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Abstract

Graph meta learning aims to learn historical knowledge from
training graph neural networks (GNNs) models and adapt it
to down-stream learning tasks in a target graph, which has
drawn increasing attention due to its ability of knowledge
transfer and fast adaptation. While existing graph meta learn-
ing approaches assume the learning tasks are from the same
graph domain but lack the solution for multi-domain adap-
tation. In this paper, we address the multi-domain general-
ized graph meta learning problem, which is challenging due
to non-Euclidean data, inequivalent feature spaces, and het-
erogeneous distributions. To this end, we propose a novel so-
lution called MD-Gram for multi-domain graph generaliza-
tion. It introduces an empirical graph generalization method
that uses empirical vectors to form a unified expression of
non-Euclidean graph data. Then it proposes a multi-domain
graphs transformation approach to transform the learning
tasks from multiple source-domain graphs with inequivalent
feature spaces into a common domain, where graph meta
learning is conducted to learn generalized knowledge. It fur-
ther adopts a domain-specific GNN enhancement method to
learn a customized GNN model to achieve fast adaptation in
the unseen target domain. Extensive experiments based on
four real-world graph domain datasets show that the proposed
method significantly outperforms the state-of-the-art in multi-
domain graph meta learning tasks.

Introduction

Graph Neural Networks (GNNs) (Kipf and Welling 2017;
Wu et al. 2019; Klicpera, Bojchevski, and Gilinnemann
2019) are powerful models for learning representation of
graphs and have achieved great success in dealing with
graph-related applications with data containing rich rela-
tional information. They are widely applied in social net-
works, knowledge graphs, recommendation systems, etc. A
large number of GNN models and applications were pro-
posed in the past years (Hamilton, Ying, and Leskovec 2017
Luo, Yan, and Ji 2021; Cheng et al. 2022).

Despite their great success, the existing GNN models are
typically designed for specific tasks and they are lack of the
ability of quick adaptation to new graph tasks with only a
small number of labeled instances (Zhou et al. 2019; Zhang
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et al. 2022). In recent years, graph meta learning (Huang and
Zitnik 2020; Zhang et al. 2022) has been proposed to address
this issue. Graph meta learning leverages a distribution of
similar GNN based tasks to accumulate transferable knowl-
edge from prior learning experience, which can be used as
a strong inductive basics for fast adaptation to down-stream
tasks. Based on the learning tasks, related works on graph
meta learning can be divided into three categories: node-
level (Yao et al. 2020; Liu et al. 2021), edge-level (Bose et al.
2019; Huang and Zitnik 2020), and graph-level (Wang et al.
2021; Guo et al. 2021) meta learning.

The effectiveness of graph meta learning is established on
a strong assumption that the learning tasks in meta-training
and meta-testing phases are from the same domain and the
same distribution (e.g., coming from the similar networks
and sharing the same node feature space). Such an assump-
tion is hard to hold in real-world applications, and there is an
urgent need to train GNNs with transferable knowledge into
unseen domains. For example, we may want to train a GNN
model based on diverse open graph datasets (such as citation
networks and social networks), and then applied the model
for product recommendation (such as a co-purchasing net-
work) where the information available on the target graph is
limited due to privacy protection. We refer to such a problem
as multi-domain generalized graph meta learning problem,
which aims to learn prior experiences that can be general-
ized from multi-source domain graphs and fast adapted to
the tasks on unseen target domain with only a small number
of labeled samples. To the best of our knowledge, the multi-
domain generalized graph meta learning problem has not yet
been studied in the literature.

In computer vision (CV), domain generalization tech-
niques have been studied to improve the generalization ca-
pability of a model in different domains, and the typical
strategies include data augmentation (Honarvar Nazari and
Kovashka 2020; Zhou et al. 2020b), domain-invariant rep-
resentation learning (Li et al. 2018a; Zhou et al. 2020a),
and exploiting learning strategies (Dou et al. 2019; Li et al.
2019). Despite the progress, domain generalization for graph
meta learning encounters several challenges. First, graph
meta learning deals with non-Euclidean graph data consist-
ing of nodes and edges from heterogeneous domains, which
is completely different from the regular image data and can-
not be processed by the CV’s domain generalization meth-



ods. Second, the feature space in different graph domains
are inequivalent as well as with diverse graph structures and
distributions, whereas all the existing domain generalization
methods in CV assume homogeneous feature space. In sum-
mary, no effective solution has been found to solve the multi-
domain generalized graph meta learning problem.

