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Abstract

Prompt-based Learning has shown significant success in few-
shot classification. The mainstream approach is to concate-
nate a template for the input text to transform the classifica-
tion task into a cloze-type task where label mapping plays an
important role in finding the ground-truth labels. While cur-
rent label mapping methods only use the contexts in one sin-
gle input, it could be crucial if wrong information is contained
in the text. Specifically, it is proved in recent work that even
the large language models like BERT/RoBERTa make clas-
sification decisions heavily dependent on a specific keyword
regardless of the task or the context. Such a word is referred
to as a lexical cue and if a misleading lexical cue is included
in the instance it will lead the model to make a wrong predic-
tion. We propose a multi-mask prompt-based approach with
Multi-Mask Label Mapping (MMLM) to reduce the impact
of misleading lexical cues by allowing the model to exploit
multiple lexical cues. To satisfy the conditions of few-shot
learning, an instance augmentation approach for the cloze-
type model is proposed and the misleading cues are gradually
excluded through training. We demonstrate the effectiveness
of MMLM by both theoretical analysis and empirical stud-
ies, and show that MMLM outperforms other existing label
mapping approaches.

Introduction
With the popularity of pre-trained language models like
GPT-3 in the NLP domain (Brown et al. 2020), prompt-
based learning has demonstrated its excellent ability to han-
dle numerous few-shot tasks (Liu et al. 2021), such as sen-
timent classification (Gao, Fisch, and Chen 2021), text clas-
sification, and commonsense reasoning (Wei et al. 2022).
Among them, prompt-based learning with Cloze-type Lan-
guage Models (CLMs)1 have shown their excellence on few-
shot classification tasks (Gao, Fisch, and Chen 2021; Hu
et al. 2022). Recent works confirm that prompt-based learn-
ing significantly outperforms the traditional fine-tuning ap-
proaches (Gao, Fisch, and Chen 2021; Hu et al. 2022; Wang,
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1More commonly, they are called Masked Language Models
(MLMs), but here we use the term CLM to distinguish their abbre-
viation from MMLM.

Xu, and McAuley 2022) which adds extra classification net-
works on the top of CLMs. But the randomly initialized pa-
rameters in these classification networks cannot be trained
well due to scarce labeled instances (Brown et al. 2020).

Some previous works have demonstrated that prompt-
based learning can effectively exploit the rich knowledge
in CLM, which is compressed in CLM’s parameters dur-
ing the pre-training process (Trinh and Le 2018; Davison,
Feldman, and Rush 2019; Petroni et al. 2019). The vanilla
prompt-based approach consists of two components, namely
text reformation and label mapping. In the text reformation
process, input texts are wrapped by a pre-defined classifica-
tion template with a {mask} slot. For example, for sentiment
classification, the text ‘Boring starting but overall ok and
worth watching.’, is wrapped into a template ‘{TEXT} It
was {mask}.’2. After being encoded with CLM, the hidden
vector of {mask} is used to calculate the word-occurrence
probability that each word in the vocabulary is filled in the
{mask} slot based on its context.

Bridging the gap between the word-occurrence probabil-
ity with the ground-truth label is significant in the label map-
ping process. To achieve this, verbalizers are proposed in re-
cent work to assign one or multiple representative word(s) to
each label (Gao, Fisch, and Chen 2021; Cui et al. 2022; Hu
et al. 2022). With the help of verbalizers, the label predic-
tion problem is transferred to comparing the averaged word-
occurrence probability of each label at the {mask} slot.

