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Abstract

Active learning (AL) aims to find a better trade-off between
labeling costs and model performance by consciously select-
ing more informative samples to label. Recently, adversarial
approaches have emerged as effective solutions. Most of them
leverage generative adversarial networks to align feature dis-
tributions of labeled and unlabeled data, upon which discrim-
inators are trained to better distinguish between them. How-
ever, these methods fail to consider the relationship between
unlabeled samples and decision boundaries, and their train-
ing processes are often complex and unstable. To this end,
this paper proposes a novel adversarial AL method, namely
multi-classifier adversarial optimization for active learning
(MAOAL). MAOAL employs task-specific decision bound-
aries for data alignment while selecting the most informa-
tive samples to label. To fulfill this, we introduce a novel
classifier class confusion (C3) metric, which represents the
classifier discrepancy as the inter-class correlation of clas-
sifier outputs. Without any additional hyper-parameters, the
C3 metric further reduces the negative impacts of ambiguous
samples in the process of distribution alignment and sample
selection. More concretely, the network is trained adversari-
ally by adding two auxiliary classifiers, reducing the distribu-
tion bias of labeled and unlabeled samples by minimizing the
C3 loss between classifiers, while learning tighter decision
boundaries and highlighting hard samples by maximizing the
C3 loss. Finally, the unlabeled samples with the highest C3

loss are selected to label. Extensive experiments demonstrate
the superiority of our approach over state-of-the-art AL meth-
ods in terms of image classification and object detection.

Introduction
Over the past decade, the emergence of large-scale anno-
tated datasets (Deng et al. 2009) and the development of
deep learning techniques have brought prosperity to the field
of computer vision (Badrinarayanan, Kendall, and Cipolla
2017; Li et al. 2021; He et al. 2016). However, high-quality
annotations are both time- and resource-consuming, hinder-
ing the application of convolutional neural networks (CNNs)
in realistic scenarios. This dilemma between performance
and costs has given rise to active learning (AL) (Settles
2009), which aims to maximize the model performance with
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a limited annotation budget, by choosing the most suitable
samples to annotate from a large unlabeled dataset.

Conventional AL approaches can be categorized into
query synthesis or pool-based methods. In query synthe-
sis methods, the most informative samples are selected us-
ing generative models (Mayer and Timofte 2020; Zhu and
Bento 2017). Pool-based methods can be further divided into
uncertainty-based methods (Ducoffe and Precioso 2018;
Houlsby et al. 2011), representation-based methods (Sener
and Savarese 2018; Caramalau, Bhattarai, and Kim 2021),
and the combination of both (Kuo et al. 2018; Liu and Ferrari
2017). More recently, several pool-based methods (Sinha,
Ebrahimi, and Darrell 2019; Kim et al. 2021) have also re-
sorted to generative models (e.g., variational auto-encoders
(VAEs) (Kingma and Welling 2014) and generative adver-
sarial networks (GANs) (Goodfellow et al. 2014)) to se-
lect uncertain samples for annotation. For instance, (Sinha,
Ebrahimi, and Darrell 2019) trained the VAE and discrim-
inator using an adversarial approach, where the VAE gen-
erates latent space representations of labeled and unlabeled
data, and the discriminator is utilized as a binary classifier
to determine the uncertainty of the input samples. These ad-
versarial methods are effective in aligning the feature distri-
butions of labeled and unlabeled data. Nevertheless, on the
one hand, class discriminability cannot be guaranteed in the
adversarial learning process; on the other hand, adversarial
training is very sensitive to the selection of hyper-parameters
between discriminator and generator (Berthelot, Schumm,
and Metz 2017), leading to a complex and unstable training
process. Therefore, it is highly desirable to develop an active
learning method that could inherit the merits of the adversar-
ial spirit but circumvent the tedious training procedure.