To address the above challenges, we propose a novel
multi-domain generalized graph meta learning (MD-Gram)
framework, that can learn transferable knowledge from
multi-domain graphs and be adapted to unseen domain
graphs. Firstly, it introduces an empirical graph generaliza-
tion method that uses empirical vectors to represent nodes
and edges of multi-domain graphs, which enables the non-
Euclidean graph data to be represented with the same di-
mensional unified expression. Secondly, it proposes a multi-
domain graphs transformation method that uses neural net-
works to transform multiple source-domain graphs into a
common domain with minimal Wasserstein distances, which
enables the learning tasks from inequivalent feature spaces
and heterogeneous graph distributions to be trained with
meta learning in the common domain to learn general-
ized knowledge. Thirdly, it adopts a domain-specific GNN
enhancement approach to learn a customized GNN meta
model, which achieves knowledge transfer and fast adapta-
tion to down-stream learning tasks in the unseen target do-
main. The efficiency and feasibility of the proposed frame-
work are verified by extensive experiments.

The contributions of our work are summarized as follows.

e We are the first to address the multi-domain generalized
graph meta learning problem, which confronts the chal-
lenges of training meta GNN models with non-Euclidean
graph data on multiple source domains with inequivalent
feature spaces and heterogeneous distributions.

e We propose a novel graph meta learning framework
called MD-Gram for multi-domain graph generalization.
It forms a unified representation for heterogeneous graph
data and transforms the multi-domain GNN learning
tasks into a common domain for meta learning, which
achieves generalized knowledge transfer and fast adapta-
tion for the unseen target graph.

e We implement MD-Gram with Pytorch and test its ef-
ficiency and feasibility based on four real-world graph
datasets from varying domains. Under the leave-one-
domain-out setting, our method achieves faster conver-
gence with fewer labeled samples, and its AUC metric
significantly outperforms the state-of-the-art graph meta
learning methods.

Related Works

Graph Neural Networks: Recently Graph Neural Net-
works (GNNs) have become an effective way to learn graph
structure with deep neural networks. With the operation of
neighboring information aggregation and message passing,
they combine node features with graph structure to learn
normalized node representations. GNNs gained popularity
due to their superior performance in many learning tasks
such as node classification to predict node properties based
on other node properties in a graph (Kipf and Welling 2017,
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Hamilton, Ying, and Leskovec 2017); graph classification to
discriminate between graphs of different classes (Bai et al.
2019; Lee, Rossi, and Kong 2018), and link prediction to
predict the existence of a relationship between two entities
in a network (Liben-Nowell and Kleinberg 2007; Rossi et al.
2022). For its effectiveness and universality, training GNN
models more rapidly and efficiently with a small set of la-
beled instances is becoming more and more necessary and
thus meta learning on graphs has caused greater concern.

Graph Meta Learning: Meta learning (or learn to learn)
is to learn from prior experiences to form inductive biases
for fast adaptation to new tasks (Thrun and Pratt 2012;
Schmidhuber, Zhao, and Wiering 1997) and it has been par-
ticularly effective in few-shot learning tasks (Finn, Abbeel,
and Levine 2017; Lee and Choi 2018). Consequently, meta
learning on graphs generally combines the advantages of
GNNs and meta learning. There have been many related
studies that spanned a variety of methods and applications in
recent years. From the view of methods, graph meta learning
often used metric based methods that learned task-specific
similarity metrics between query data and support set data
(Snell, Swersky, and Zemel 2017; Yao et al. 2020; Tan et al.
2022); and optimization-based methods that learned well
initialized base-learner to quickly adapt to a new task with
gradient computation (Zhou et al. 2019; Wang et al. 2020b).
Considering the learning tasks, these works can be divided
into three categories: node-level (Yao et al. 2020; Liu et al.
2021; Huang and Zitnik 2020), edge-level (Bose et al. 2019;
Huang and Zitnik 2020) and graph-level (Wang et al. 2021;
Guo et al. 2021) meta learning. These works focused on
specific graph learning tasks and developed corresponding
graph meta learning methods for quickly adapting learning
knowledge. However, most of the graph meta learning works
follow a strong fundamental assumption that all learning
tasks are from the same distribution domain. The problem
of generalizing prior experiences from multi-domain graphs
in meta training and adapting them to unseen domain graphs
has not yet been studied in the literature.