In existing label mapping models, only a single context is
considered for filling each {mask} slot. This could lead to a
wrong prediction if a misleading lexical cue is contained in
the given sentence. In specific, it is studied in recent work
that many large language models like BERT or RoBERTa
are often heavily dependent on specific lexical cues for de-
cision making (Kavumba, Takahashi, and Oda 2022). For
example, in a wrapped sentence ‘Boring starting but overall
ok and worth watching. It was {mask}.’ , the lexical cues are
boring, ok and worth. From the human perspective, we can
easily judge that the sentence should be classified as a pos-
itive label rather than a negative label. However, a language
model may consider boring as the greatest impact on the

2We will omit the {TEXT} symbol in the template for the rest
of this paper for clarity since we only adopt the concatenation op-
eration in wrapping.
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Figure 1: Illustration of 2-way sentiment classification.
Vanilla label mapping with a single mask is easy to make a
wrong prediction due to the misleading lexical cue ‘boring’
in the input sentence. In contrast, MMLM generates and uti-
lizes multiple mask slots to alleviate the issue.

classification as it is more directly and emotionally expres-
sive than the other two. In this case, the misleading lexical
cue boring will lead the model to fill the {mask} slot with a
wrong word, which will map the sentence to a negative label
and further decrease the classification accuracy.

Believing that more correct information can make the im-
pact of wrong information indistinct, we propose a multi-
mask label mapping (MMLM) scheme to enlarge the ef-
fect of correct lexical cues to reduce the effect of the mis-
leading cues. MMLM first uses a prompt-based augmenta-
tion approach to augment each sentence into a set of aug-
mented texts by automatically extracting lexical cues (key-
words) with a stimulation template ‘Keyword: {mask}.’, fill-
ing them in the stimulation template ‘Keyword: {cue}.’ and
concatenating them with the original sentence separately.
Given these augmented instances, it next wraps each of them
with the classification template ‘It was {mask}.’ and feed
them into perturbed CLM to form multiple prompt-based
classifiers. Therefore, each classifier utilizes different con-
texts with various biases of lexical cues to make relatively
independent predictions. Furthermore, the model not only
reduces the impact of misleading cues but also optimizes
the keyword extractor itself to progressively identify more
correct lexical cues during training.

Through experiments, we confirm the effectiveness of
MMLM on AG’s News, IMDB, Amazon, DBPedia, and Ya-
hoo datasets. The experimental results show that MMLM
outperforms existing label mapping methods, some of which
leverage external knowledge bases (KBs) outside the scope
of the model. In summary, the contributions of this paper can
be summarized as follows:
• We propose a multi-mask label mapping method for few-

shot classification problem. Theoretical analysis shows
the effectiveness of our prompt-based augmentation and
multi-mask scheme in the few-shot scenario.

• We demonstrate that the effect of misleading lexical cues
in classification can be reduced if the model is allowed
to learn multiple context information of different lexical

cues with the help of the proposed instance augmentation
approach.

• We show that the proposed label mapping model outper-
forms SOTA by extracting the compressed knowledge in
the pre-trained language without needing to involve ex-
ternal KBs.

Related Works
Existing Label Mappings Mainstream label mapping meth-
ods are divided into four categories. The first is Manual
Label Mapping (Schick and Schütze 2021) which manu-
ally defines one representative word for each class and uses
word-occurrence probability. Search-based Label Mapping
(Gao, Fisch, and Chen 2021) tries to automatically gen-
erate the representative words for each class and also fo-
cuses on the fill-in probability of these words at the single
mask slot in the classification template. Soft Label Map-
ping (Hambardzumyan, Khachatrian, and May 2021), on
the other hand, tries to learn a soft class representative for
each class and calculates the label-prediction probability
by multiplying the word-occurrence probability with each
soft class representative. Finally, External Knowledge La-
bel Mapping (Hu et al. 2022) exploits the external KB to
find multiple words to represent each class label and calcu-
lates the label-prediction probability by averaging the word-
occurrence probability of the representative words of each
class.