Inspired by the recent success of the methods exploiting
classifier discrepancies (Fu et al. 2021; Cho et al. 2022; Saito
et al. 2018), in this paper, we propose a novel, easy-to-train
yet effective adversarial active learning approach, namely
multi-classifier adversarial optimization for active learning
(MAOAL). In particular, MAOAL plays the min-max game
between the feature generator G, the main classifier C, and
two auxiliary classifiers C1 and C2, with the aim of minimiz-
ing/maximizing the class-level discrepancy. As illustrated in
Fig. 2, by fixing C1 and C2, we update G and C to learn
more discriminative features, ensuring the consistency of
the distribution between labeled and unlabeled samples. Ad-
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versarially, C1 and C2 are optimized while fixing G and C
to learn tighter decision boundaries to highlight informative
unlabeled samples far from the labeled distribution.

It is worth noting that ADS (Fu et al. 2021) also mines
the discrepancy between two adversarial classifiers; how-
ever, it defines the classifiers’ discrepancy as the l1 dis-
tance between predictions, which only evaluates the dif-
ference between the classifiers’ predictions with respect to
the same class while ignoring the correlation between dif-
ferent classes. As a result, confusing features on unlabeled
data may be generated, thus decreasing the feature discrim-
inability and the model accuracy. In this work, we address
the above shortcoming by further considering the correla-
tion between different classes through a delicately-designed
classifier class confusion (C3) metric. Specifically, the C3

metric measures the confusion level between the predic-
tions obtained by different classifiers. Without adding ad-
ditional hyper-parameters, it is simply reflected in a corre-
lation matrix and efficiently computed from well-calibrated
bi-classifier predictions. In addition, we add a main classi-
fier whose decision hyperplane is between the two auxiliary
classifiers, enlarging the distance between the support vec-
tors and the decision boundary. To summarize, the proposed
MAOAL trains triple classifiers by optimizing the proposed
C3 loss in an adversarial fashion, aligning the feature dis-
tribution of labeled and unlabeled data as well as learning
tighter decision boundaries for informative sample acquisi-
tion.

The main contributions of this paper are three-fold:
• We propose multi-classifier adversarial optimization for

active learning (MAOAL), which trains multiple classi-
fiers in an adversarial manner to consider tighter inter-
class decision boundaries in the process of aligning la-
beled and unlabeled feature distributions.

• We propose a novel classifier discrepancy metric, namely
classifier class confusion (C3), to enhance classifier de-
terminacy and prediction diversity by adversarially op-
timizing the C3 loss while pushing ambiguous samples
near the decision boundary to effectively drive the sam-
ple selection process.

• Extensive experiments on both image classification and
object detection tasks demonstrate that our approach
consistently outperforms state-of-the-art active learning
methods.

Related Work
This paper focuses on pool-based active learning scenar-
ios (Haussmann et al. 2020; Yuan et al. 2021). Pool-based
methods typically employ the current model to predict
each unannotated data point to obtain a ranking metric
of the informativeness for each sample on the unlabeled
dataset, and then choose the top-N samples based on this
metric to annotate by the oracle(s). Existing methods can
be roughly divided into three categories: uncertainty-based
methods, representation-based methods, and hybrid meth-
ods that combine the two.

Uncertainty-based Methods. Intuitively, the predictive
uncertainty of the model reflects the informativeness of data

samples which can be estimated with different methods,
such as (Ebrahimi et al. 2020; Gorriz et al. 2017) based
on probabilistic models, (Joshi, Porikli, and Papanikolopou-
los 2009; MacKay 1992) based on information entropy, and
(Brinker 2003) by measuring the distance between samples
and the decision boundary. In more recent works, (Gal, Is-
lam, and Ghahramani 2017) proposed to use dropout layers
to estimate the uncertainty of a neural network’s prediction
for sample query. (Yoo and Kweon 2019) presented a learn-
ing loss prediction module to estimate the loss of unlabeled
data to track uncertainty.