Domain Generalization: Domain generalization refers
to the problem of training a model from a collection of
different domains that can directly generalize to the target
domains, which is a crucial learning task in computer vi-
sion (Li et al. 2018a,b; Muandet, Balduzzi, and Scholkopf
2013). There have been many works about it, such as uti-
lizing data augmentation as a regularization approach to im-
prove the generalization of DNNs (Honarvar Nazari and Ko-
vashka 2020; Zhou et al. 2020b), domain-invariant represen-
tation learning with some statistical metrics (e.g. MMD and
Wasserstein distance) (Li et al. 2018a; Zhou et al. 2020a),
and exploiting learning strategies to help model generaliza-
tion (Dou et al. 2019; Li et al. 2019). Domain generalization
is more challenging with meta-learning setting (Tseng et al.
2020; Du et al. 2020), and existing works are limited to deal-
ing with regular image data with equivalent feature space,
which can not apply to non-Euclidean graph data. One re-
cent work (Hassani 2022) developed a multi-view enhanced
method MVG-Meta to learn graph embeddings for cross-
domain graph classification, but it still cannot be generalized
to multiple heterogeneous graph domains for meta training.



Different from the existing works, we are the first to
address the multi-domain generalized graph meta learning
problem and proposed a novel solution called MD-Gram
that deals with non-Euclidean graph data and adopts multi-
domain graphs transformation for graph meta learning.

Problem Formulation

Given a graph G = (V, A, X), where V' is the set of nodes,
A is an adjacency matrix representing the edges, and X is
a feature matrix regarding to nodes. A GNN model follows
a neighborhood aggregation strategy, which iteratively up-
dates the presentation of a node by aggregating representa-
tions from its neighbors in multiple layers. Specifically, op-
eration in each layer can be formulated as:

ZMt = M(zh AW, 720 = X, (1)

where M(-) is the message aggregation function and W" is
the learnable parameters in the h-th layer.

GNN is commonly used in classification tasks, and the
general process can be formulated as:

where £(-,-) measures the difference between predictions
and corresponding true labels Y, f(Z) is the prediction
function, and 6, = (W°, W1, .. .) are learnable parameters
of the GNN. In the multi-domain generalized graph meta
learning problem, we assume that there are a set of s source
graph domains D = {D;,Ds, ..., Ds}, where element Dy,
represents the kth source graph domain. Similar to the def-
inition in (Pan and Yang 2009), we denote a graph domain
as Dy, = { Xy, pupode, uzdge} where X}, is the feature space,
node edge

py°%¢ is the node probability distribution on X}, and
is the edge probability distribution of connecting two nodes.
We denote the target domain as D, with similar definition.
Taking the domain of a social network for example, each
point in the space X}, represents a user with an embedding,
node gver X, is the probability for the user to take

where 17!
part in the network, and uzdg ¢ is the probability for two users
to establish a friendship.

We consider standard domain generalization that all
tasks share the same label space. Assume there are s

graphs from the source domains, denoted by Gp,
(Vo Ap,, Xp,) (1 < k < s) where Ap, € ZIVorIXIVoy
and Xp, € RIVPxI¥dk The learning task on each graph is
denoted by Tp, = {Yp,, fx(:)}. where Y}, is the label set
and fy(-) is a predictive function.

The multi-domain generalized graph meta learning prob-
lem aims to learn task-level knowledge from multi-domain
tasks T'p,, and apply such knowledge to new tasks in an
unseen domain for fast adaptation, i.e., training an optimal
initialized GNN model 6* for the target domain D,.

Methodology

The proposed multi-domain generalized graph meta learn-
ing (MD-Gram) framework is illustrated in Fig. 1. The meta
training consists of three phases: empirical graph general-
ization, multi-domain graphs transformation, and domain-
specific GNN enhancement. In the first phase, it proposes
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to use empirical vectors to represent the nodes and edges
of multi-domain graphs to form a unified and generalized
graph expression with the same dimension. In the second
phase, it transforms multiple source-domain graphs into a
common domain by minimizing their Wasserstein distances.
The common domain bridges the inequivalent feature spaces
and heterogeneous graph distributions, and it enables graph
meta learning in the transformed domain to learn general-
ized knowledge. In the third phase, it trains a customized
GNN from the generalized model by performing domain-
specific GNN enhancement to achieve knowledge transfer
and fast adaptation to down-stream learning tasks in the
unseen target domain, which is further used for meta test.
Noted that phase two and three are both trained alternatively
until convergence. The detailed processes are as follows.

