MoE baseline. It could serve as a strong
baseline that shows better performance than Switch Trans-
former (Fedus, Zoph, and Shazeer 2021) on widely-used
cross-lingual understanding benchmarks. The MoE baseline
estimates routing scores between tokens and experts on a
low-dimensional hypersphere and adds a learnable temper-
ature scalar in the gating function. For a fair comparison,
the two baseline methods are built with the same setting as
MoEC, which could be found in Appendix B.
MoEC Hyper-Parameters. For MoEC, several unique
hyper-parameters are introduced. For clustering loss, we set
β to 10−2 according to the experiment results (see Appendix
A) and set µ = 0 by default. For cluster size (the number of
experts in a cluster) and expert dropout rate, we will have
detailed related experiments in the following sections.
Training Hyper-Parameters. For a fair comparison, the
dense model, MoE baseline model, and MoEC model share
the same training hyper-parameters. All models are trained
with the Adam optimizer (Kingma and Ba 2014) (β1 =
0.9, β2 = 0.98). The learning rate is set 5e−4 with 4000
warm-up steps and inverse square root scheduler (Raffel
et al. 2019). Batch size, training steps, and dropout rate are
set by different tasks, which are recorded in Appendix C.
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Figure 4: Loss curves on the WMT-14 validation set. All ex-
periments are conducted with 64 experts for a fair compar-
ison. The numbers in boxes indicate the lowest validation
loss. Our MoEC shows excellent ability to mitigate overfit-
ting.

Experiments Results
We train dense models, baseline MoE and MoEC models
on several widely-used evaluation tasks and the results are
shown in Table 1. Compared with dense models, MoE mod-
els exhibit significant performance improvements, which
benefit from the large model capacity. Our MoEC could
bring notable improvement over the MoE baseline without
applying the dropout strategy to experts. On WMT-14, it
gives a 1.62 BLEU score boost. The advantage could be at-
tributed to the clustered distribution of experts, which en-
dows experts with more diverse training samples. Moreover,
with the application of the cluster-level expert dropout strat-
egy, the performance of MoEC will be further improved.

As shown in Figure 4, the MoE baseline severely suf-
fers from overfitting on WMT-14, while our MoEC shows
excellent ability to mitigate overfitting. The overfitting phe-
nomenon on the validation set is almost eliminated, and the
validation loss is relatively lower. It shows that when our
MoEC solves the sparse allocation of data, each expert could
get more abundant and diverse training samples. In this way,
the training data of each expert is kept sufficient, thereby
alleviating the phenomenon of overfitting. Furthermore, we
found that MoEC converges slightly slower. It is due to the
fact that each expert needs to learn from more diverse train-
ing samples, which takes more steps to allow the expert to
get sufficiently trained.

Detailed Analysis of Expert Clusters
Next, we conduct a detailed analysis of expert clusters. Fig-
ure 5 shows the fraction of tokens dispatched to cluster0
(including expert 0∼3) during training and inference. Dur-
ing training, experts in cluster0 get similar input tokens.
It reveals that clustering does not affects load balancing is-
sues. During inference, the routing probabilities of experts in
the cluster vary, which indicates that experts still retain their
own characteristics. Experts could learn more fine-grained
knowledge, which is the advantage of multiple similar ex-
perts compared to a single expert. For WMT14, the BLEU
score of MoE with 16 experts is 30.49 (see Table 4), while
the BLEU score of MoE with 16 clusters (cluster size=4) is

Figure 5: Fraction of tokens dispatched to cluster0 (includ-
ing Expert 0∼3) of 64-expert MoEC (cluster size = 4) dur-
ing training and inference. The graph on the left represents
the fraction of tokens dispatched to cluster0 during train-
ing, while the right shows the fraction of tokens dispatched
to cluster0 during inference.

Cluster size Number of clusters BLEU

1 64 30.59
4 16 32.16
8 8 32.21

16 4 29.98

Table 2: The performance of MoEC with different cluster
sizes on WMT-14. All experiments were conducted with 64
experts. For a fair comparison, all methods do not employ
the dropout on experts.