Some search-based label mapping methods (Schick,
Schmid, and Schütze 2020; Shin et al. 2020) and exter-
nal knowledge label mapping try to analyse the context
semantics from different aspects by averaging the word-
occurrence probability of multiple words to stand for the
label-prediction probability. However, they only use the hid-
den vector of one mask slot, which contains monotonous
contexts semantics. If the word-occurrence probability at the
mask slot is misled by some ambiguous words, the classifi-
cation results will also go to a wrong direction.
Lexical Cues While there are many factors for a sentiment
classification model to determine a sentence label in label
mapping methods, surprisingly, only a few words in the sen-
tence play a major role in decision making. For example, in a
sentence with positive sentiment ‘The movie is worth watch-
ing.’, the word ‘worth’ is a strong cue for the model to pre-
dict the sentence as label ‘Positive’. In fact, it has been an-
alyzed that even the large language models, such as BERT-
based models rely heavily on exploiting such lexical cues to
determine the semantic label regardless of the task (Niven
and Kao 2019; Kavumba et al. 2019). The features of lexical
cues include lexical overlap heuristic (McCoy, Pavlick, and
Linzen 2019), frequent words based on statistics (Niven and
Kao 2019), or sentence style (Trichelair et al. 2019).

Because the model may make decisions based on the cues
regardless of the context or the task, they are in many stud-
ies referred to as superficial cues (Kavumba, Takahashi, and
Oda 2022). While some are misleading, lexical cues still
guarantee high performance to some extent as proved in re-
cent work. In this paper, rather than trying to exclude the
misleading cues, we extract several lexical cues from the
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given text and exploit them to predict the label.
Generation-Based Augmentation With Prompt Prece-
dent works mainly demonstrate the effectiveness of using
a proper template to stimulate the knowledge in generation-
type pre-trained language models like GPT-3. Typically, an
augmenting text x′ is generated by feeding the prefix x with
a stimulation template t into GPT-3. By processing x⊕t⊕x′,
an enhanced text with additional semantics is formed for the
downstream tasks. This approach has been proved effective
in multiple few-shot tasks (Wei et al. 2022; Wang et al. 2022;
Kojima et al. 2022; Zhou et al. 2022; Li et al. 2022).

It is a parameter-efficient augmentation method as it intro-
duces no extra networks, and only a small amount of new pa-
rameters is required for the stimulation template t. However,
such an augmentation method is not yet generalized to cloze-
type pre-trained language models like BERT and RoBERTa.
There are two main reasons for this. First, generation-based
models generate the text based on their huge amount of pa-
rameters. Some works show that if the amount of parameters
is reduced, the capability of generating the text with correct
semantics is weakened (Wei et al. 2022). Secondly, cloze-
type language models do not have the generation ability like
the generative models. Instead, their capability is only to fill
the blanks in the sentence. Therefore, it is not easy to extend
the augmentation work to cloze-type language models.

Multi-Mask Label Mapping

In this section, we introduce the framework of MMLM. It
consists of two interacting modules, cloze-based augmen-
tation with prompt and multi-mask scheme. We first intro-
duce the preliminary definitions and notations for few-shot
classification in the setting of prompt-based learning. Then,
we describe the probabilistic architecture of MMLM. Fi-
nally, we elaborate on these two modules in more detail and
demonstrate the effectiveness of the proposed multi-mask
model with probabilistic derivation.

Problem Definition

For a N -way K-shot few-shot text classification, the input
text is defined as X which contains N ∗ K elements as it
consists N classes of instances and each class contains K
instances. The corresponding label set is denoted as Y which
also contains N ∗ K elements and the label space is de-
fined as Y . For example, for sentiment classification, there
is Y = {0, 1} where ‘0’ represents ‘negative’ and ‘1’ repre-
sents ‘positive’. The pre-trained cloze-type language model
is defined as Mθ where θ stands for its parameters. The vo-
cabulary is defined as V and the word-occurrence probability
P is defined as a |V|-dimensional vector, where each dimen-
sion corresponds to the occurrence probability of a token in
V , thus

∑
v∈V P[v] = 1.

The predicting target in few-shot classification task with
vanilla prompt-based learning is to maximize

Q(x) =
N∗K∑
i=1

PMθ
(yi|xi)

=
N∗K∑
i=1

PMθ
({mask}T = r(yi)|xi ⊕ T )

(1)

where xi ∈ X and yi ∈ Y . T is a template and r(·) is a
manually designed verbalizer which assigns a representative
word to each label. For instance, in sentiment classification
it assigns the word ‘good’ to the label ‘1’ and the word ‘bad’
to the label ‘0’.