Empirical Graph Generalization

Recall that a graph domain is expressed by a feature space
as well as a node distribution and an edge distribution on the
feature space. To cope with the heterogeneity of multiple
graph domains, we need to form a unified expression of the
heterogeneous node/edge distributions of different graphs.
Since their true distributions are unknown, we can observe
the instances (i.e., nodes and edges) on a graph, and adopt
the empirical vector technique (Rubner et al. 2000) to form
an empirical distribution for each graph on a vector space.
Given a graph Gp, = {Vp,, Ap,, Xp, } defined in do-
main Dy, we use empirical vectors to represent its nodes and
edges with the same dimension. Specifically, the empirical

vectors are computed by X7°% = ¢(Xp, ) and Xgig ¢ =

o(Xp,, Ap, ) respectively, where ¢ means the concat op-

edge

node — .||z, and T y0)

this way, the graph G'p, can be generalized into empirical
node edge me+n .
vectors X7, = {Xpode, X779} € ROmitne)x2ds
With the proposed generalization, the empirical distribu-
tion (combining both nodes and edges) on a graph from Dy,
can be derived by (Flamary et al. 2016):

1
Zmiexfjk oz = 2),

Comk 4
where ¢ is the delta dirac function (Zhao 2011) and my, ng
are the numbers of the node and edge empirical vectors.

eration, namely x = z,||zy. In

3)

Multi-Domain Graphs Transformation

Since meta learning is generally conducted on tasks from
the same domain and distribution, we need to transform the
learning tasks from multiple graph domains into a common
domain where meta learning can be conducted smoothly.
Based on the introduced empirical graph distribution, we
apply a deep neural network ¢;, on graph node features Xp, .
Thereby the individual graph and its empirical distribution
/fLZ (x) can be transformed into a common domain D.., whose
true distribution is 7. The process can be briefly denoted as:

Oe(XD, ) = {on(Xp2%), dp(Xo%)} € ROm+ne)x2d - (4)

In the common domain, the graph node features are trans-
formed to a unified space of d dimensions and the trans-
formed empirical graph distribution can also be derived by

Eq. (3) as ¢k ().
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Figure 1: The framework of MD-Gram for multi-domain generalized graph meta learning.

The key question here is to find a common domain so
that multiple source distributions can be transformed to it
easily. Intuitively, we can merge all source distributions to
form a common one that has joint distribution and aggre-
gates knowledge from various domains. For this purpose,
we use the Wasserstein barycenter (Agueh and Carlier 2011;
Luise et al. 2019) to merge the discrete graph distributions.

Wasserstein distance is developed from the earth mover’s
distance (EMD) (Rubner et al. 2000) that measuring the
distance between two discrete distributions. It can be inter-
preted as the minimum cost to move one pile of dirt to the
other. Given two distribution measures yt; and y; on the met-
ric space M with finite p-th moment, their Wasserstein dis-
tance can be formulated as (Villani 2009)

Wp(p‘57 Nt) = (infver(us,ut) -/MXM P(I, y)pd’Y(xv y))l/pv (5)
where I is the set of all measures on M x M with marginals
s and ug; p(x,y) is a distance function for two instances
z and y in the set M; and ~(z,y) is a randomized policy
for transporting a unit quantity of material from a random
location « to another location y.

Wasserstein barycenter is the center of a set of probabilis-
tic distributions that minimizes the sum of Wasserstein dis-
tances to the elements in that set. It is an intermediate dis-
tribution not only aggregating the source probability distri-
butions but also having the ability to preserves the modality
of the different datasets, which is ideal to serve as a com-
mon domain. Assume an empirical graph distribution in the
common domain is denoted by i1¢ with its empirical vectors
X3 = {Xpode, XEdge} € R(metne)x2d it can be derived
by ﬁndmg the Wasserstein barycenter of the set of empirical
distributions {¢y,(/17)}5_, from source domains:

fif = arg mlnz W (e (fif), fi2), (6)
al k=1
which can be solved by the WBT algorithm (Montesuma and
Mboula 2021).

After the empirical Wasserstein barycenter /i is obtained,
it can serve as a guide for multi-domain graphs transforma-
tion. However, the above process still encounters two prob-
lems. Firstly, the true distribution ;¢ for the common do-
main is still unknown, therefore Eq. (5) cannot be directly
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applied to transform. Secondly, the search of common do-
main in Eq. (6) relies on ¢, a neural network to transform
the empirical distribution into the common domain, which
needs to be trained jointly for Eq. (6) until convergence.