Representation-based Methods. Representation-based
methods (Yang et al. 2015; Caramalau, Bhattarai, and Kim
2021) try to select a set of diverse samples that can rep-
resent the entire dataset well. (Gissin and Shalev-Shwartz
2019) proposed the discriminative active learning (DAL) to
train a binary classifier to discriminate between labeled and
unlabeled samples so as to select the most representative
sample. Core-set (Sener and Savarese 2018) was a typical
representation-based approach, which selected the samples
based on the core-set distance of intermediate features.

Hybrid Methods. Hybrid methods (Wang et al. 2016;
Agarwal et al. 2020; Liu and Ferrari 2017) combine un-
certainty with representation. For instance, BatchBALD
(Kirsch 2019) increased the diversity of the selected data
by a traceable approximate mutual information sampling
method. Badge (Ash et al. 2020) inherited the Core-set
(Sener and Savarese 2018) method and combined it with
the Bald (Houlsby et al. 2011) and experimented on several
models.

Adversarial Methods. In the recent literature, adversarial
active learning (Sinha, Ebrahimi, and Darrell 2019; Zhang
et al. 2020; Wang et al. 2020; Kim et al. 2021) has trained
a generative adversarial network (GAN) (Goodfellow et al.
2014) structured auxiliary networks that introduced varia-
tional auto-encoders (VAEs) (Kingma and Welling 2014) to
learn a low-dimensional latent space and discriminate the
labeled and unlabeled samples to select the unlabeled data
most different from the labeled ones. However, these AL
methods brought an unstable training process and additional
computational costs.

Our method absorbs some ingredients from ADS (Fu et al.
2021) and MCDAL (Cho et al. 2022). However, it is note-
worthy that MAOAL significantly differs from these two
works from the following perspectives. First, compared to
ADS, we propose a novel discrepancy metric C3 replacing
the l1 distance to potentially discover more ambiguous unla-
beled data near the decision boundary. Then, besides using
two classifiers, we add a main classifier to increase the dis-
tance between the uncertain unlabeled samples and the la-
beled ones, facilitating the sample acquisition process. Sec-
ond, unlike MCDAL that only exploits the classifier discrep-
ancy in the sample acquisition stage, we adversarially opti-
mize the C3 metric and take full advantage of unlabeled data
in the whole training process while simultaneously consid-
ering the determinacy of the classifier and the distributional
alignment between labeled and unlabeled data.
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Figure 1: The overall framework of the proposed MAOAL. First, we construct a class correlation matrix from classifier outputs
to obtain a novel metric w.r.t. the discrepancy between classifiers, namely the classifier class confusion (C3) metric. Then, the
model adversarially optimizes the C3 loss to align labeled and unlabeled data while generating a larger sampling region. Finally,
we design the sample acquisition function to further select the most informative samples.

Proposed Method
Overview
In this section, we consider a typical pool-based AL sce-
nario. Let (XL, YL) denote the pool of labeled data, and
XU denote a large pool of unlabeled data; the goal is to se-
lect the most informative samples from the unlabeled pool
XU by the sample acquisition function S(x). These selected
samples can be evaluated as the ones with the most signif-
icant performance gain on the main task model F when la-
beled. Specifically, in the i-th active learning iteration, we
select N samples from Xi

U and move them to the labeled
pool (Xi

L, Y
i
L) after annotation, and then update the unla-

beled and labeled pool to train and evaluate F . Iterations are
repeated until the model performance satisfies customer re-
quirements, or the annotated budget is exhausted.

Next, we introduce the proposed MAOAL in detail. Fig. 1
illustrates the overall framework. The network architecture
is composed of a feature generator G, which accepts input
from XU and XL, a main classifier C, and two auxiliary
classifiers C1 and C2, that take features from G. We intro-
duce a novel classifier class confusion (C3) metric to mea-
sure the discrepancy between classifiers, by training labeled
and unlabeled data in an adversarial manner, and perform
sample acquisition by using the proposed C3 metric.