32.16. It proves that multiple similar experts have an obvious
advantage over a single expert.

The cluster size also has a critical impact on the learning
of MoEC, so we conduct experiments on different cluster
sizes. As depicted in Table 2, the best performance is ob-
tained when cluster size = 8. Compared to the MoE base-
line with 64 experts, expert clusters could bring about a 1.62
BLEU scores improvement. When the cluster size is rel-
atively small, the data shared among experts will be less,
and the improvement brought by MoEC will not be fully
exploited. As a special case, when cluster size=1, a single
expert could not be called a cluster, and MoEC is equiva-
lent to MoE baseline. When the cluster size is large, the data
shared among experts will increase, but the similarity and
correlation of these data will become lower, which will lead
to an adverse impact on the “professionalism” of each ex-
pert. When we expand the cluster size to 16, the performance
of MoEC is even lower than that of the MoE baseline, which
means that an excessively large cluster size will suppress the
advantages of MoE structure and hurt the performance.

Expert Dropout: Cluster-Level vs Global-Level
In Table 3, we experiment on WMT-14 with the cluster-level
expert dropout rate. We find that cluster-level dropout could
enhance the generalization performance of MoEC. Such a
regularization method could bring a 0.29 BLEU scores im-
provement for MoEC. Experimental results show that 0.5 is
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Dropout rate Cluster-level Global-level

0 32.21 32.21
0.25 32.32 31.88
0.5 32.50 31.53

0.75 32.02 29.73

Table 3: Cluster-level vs global-level expert dropout on
WMT-14. All experiments are conducted on the 64-expert
MoEC and cluster size = 8.

a good choice for the dropout rate. Besides, it is obvious that
global-level expert dropout will hurt the performance.

For cluster-level expert dropout, when dropping the best-
matched expert for input tokens, the routing decision will
still be made among the rest experts in the cluster. Regard-
less of how the dropped experts are selected, there will al-
ways be experts left in each cluster. It ensures that suitable
experts are always available. But for the global-level one,
due to the random distribution of experts, if all matched
experts are dropped, the token will be routed to an inap-
propriate expert. It could cause experts to be distracted by
low-relevant data, thus negatively impacting the learning of
knowledge. Take Figure 3 as a simple example (with set-
ting the dropout rate to 0.5). For global-level expert dropout,
when both expert1 and expert2 are dropped, then Hn will
only be dispatched to expert3 or expert4. This inappropriate
allocation could hurt the performance of the model.

Role of the Inter-Cluster Constraint Coefficient
We further explore whether the inter-cluster constraint co-
efficient Cinter (in Equation 6) will help improve perfor-
mance. As depicted in Figure 6, when dropout=0.75 or clus-
ter size=4, setting µ = 1 to activate the inter-cluster con-
straints will bring better results. In this case (the cluster size
is small or the expert dropout rate is high), the number of ex-
perts in the cluster is small, and the intra-cluster constraint
alone is not enough to form a globally reasonable routing
probability distribution, so the assistance of constraints be-
tween clusters is needed.

When there are sufficient experts in the cluster, it is bet-
ter not to apply the inter-cluster constraint by setting µ to
0. Intra-cluster constraints have already made other experts
in the cluster get higher routing probabilities, while inter-
cluster constraints will further widen the routing probabil-
ity gap between clusters. This will cause the entropy of the
routing probability distribution to be too small, which is not
conducive to the learning of the gated network.

Raising the Upper Bound of MoE
In general, a higher number of experts means higher model
capacity and better performance. However, for tasks with
limited data, there exists a performance upper bound on scal-
ing up MoE models. We take a deep dive into the ability of
MoEC to raise the upper bound. As shown in Table 4, the
MOE baseline model reaches the performance upper bound
when the number of experts is 32. It means that continuing
to increase the number of experts will not bring any gain to

Figure 6: Two sets of experiments on the inter-cluster con-
straint coefficient Cinter. All experiments are performed on
WMT14 En-De. The figure on the left is about experiments
with different expert dropout rates (cluster size=8), and The
figure on the right is about experiments with different cluster
sizes (without expert dropout).

Expert num MoE baseline MoEC Benefits

16 30.49 30.50 +0.01
32 30.81 30.84 +0.03
64 30.59 32.50 +1.91

128 30.21 32.40 +2.19

Table 4: Results of scaling up MoEC.

the model. Our MoEC not only has a performance advantage
over the MoE baseline with the same number of experts, but
also improves the upper bound from 32 to 64.