To solve the first problem, we utilize a neural network
based approximation to calculate the Wasserstein distance.
Owing to Kantorovich-Rubinstein theorem (Rachev et al.
1990), the dual representation of the first Wasserstein dis-
tance can be written as:

Wi(ps, ) = supyz, i1, <1 Bompp, [ (2)] = Banp, [fu(2)], (7)

where || f, ||z <1 is the Lipschitz norm of f,,. The equa-
tion shows that there always exists an optimal 1-Lipschitz
function f,, that separates ps and j;, whose maximum ex-
pectation is the first Wasserstein distance. This enables us to
use a neural network as the Wasserstein discriminator to fit
the function f,. The discriminator takes an empirical vector
as input and output a real number, which can be trained by
maximizing E, . [fuw(2)] — Ezep, [fuw(2)]. In this way, the
Wasserstein distance can be derived with a neural network
parametrized by 6% , which uses X%C and the following loss

to optimize the distance between ¢y, (fi5) and p:

(st(:u’k) :u’ ewaeqﬁk) . .
= e ZEE(bk(X”Ode) fu;( ) T ne ZIEX%‘;de fw(l')

1 1 k
toe Zzetbk(X%d:e) fw( ) T me mGX%ngE fw(lﬂ)

mp
To train the neural network ¢;, parameterized by 6, for
domain transformation, we can first train f* with only 6% to
maximize the supremum, and then minimize £ with 6, by
fixing the parameter 6% , which corresponds to the following
adversarial min-max process:
. 2 - k
minmax Ly, (¢r (), 183 01, 01)-
k w
The above process is optimized alternatively until the neural
networks converge. In this way, multiple source graphs can
be transformed to the common domain gradually.

®)

(©))

Domain-specific GNN Enhancement

With multi-domain graph transformation, graph meta learn-
ing can be conducted in the graphs with unified node fea-
ture space to train a generalized GNN meta model. To apply



the model to the unseen target domain, we need to conduct
domain-specific GNN enhancement to form a customized
GNN model in adaptation to the target graph with diverse
structures. There have been many works on adjusting GNNs
for varying graph structures (Wen, Fang, and Liu 2021; Bose
et al. 2019; Wang et al. 2020a; Perez et al. 2018) and han-
dling distribution shift for single-source graphs (Wu et al.
2022; Yehudai et al. 2021). In this paper, we adopt the GS-
Gating method in (Bose et al. 2019) for domain-specific
GNN enhancement. Specifically, during message passing of
GNN, it uses a GCN with summing pooling operation to
compute a graph signature 1»(G) for a feature-wise linear
modulation, and trains a sigmoid gating term for the GNN
to adaptively learn when to apply the modulation. Therefore
the learning task of GNN is reformulated with an extra pa-
rameter 6

Z=GNN(A, X:0,,0,), L(A, X, Y:6,,0,)=0(f(2),Y). (10)

Graph Meta Learning Process
Meta Training:

We adopt the popular MAML (Finn, Abbeel, and Levine
2017) meta learning framework to train GNNs. Generally,
meta training consists of two procedures: an inner loop that
mimics training individual task with partial labeled data, and
an outer loop that provides task-level update with task query
loss. Thus we design the following training process for meta
learning combined with the adversarial process of Eq. (9).

For the inner loop, with current empirical Wasserstein
barycenter 1Y derived from the transformed distributions
{0k (i) }5_,, we get the Wasserstein distance between each
¢rx(Ai) and p¢ by maximizing a discriminator f with
learning rate «v; for r updates (i.e., the inner max in Eq. (9)):

08 = 0+ o Vs L5 (0u (i) i 05, 00,). (1)
Then, we mimic training on each graph task with ¢ loops:
0)=0y "2V, Li(Ap,, 61(X, ). Yi,' 105 10,.605,).  (12)

where s is the inner learning rate and Ly, is the prediction
loss in the support set. Note that above training is focused on
the GNN model itself, where 0, is the updated parameter.