Classifier Class Confusion
The two auxiliary classifiers C1 and C2 output a K-
dimensional vector of logits. Then the Softmax function is
used to obtain class probabilities through the vector:

p1 = softmax(C1(G(xU ))), (1)
p2 = softmax(C2(G(xU ))), (2)

K∑
j=1

pji = 1, ∀i ∈ 1, 2, (3)

where p1, p2 ∈ R1×K are the K-dimensional probabilistic
outputs of C1, C2, and K is the number of possible cate-
gories. Previous methods (Fu et al. 2021; Cho et al. 2022)
take the absolute value of the difference between the two
classifiers’ probabilistic outputs (i.e., l1 distance) as the dis-
crepancy between two classifiers. However, the l1 distance
only considers the classifier similarity on the same class
and ignores the correlation between different classes. For
example, when the outputs of classifiers C1, C2 are p1 =
[0.33, 0.33, 0.34] and p2 = [0.33, 0.33, 0.34], respectively,
though the l1 distance between them is equal to zero, such
predictions are prone to confusion between different classes.
Motivated by the calculation process of the self-correlation
matrix (Jin et al. 2020), we find that the class correlation
of two classifiers’ predictions for the same instance can be
naturally represented by the product between one classifier’s
prediction and the other’s transposition. Thereby, we define
the classifier correlation matrix R ∈ RK×K between two
classifiers as:

R = [rij ]K×K = (p1)
T p2

=


p11
p21
...

pK1

 [
p12, p

2
2, · · · , pK2

]
,

(4)

where rij = pi1p
j
2, i, j = 1, 2, · · · ,K, is the element in

the i-th row and j-th column of R. For the matrix R, the
main diagonal element indicates the intra-class correlation,
which is the probability product of two classifiers assigning
a sample to the same class; the off-diagonal element indi-
cates the inter-class correlation or confusion, which is the
probability product of the same instance being divided into
different categories by two classifiers. For convenience, we
define the overall intra-class correlation as Ia and the overall
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Figure 2: Adversarial training steps of our method. The generator G learns to minimize the C3 loss in the Min step (fixing C1

and C2), and the classifiers learn to maximize the C3 loss in the Max step (fixing G and C).

inter-class correlation as Ie, respectively:

Ia =
K∑

i=j=1

rij ; Ie =
K∑
i̸=j

rij . (5)

According to Eq. (3), Ia and Ie satisfy Ia + Ie = 1. For
the unlabeled dataset, the predictions usually yield a rela-
tively small Ia and a large Ie due to the lack of supervised
training. Ie can be seen as containing all probabilities that
the two classifiers have inconsistent predictions, so it can
be used to measure the prediction discrepancy between the
two classifiers. Thus, we define the classifier class confusion
(C3) metric as follows:

d̃(p1, p2) = Ie. (6)

Notably, the C3 metric can be implemented with one line
of code and has no additional hyper-parameters. Moreover,
the computational complexity of C3 is the same as the l1
distance; hence, it can be efficiently implemented.

Multi-Classifier Adversarial Optimization
We devise our multi-classifier adversarial optimization algo-
rithm based on the proposed C3 metric.

For the network training, we first train the feature genera-
tor network G and all three classifiers C, C1, and C2 on the
labeled dataset by optimizing the multi-class cross-entropy
loss. Let θG and θC/θC1

/θC2
denote the parameters of the

generator G and the classifiers C/C1/C2, respectively, the
objective function is given as follows:

min
θC ,θC1

,θC2
,θG

Lcls(XL, YL), (7)

Lcls = E(xL,yL)∈(XL,YL)

[
−

K∑
k=1

1[k = yL]logp
k(y|xL)

]
,

(8)

where pk(y|x) denotes a probability element of prediction
output p for class k, 1 is an indicator that equals 1 if a state-
ment is true and 0 otherwise.