With the increase of experts, our MoEC could bring more
gains. It is because MoEC could fully show its promis-
ing ability to solve severe overfitting and sparse allocation
problems. With the mitigation of the above two problems,
the superiority of the large-scale MoE model will be bet-
ter exerted, thereby achieving the improvement of the upper
bound of MoE models. With the help of MoEC, we could
try to build sparse models with more experts.

Conclusion
In our work, we point out the overfitting and the sparse data
allocation problems of large-scale MoE models and pro-
pose a novel training strategy - MoEC to convert experts
into clusters. Each expert could get more abundant and di-
verse training samples. In this way, the training data of each
expert is kept sufficient, thereby alleviating overfitting. We
also propose the cluster-level expert dropout to realize regu-
larization. We conduct experiments on machine translation
and natural language understanding tasks. Experiment re-
sults show MoEC could improve performance and allevi-
ate problems caused by scaling up experts without changing
the model structure and routing strategy. The superiority of
the large-scale MoE model will be better exerted by MoEC,
thereby raising the upper bound of MoE models. With the
help of MoEC, we could try to build sparse models with
more experts.
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Selection of the Value of Clustering Coefficient

Value of β MoEC

1e-3 32.21
5e-3 32.17
1e-2 32.32
5e-2 31.21

Table 5: The performance of MoEC with different β coeffi-
cients on WMT-14. All experiments are conducted with 64
experts. The cluster sizes=8, and expert dropout rate=0.25.

Table 5 presents the experiments on selecting the best
value of β. MoEC works best when β is set to 1e-2. And
when the beta value is too large, the performance of MoEC
drops significantly, which confirms our analysis in the main
text. Based on the results, we uniformly set the value of β as
10−2 as a default in all experiments above.

Architecture Parameters
Table 6 presents the architecture parameters for different
tasks. For the WMT-14 task, we apply a larger Transformer
model with more attention heads and larger embedding di-
mensions. As our backbone architecture, X-MoE (Chi et al.
2022) applies half of the number of experts as the routing
dimension.

Training Hyper-Parameters
Table 7 presents the training hyper-parameters for WMT-14
and pre-training. To avoid the two regularization methods
(MoE dropout and our cluster-level dropout) affecting each
other, we do not use expert dropout for a fair comparison.

Table 8 presents the training hyper-parameters on down-
stream GLUE tasks. For GLUE tasks with a relatively large
amount of training data (MNLI, SST-2, QQP, QNLI), we set
smaller training epochs. For those with limited data (CoLA,
STS-B, MRPC, RTE), we try to increase the number of train-
ing epochs to 10.

- WMT-14 Pretrain&GLUE

Transformer blocks 12 12
Attention heads 16 12
Encoder ebd 1024 768
Decoder ebd 1024 768
FFN ebd 4096 3072

Experts 16,32,64,128 16,32,64,128
Routing dimension 8,16,32,64 8,16,32,64
MoE layers 2 1
Sub-layers 3 3

Table 6: Architecture parameters for all tasks. “ebd” is short
for “embedding”.

- WMT-14 En-De Pre-train

Optimizer Adam Adam
Adam ϵ 1e-6 1e-6
Adam β (0.9,0.98) (0.9,0.98)
Training steps 32k 125k
Batch size 8k 2k
Maximum LR 5e−4 5e−4

LR scheduler inverse sqrt inverse sqrt
Warmup steps 4k 4k
Weight decay 0 0.01
Dropout 0.3 0.1
Attention dropout 0.1 0
Gradient clip norm 0.1 0.1
Label smoothing 0.1 -

Capacity factor 2 2
MoE dropout 0 0
Coefficient α 0.01 0.01

Table 7: Training hyper-parameters for all tasks. “LR” rep-
resents “learning rate”.

- CoLA,RTE STS-B MRPC Else

BSZ 32 32 32 32
Epochs 3,5,10 10,15,20 5,10,15,20 3,5
LR [1,2,4]e−5 [1,2,4]e−5 [1,2,4]e−5 [1,2,4]e−5

Warm 16 16 16 16
Seed 1,2,3 2,42,123 2,42,123 1,2,3

Table 8: Training hyper-parameters for GLUE. “BSZ” rep-
resents “Batch size”, “LR” represents “Learning rate” and
“Warm” represents “Warmup steps” .
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