During the outer loop, we hope to train the GNN meta
model and narrow down the distance between ¢y (fif) and
u? jointly. Therefore, we fix 0% and update 64, only in or-
der to minimize the distance loss £ (¢, (), u2; 0%, 04,)
for the outer min in Eq. (9). And meanwhile, we apply the
inner-updated meta model on a query set to minimize the
prediction loss L, through the second-order gradient, which
serves as task-level update signals. Thus we can utilize the
following weighted loss function for each task:

Ly = Lir(Ap,, or(Xp,), YA, 9,(]") 0y,04,)

D 77g
+ ALY (o (A]), 183 0%, 05,.),

where ) is a hyperparameter to tune the influence of the task
loss and the distance loss. Thereby the total task loss below
can be computed to update the parameters {04, }7_,, 04, 0y:

L= Zzzl Ch.

(13)

(14)
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Algorithm 1: Meta Training for MD-Gram

Input: Multi-domain graphs {Gp=(Vp,, Ap,, XD, ) }7_1;
Unified node feature dimensions d; Iteration numbers ¢, 7;
Learning rates a1, s, avg; The numbers of node and edge
vectors for barycenter n., m.; Loss hyperparameter \
Output: Global parameters for GNN 6, 6,;; The empirical
vectors X7, with /i for the common domain

1: Initialize parameters {6y, }7_,, 0, 6., total loss £ = 0
2: while not converged do
3:  Calculate {¢x (1) };_, via parameters {6y, }7_,

4:  Calculate the empirical barycenter: /i with its X %C
5 for ka in {ka = (VDk7ADk’XDk)}Z:1 do
6: Sample support set Y " and query set YR
7 Initialize 6
8: forl=1---rdo
9: Calculate £* and update 6% by Eq. (11) with a;
10: end for
11:  Initialize 65" = 6,
12: for/=1---tdo
13: Calculate £, and update Hél) by Eq. (12) with s
14: end for _
15: Calculate task loss £ by Eq. (13) regarding A
16: L=L+ Ly
17:  end for
18:  Backpropagate £ with a3 to update {64, }5_1, 84,04

19: end while
20: return 0, 0,; i with its X7,

With the meta training, we gradually update the barycenter
to search for the common domain and train an effective en-
hanced GNN meta model in the common domain. The over-
all process of meta training is shown in Alg. 1.

Meta Testing:

During meta testing, by adopting the adversarial process
of Eq. (9), we can use empirical vectors to transform the
target graph G'p, from the unseen domain to the common
domain as preprocess. Then the well-trained meta model is
applied for GNN initialization. Note that the GNN should be
finetuned jointly with the transformation parameters.

Experiments
Experimental Settings

Dataset. The experiments are based on four real-world net-
works from different graph domains: (1) Product [P] (Hu
et al. 2020): The Ogbn-products from Open Graph Bench-
mark, which is an Amazon product co-purchasing network

Dataset Type #Graphs Avg|N| Avg.|E| Feat
Product  Co-purchasing 5 2000 16,250 100
Yelp Social 5 2000 38,306 300
Reddit Post-to-post 5 2000 21,172 602
Academic Citation 5 2000 6,788 128

Table 1: Datasets statistics.



Methods 10% known edges 20% known edges 30% known edges
; ARY-P ARP-Y APY-R PRY-A | ARY-P ARP-Y APY-R PRY-A | ARY-P ARP-Y APY-R PRY-A
VGAE 66.95 55.48 5172 7231 7247  71.17 60.27  76.00 | 71.83 66.96 59.03  74.40
VGAE-F 65.66  67.38 59.41 6593 | 71.69 7897 64.80  71.66 | 67.67 76.56 6549 6794
MAML 70.62  69.87 6294 7473 | 7493 81.86 69.87 7728 | 7243 79.04 69.78  76.06
Meta-Graph | 63.26  75.86 66.09  63.71 64.28 79.92 69.52  64.17 | 65.27 80.89 72.03 6252
MVG-Meta | 61.68 79.28 5543 5752 | 68.28 82.66 60.61 5477 | 73.01 84.03 6346  56.88
G-META 55.87 71.98 5929  50.78 | 5726  75.21 60.29  49.18 | 57.39 77.57 6142 4949
MI-GNN 60.16  53.92 5513 6512 | 61.99 60.07 59.58  66.10 | 64.88 61.92 6097  66.78
MD-Gram | 76.79  85.30 73.00 80.50 | 79.76  87.17 76.33  81.55 | 83.86  88.33 78.67  82.48

Table 2: The AUC (%) results for 10-epoch updates for different methods with different fractions of known edges.

with product descriptions as features. (2) Yelp [Y] (Zeng
et al. 2019): A social network formed by users and their
friendship of the Yelp website that uses customer review-
ers as node features. (3) Reddit [R] (Hamilton, Ying, and
Leskovec 2017): A graph dataset from the Reddit posts with
50 large communities to build a post-to-post graph. (4) Aca-
demic [A] (Hu et al. 2020): An academic citation network
named ogbn-papers100M from Open Graph Benchmark.