Due to the distribution divergence between labeled and
unlabeled datasets, it is difficult for the model trained on the
labeled set to classify unlabeled samples directly. To take
full advantage of the unlabeled samples, in the following, we
use an adversarial method to train two auxiliary classifiers
C1, C2 on unlabeled data, extending their distance to sepa-
rate them from the original class boundaries while aligning
the feature distributions of labeled and unlabeled data. To
achieve this, we use the designed C3 loss to measure the
classifier discrepancy as an adversarial loss, as follows:

Ladv = ExU∈XU
[LC3 ] , (9)

LC3 = d̃(p1, p2) + d̃(p, p1) + d̃(p, p2), (10)

where p/p1/p2 are the probabilistic outputs of C/C1/C2,
respectively. We play the min-max game based on the fol-
lowing objective function:

min
θG,θC

max
θC1

,θC2

Ladv(XU ). (11)

Min Step. By minimizing the C3 loss of the classifiers,
the obtained features of unlabeled data can have strong dis-
criminability, which increases the consistency of the distri-
bution between labeled and unlabeled samples. Specifically,
we train the feature generator G and classifier C to mini-
mize the adversarial loss of the fixed classifiers C1 and C2

as follows:
min
θG,θC

Ladv(XU ). (12)

Max Step. We maximize the C3 loss of the classifiers to
learn tighter decision boundaries, while highlighting infor-
mative unlabeled samples that are uncertain and far from the
labeled distribution. Specifically, we train the classifiers C1,
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C2 for the fixed generator G and classifier C. The objective
function is given as follows:

max
θC1

,θC2

Ladv(XU ). (13)

By minimizing the C3 loss to train the feature extractor
G and classifier C, the negative impact of ambiguous sam-
ples on feature learning is avoided while aligning labeled
and unlabeled data in the feature space as much as possible.
By maximizing the C3 loss, we adapt the two auxiliary clas-
sifiers to form a tighter decision boundary while highlighting
the information-rich unlabeled samples, as illustrated in Fig.
2.

Sample Acquisition
After several iterations of training, the decision hyperplane
of the main classifier C lies between those of C1 and C2,
which makes the distance between the support vectors and
the decision boundary larger. The two classifiers C1 and C2

have a tighter decision boundary that results in a larger re-
gion in the feature space, which we refer to as the sam-
pling region. The C3 loss between the outputs of classifiers
is larger, i.e., the samples with large prediction discrepancy
are located in this sampling region, and these samples are
both uncertain and far from the labeled distribution. Conse-
quently, labeling these samples improves the model perfor-
mance the most. Therefore, we define the sample acquisition
function as follows:

S(XU ) = d̃(p1, p2) + d̃(p, p1) + d̃(p, p2). (14)

We employ the sample acquisition function to quantify how
informative each sample is, and the top-N samples are se-
lected to be labeled by the oracle(s). We summarize the
above training process of MAOAL in Algorithm 1.

Experiments
We evaluate MAOAL against various state-of-the-art AL
methods with respect to two computer vision tasks, i.e., im-
age classification and object detection, on four benchmark
datasets. To verify the performance of each active learning
method, we report the averaged results based on three runs.

Image Classification
Datasets. For image classification, we evaluate our method
on three classical datasets, including CIFAR-10, CIFAR-100
(Krizhevsky 2009), and Caltech-101 (Li Fei-Fei, Fergus,
and Perona 2006). Both CIFAR-10 and CIFAR-100 con-
tain 60,000 images of 32x32x3 pixels, with 50,000 images
for training and 10,000 for testing. CIFAR-10 contains 10
classes with 6,000 images per class, while CIFAR-100 has
100 classes with 600 images per class. Caltech-101 consists
of 9146 images divided into 101 categories, with about 40
to 800 images in each class.

Compared Methods. We compare MAOAL with
state-of-the-art approaches including Core-set (Sener and
Savarese 2018), LL4AL (Yoo and Kweon 2019), VAAL
(Sinha, Ebrahimi, and Darrell 2019), SRAAL (Zhang et al.
2020), ADS (Fu et al. 2021)and MCDAL (Cho et al. 2022).

Algorithm 1: The training process of multi-classifier adver-
sarial optimization for active learning (MAOAL)
Input: Labeled pool (XL, YL), Unlabeled pool XU .
Parameter: Network parameters θG, classifiers’ parameters
θC , θC1

and θC2
.

1: for iteration do
2: for epoch do
3: if epoch == 0 then
4: Train G,C,C1, C2 on (XL, YL) using Eq. (7);
5: end if
6: Train G,C on XU using Eq. (12);
7: Train C1, C2 on XU using Eq. (13);
8: Train G,C,C1, C2 on (XL, YL) using Eq. (7);
9: end for

10: Select samples using Eq. (14);
11: Update (XL, YL) and XU .
12: end for

Several previous works (Sinha, Ebrahimi, and Darrell 2019;
Yoo and Kweon 2019) have shown that classical methods,
such as (Gal and Ghahramani 2016; Gal, Islam, and Ghahra-
mani 2017; Beluch et al. 2018), exhibit similar or worse per-
formance than random sampling in experiments, so we only
additionally choose random sampling as a baseline.

Experimental Settings. We use ResNet-18 (He et al.
2016) as the backbone network for all image classification
tasks and only fine-tune the final feature layer and the fully
connected layer. For all classification datasets, we randomly
select 10% samples from the entire dataset to initialize the
labeled pool, and the rest is considered the unlabeled pool.
In each iteration of the current model training, we select
5% samples from the unlabeled pool until the portion of la-
beled samples reaches 40%. In addition, to validate the per-
formance of our method at a relatively small budget of the
labeled set, for CIFAR-10, we start training with 1000 la-
beled images and iterate for 10 cycles, adding 1000 images
for each iteration, and finally reaching 20% of the labeled
samples. For each learning iteration, we train the model for
200 epochs using the Stochastic Gradient Descent (SGD)
optimizer with a learning rate of 0.1, a momentum of 0.9, a
weight decay of 0.0005, and a batch size of 128. After 80%
of the training epochs, the learning rate is decreased to 0.01.

Performance on CIFAR-10. Fig. 3(a) shows that
MAOAL outperforms the current state-of-the-art methods
in all the stages with notable margins, especially in the late
stages. When labeled data rates are 30%, 35%, and 40%,
the mean accuracies of MAOAL are 92.95%, 93.50%, and
93.98%, respectively, which are 0.7%, 0.6%, and 0.53%
higher than the second-best method (MCDAL). The experi-
mental results show the superiority of MAOAL on a dataset
with a small number of categories.

When the labeling budget is restricted, e.g., one may only
be able to annotate 20% of the data instead of 40%, MAOAL
is also proven to be beneficial and shows performance im-
provement at every stage, particularly at the early iterations,
as shown in Fig. 3(b). MAOAL achieves 91.03% accuracy
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(a) CIFAR-10 when the labeling budget is 40% (b) CIFAR-10 when the labeling budget is 20%

(c) CIFAR-100 (d) Caltech-101

Figure 3: Results in image classification on CIFAR-10, CIFAR-100, and Caltech-101.

(a) Iteration 1 (b) Iteration 4 (c) Iteration 7

Figure 4: t-SNE visualization of the features generated by MAOAL on CIFAR-10. Red points are the sampled points to label.

with 20% samples, which is very close to that on the full
training set. The results show that when the labeling budget
is limited, MAOAL can select informative samples using a
small training set and achieve higher accuracy.