Following the method of (Yao et al. 2020; Wen, Fang, and
Liu 2021), we extract 5 graphs from each domain for exper-
iments. The detailed information are summarized in Table 1.

Default Parameters and Baseline Algorithms. For the
training setting, we follow the leave-one-domain-out proto-
col. Specifically, we choose one domain as the test domain
and use the remaining domains as the source domains; and
the model showing the best performance on all source do-
mains are chosen as the final model. In this way, we have
four different datasets, each has 15 multi-domain graphs for
meta training and the rest 5 domain graphs for meta testing,
e.g., PYR-A denotes PYR for training and A for testing. We
consider the few-shot setting for a link prediction task that at
most 30% edges is known beforehand, fixed 10% for valida-
tion and predict the rest edges following the setting of (Bose
et al. 2019; Huang and Zitnik 2020). The VGAE (Kipf and
Welling 2016) is used as our basic model consisting of a
two-layer GCN as encoder and inner product operation as
decoder. The unified node feature dimension is d = 256;
learning rates are o = 0.001, s = a3 = 0.005; iteration
numbers are » = 20,/ = 10; hyperparameter for weighted
loss is A = 1. The numbers of node/edge empirical vectors
for graphs and barycenter are fixed as 2000/4000 respec-
tively because there is no constraint on them and we only
use partial instances to represent the distributions.

Seven baselines including state-of-the-art methods on
graph meta leaning for link prediction task are used for per-
formance evaluation. (1) VGAE (Kipf and Welling 2016):
it is the original VGAE model trained individually on each
test graph. (2) VGAE-F (Kipf and Welling 2016): it pre-
trains a VGAE on the training graphs and finetunes it on the
test graphs. (3) MAML (Finn, Abbeel, and Levine 2017):
it directly applied the MAML framework for multi-domain
graph meta learning. (4) Meta-Graph (Bose et al. 2019): it
injects graph signature in VGAE to do few-shot multi-graph
link prediction. (5) G-META (Huang and Zitnik 2020): it
leverages subgraph to learn node embedding and further
combines ProtoNet (Snell, Swersky, and Zemel 2017) and
MAML for model optimization. (6) MI-GNN (Wen, Fang,
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and Liu 2021): it employs a dual adaptation mechanism to
train a graph model with both graph-level and task-level
adaptation. (7) MVG-Meta (Hassani 2022): it develops a
multi-view enhanced GIN encoder to learn embedding for
cross-domain datasets. Since the baselines cannot handle
graphs with different feature dimensions, we use the Au-
tocoder (Hinton and Salakhutdinov 2006) to adjust them to
fixed dimensions (i.e., 256) with minimum information loss.
We report the model accuracy as the AUC score. For each
setting, we conduct training for 5 times and take the mean
results. The experiments are implemented with Pytorch in
Python 3.6.8 and conducted on a PC with Intel Xeon ES5-
2620 v2 2.10GHz CPU, GeForce RTX 2070 8G GPU and
64GB memory, running the 64-bit CentOS Linux 7.2.

Numerical Results

Ability of Fast Adaptation. We first compare the fast adap-
tation ability of different algorithms. The adaptation abil-
ity indicates that the model can be adapted quickly with the
pre-trained parameters, and it corresponds to that the ini-
tialized model achieves good performance with fewer train-
ing epochs. Therefore we compare the performance in the
10-th epoch to show the adaptation ability. We display the
AUC results in Table 2 for 10-epoch gradient updates under
10%, 20% and 30% fractions of known edges as training set.
Compared with all baselines, MD-Gram shows the best per-
formance with significant AUC improvements. Compared to
the second best method, MD-Gram has a performance im-
provement of about 6%-10% in ARY-P, 4%-6% in ARP-
Y, 6%-10% in APY-R, and 4%-8% in PRY-A. This shows
the benefits of learning knowledge from multiple source do-
mains, and transferring such prior knowledge to the target
domain really helps to achieve fast adaptation with small
samples and fewer training epochs.