Performance on CIFAR-100. CIFAR-100 has 10 times
more classes than CIFAR-10 and is a more challenging
dataset. As shown in Fig. 3(c), when data rates are 15%,

25%, and 35%, the mean accuracies of MAOAL are 51.75%,
62.40%, and 66.47%, respectively, which are 0.60%, 1.97%,
and 1.27% higher than the second-best method (ADS).
Overall, MAOAL outperforms other state-of-the-art meth-
ods at all sampling stages, demonstrating a considerable per-
formance gap, and shows fairly decent performance at 40%
labeled data.
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Accuracy (%) on Proportion (%) of Labeled Samples

LC3 L1 Ent. S() Bi-cls Tri-cls 10 15 20 25 30 35 40

39.14 44.35 49.56 52.12 56.99 59.80 62.35

✓ ✓ ✓ 37.22 47.84 54.04 59.74 62.85 63.78 65.85

✓ ✓ ✓ 40.45 50.15 57.60 61.96 64.93 66.10 68.24

✓ ✓ ✓ 39.48 49.58 56.62 61.32 63.05 64.40 66.24

✓ ✓ ✓ 39.77 50.16 57.10 61.50 62.36 64.45 66.73

✓ ✓ ✓ 41.20 51.75 58.57 62.40 64.63 66.47 68.31

Table 1: Results of our proposed method with/without the proposed components/structures. LC3 and L1 respectively denote
using the proposed C3 loss and the l1 distance as the classifier discrepancy metric. Ent. and S() respectively denote using the
mean entropy sampling and our designed sampling strategy S() to select samples. Bi-cls denotes using two classifiers in the
network, while Tri-cls denotes training the network with three classifiers, i.e., one main classifier and two auxiliary ones.

Figure 5: Results in object detection on PASCAL VOC.

Performance on Caltech-101. The Caltech-101 dataset
is considerably smaller compared to CIFAR-100, including
images of much higher resolution (i.e., 300×200) and a dif-
ferent number of images per class. Therefore, it is a rather
difficult dataset. As can be seen from Fig. 3(d), our MAOAL
outperforms other state-of-the-art methods at all stages, with
the best performance at 40% labels, achieving 90.75% accu-
racy. These results show the capability of our MAOAL in a
real-world setting with unbalanced data.

Visualization. Fig. 4 depicts the t-SNE visualization of
features learned by MAOAL on CIFAR-10. Blue and red
points indicate unlabeled and labeled samples, respectively.
With the increasing training iterations, we can observe that
feature distributions gradually present good clustering re-
sults. The learned features align the labeled and unlabeled
samples with 10 clusters with clear boundaries. Points with
red color are sampled points for labeling.

Object Detection
Datasets and Settings. Pascal VOC (Everingham et al.
2010) contains 20 object categories, consisting of the VOC
2007 trainval set, the VOC 2012 trainval set, and the VOC
2007 test set. We use the trainval sets of VOC 2007 and VOC

2012 datasets for training, which contain 5011 and 11540
images. We follow LL4AL to adopt SSD (Liu et al. 2016)
with VGG-16 (Simonyan and Zisserman 2015) as the base
detector, where 1,000 images in the training set are selected
as the initially labeled subset and 1000 images are selected
at each acquisition cycle. We learn the model set for 300
epochs with the mini-batch size of 32. The learning rate for
the first 240 epochs is 0.001 and decreased to 0.0001 for
the last 60 epochs. We compare MAOAL with random sam-
pling, entropy sampling, Core-set, LL4AL, and ADS.

Performance. Fig. 5 illustrates our results of object de-
tection on VOC compared to previous approaches. From the
figure, we can see that MAOAL outperforms all other meth-
ods throughout the process.

Ablation Study
To evaluate the effect of our proposed components/struc-
tures, we conduct an ablation study on CIFAR-100 using
ResNet-18. As shown in Tab. 1, when using the proposed
C3 loss as the classifier discrepancy and the sampling acqui-
sition function (Eqs. (6) and (14)), our method yields sub-
stantially higher performance at all AL stages compared to
using the l1 distance and the mean entropy sampling. When
training the network with three classifiers, a main classifier
and two auxiliary classifiers, MAOAL significantly boosts
the performance in all training iterations. This confirms the
effectiveness of the proposed method in generating a larger
sampling area and highlighting hard samples.

Conclusion
In this paper, we propose a multi-classifier adversarial ac-
tive learning algorithm, MAOAL, that learns a discrimina-
tive representation on the unlabeled data in an adversarial
game. We calculate the prediction discrepancy between clas-
sifiers by introducing a novel metric, classifier class confu-
sion (C3). We adversarially optimize the C3 loss by adding
two auxiliary classifiers to align the distribution of labeled
and unlabeled data while pushing the hard samples to the
decision boundaries, which facilitates selecting more infor-
mative samples. The experimental results on four datasets
demonstrate the effectiveness of the proposed method.
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Kuo, W.; Häne, C.; Yuh, E.; Mukherjee, P.; and Malik, J.
2018. Cost-Sensitive Active Learning for Intracranial Hem-
orrhage Detection. In MICCAI.
Li, J.; Tang, S.; Zhu, L.; Shi, H.; Huang, X.; Wu, F.; Yang,
Y.; and Zhuang, Y. 2021. Adaptive Hierarchical Graph Rea-
soning with Semantic Coherence for Video-and-Language
Inference. In IEEE ICCV.
Li Fei-Fei; Fergus, R.; and Perona, P. 2006. One-Shot Learn-
ing of Object Categories. IEEE Trans. PAMI, 28(4): 594–
611.
Liu, B.; and Ferrari, V. 2017. Active Learning for Human
Pose Estimation. In IEEE ICCV.
Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu,
C.-Y.; and Berg, A. C. 2016. SSD: Single Shot MultiBox
Detector. In ECCV.
MacKay, D. J. C. 1992. Information-Based Objective Func-
tions for Active Data Selection. Neural Computation, 4(4):
590–604.
Mayer, C.; and Timofte, R. 2020. Adversarial Sampling for
Active Learning. In IEEE WACV.
Saito, K.; Watanabe, K.; Ushiku, Y.; and Harada, T. 2018.
Maximum Classifier Discrepancy for Unsupervised Domain
Adaptation. In IEEE CVPR.
Sener, O.; and Savarese, S. 2018. Active Learning for
Convolutional Neural Networks: A Core-Set Approach. In
ICLR.
Settles, B. 2009. Active Learning Literature Survey. Tech-
nical report, University of Wisconsin-Madison.

7694



Simonyan, K.; and Zisserman, A. 2015. Very Deep Convo-
lutional Networks for Large-Scale Image Recognition. In
ICLR.
Sinha, S.; Ebrahimi, S.; and Darrell, T. 2019. Variational
Adversarial Active Learning. In IEEE ICCV.
Wang, K.; Zhang, D.; Li, Y.; Zhang, R.; and Lin, L. 2016.
Cost-Effective Active Learning for Deep Image Classifica-
tion. IEEE Trans. CSVT, 27(12): 2591–2600.
Wang, S.; Li, Y.; Ma, K.; Ma, R.; Guan, H.; and Zheng, Y.
2020. Dual Adversarial Network for Deep Active Learning.
In ECCV.
Yang, Y.; Ma, Z.; Nie, F.; Chang, X.; and Hauptmann, A. G.
2015. Multi-Class Active Learning by Uncertainty Sam-
pling with Diversity Maximization. IJCV, 113(2): 113–127.
Yoo, D.; and Kweon, I. S. 2019. Learning Loss for Active
Learning. In IEEE CVPR.
Yuan, T.; Wan, F.; Fu, M.; Liu, J.; Xu, S.; Ji, X.; and Ye, Q.
2021. Multiple Instance Active Learning for Object Detec-
tion. In IEEE CVPR.
Zhang, B.; Li, L.; Yang, S.; Wang, S.; Zha, Z.-J.; and Huang,
Q. 2020. State-Relabeling Adversarial Active Learning. In
IEEE CVPR.
Zhu, J.-J.; and Bento, J. 2017. Generative Adversarial Active
Learning. arXiv preprint arXiv:1702.07956.

7695