Convergence Analysis. We then analyze the convergence
for different methods under continuous updating epochs in
the setting of 20% known edges, and the results are shown
in Fig. 2. From the figure, it can be seen that at the begin-
ning of gradient descent, nearly all models developed from
MD-Gram have the best AUC results, which means that the
meta-learned GNN can be applied to the target graph to
achieve high accuracy without retraining. With increasing
finetuning epochs, the AUC metrics of MD-Gram rise more
quickly than that of the baselines and steadily reach con-
vergence. Some baselines like VGAE-F, MAML and Meta-
Graph fail to offer a good initialized model so their AUCs
are at a low level at the beginning, which implies that they
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Figure 2: The AUC results of continuous epochs for different methods with 20% known edges.
20% known edges | ARY-P ARP-Y APY-R PRY-A sary to jointly help MD-Gram improve its performances.
VGAE 8523 9026  80.28  89.04 Hyperparameter Analysis. We then analyze the influ-
VGAE-F 85.51 90.39 81.26 84.17 . R
MAML 8659 9042 8194 8858 ences of four hyperparameters in ARY-P: the unified feature
Meta-Graph 8640 9052 8150 87.48 dimensions d, the weight of loss A, the number of empiri-
MVG-Meta 6947  89.29  71.61 5512 cal vectors m,n, and the results are shown in Fig. 3. Fig.
G-META 6223 8260  65.18  50.15 3(a) shows that when d increases from 16 to 128, the perfor-
MI-GNN ggﬁ ggli 3(2)‘2“1‘ 90.80 mance improves due to its representation ability enhanced,
MD-Gram : -7 : 88.19 and its starts to declines when d is more than 256, probably

Table 3: Final AUC (%) of different methods (20% edges).

20% known edges ARY-P ARP-Y APY-R PRY-A
W/O Graph Gene. 64.57 79.70 68.96  65.09
W/O Domain Trans. | 70.59 85.60 72.82  78.70
W/O GNN Enhan. 76.98 88.79 7412 76.09
W/O Edge Vectors 76.41 87.06 7447 75.76
W/O Preprocess 77.78 87.04 74.72 79.19
MD-Gram 79.76 87.17 76.33  81.55

Table 4: The ablation results of 10-epoch AUC (%).

can not exploit the knowledge from different domains ef-
fectively. Some baselines like G-META converge to a low
accuracy level, probably stuck into local optimum.

Final Performance. We further compare the final results
in Table 3 when all models are trained to converge. Due to
page limit, we only show the results with 20% edges known,
and the full results can be found in the Appendix. It is shown
that different methods have significant difference results in
their final accuracy, even they are trained with sufficient
data samples and epochs in the target graph. The proposed
MD-Gram achieves the best final performance except for the
PRY-A dataset setting. It implies that multi-domain general-
ized graph meta learning can not only fast adapt but also im-
prove the final performance of GNNSs in the target domain.

Ablation Study. Here we investigate the effective of each
module. We evaluate the performance of MD-Gram by re-
moving the following component individually: (1) graph
generalization; (2) domain transformation; (3) GNN en-
hancement. (4) edge empirical vectors, and (5) preprocess in
meta testing. We display the 10-epoch results with the set-
ting of 20% known edges in Table 4. It shows that without
these components the performances of MD-Gram are mostly
weakened to some extent except “W/O GNN enhancement”
in ARP-Y. It implies that each of the components is neces-
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due to more parameters making the model hard to train. Fig.
3(b) shows the curves of varying A within [0,4]. It seems that
the final performance is insensitive to A, but the curve for 10-
epoch update performs the best for A within [1, 2.5], which
provides the best trade-off between domain generalization
and local task customization. Fig. 3(c) shows the influence
of the number of empirical vectors used for training. Ba-
sically, the increasing number of empirical vectors can im-
prove model accuracy, but is also increases the training cost.
Therefore a sufficient number of observed instances from the
graph is good enough to represent empirical distributions.
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Figure 3: The curves for parameter analysis in ARY-P.

Conclusion

In this paper, we proposed a novel graph meta learning
method called MD-Gram for training GNNs from multiple
source domains. It formed a unified representation for het-
erogeneous graph data and transformed the multi-domain
GNN learning tasks into a common domain to conduct meta
learning to learn generalized knowledge. It further trained a
customized domain-specific meta GNN model with a few
labeled samples, which achieved generalized knowledge
transfer and fast adaptation for down-stream graph learning
tasks in the unseen target graph. Extensive experiments ver-
ified the efficiency and feasibility of the proposed method.
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