Probabilistic Architecture
Inspired by the previous exploration on generation-based
prompt-based augmentation (Wei et al. 2022; Wang et al.
2022; Kojima et al. 2022; Li et al. 2022), we further attempt
to apply an augmentation method on cloze-type pre-trained
language models. To enlarge the influence of each lexical
cue, we propose a cloze-type prompt-based augmentation
with prompt to highlight the different keywords in the given
input text x. Specifically, the input text x is concatenated
with a stimulation template t :=‘Keyword : {mask}t.’.
Then, the module calculates the word-occurrence probabil-
ity of the word k at {mask}t slot

PMθ
(k|x⊕ t) = PMθ

({mask}t = k|x⊕ t). (2)

The words that are semantically relevant to the context are
likely to be chosen as keywords. MMLM narrows the vo-
cabulary V to Vn

x which contains top-n keywords that have
the highest probabilities for text x as

Vn
x = top-n

k∈x
[PMθ

({mask}t = k|x⊕ t)]

= {k1, . . . , kn}.
(3)

The weight wi of each ki ∈ Vn
x and the set of weights are

defined as

wi =
exp(PMθ

({mask}t = ki|x⊕ t))∑n
j=1 exp(PMθ

({mask}t = kj |x⊕ t))

Wx = {w1, . . . , wn}.
(4)

By replacing {mask}t with each ki ∈ Vn
x and concate-

nating x with t and T , MMLM is able to generate n different
augmented instances. Continually, each augmented instance
embedding and a set of them are defined as

ei =gθ(x⊕ t(ki)⊕ T )

E ={e1, e2, . . . , en},
(5)

where t(ki) is {mask}t being replaced by ki and gθ(·) is the
embedding layer of Mθ. Each individual ei ∈ E is further
perturbed to increase the variability. Then a set of disturbed
embeddings E′ is obtained via

e′i =D(ei)

E′ ={e′1, e′2, . . . , e′n},
(6)

where D(·) is the perturbation function.
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Figure 2: The workflow of Multi-Mask Label Mapping with Cloze-based Augmentation and Multi-Mask Scheme.

To predict yi as the label of the i-th enhanced text, we use
word-occurrence probability of r(yi) at {mask}T which is
calculated by

PMθ
(yi|e′i) = PMθ

({mask}T = r(yi)|e′i). (7)

Finally, the overall multi-mask prediction result is composed
of n sub-predictions with the weighted votes W as

PW
Mθ

(y|x) =
n∑

i=1

wi ∗ PMθ
(y|e′i)

=
n∑

i=1

wi ∗ PMθ
({mask}T = r(y)|e′i),

(8)

or with the plurality votes P as

PP
Mθ

(y|x) = 1

n

n∑
i=1

PMθ
(y|e′i)

=
1

n

n∑
i=1

PMθ
({mask}T = r(y)|e′i).

(9)

The two modules share the same parameter θ, which is up-
dated during the iterations. Therefore, the number of mis-
leading lexical cues will decrease along with the improve-
ment of classification accuracy.

Cloze-Based Augmentation With Prompt
In order to ensure the stimulation capability of t and
meanwhile reduce its influence to {mask}T in T , we set
t =‘Keyword : {mask}t.’ which only consists of four ex-
plicit tokens3, namely ‘Key’, ‘word’, ‘:’ and ‘.’ . We delib-
erately select the tokens that are relatively neutral in classi-
fication but can work as lexical cues for {mask}t.

MMLM concatenates x with t, and the hidden state of
{mask}t in the last layer is obtained by

h{mask}t
= Mθ(x⊕ t). (10)

3In RoBERTa, ‘Keyword’ is split into ‘Key’ and ‘word’.

After mapping h{mask}t
to a |V|-dimensional vector with

pre-trained linear network Lθ, MMLM calculates the word-
occurrence probability P at {mask}t by normalizing the
logits with a softmax function

Pt = softmax(Lθ(h{mask}t
)) (11)

which is used in Equation 3 for extracting top-n keywords.
After separately filling each keyword ki ∈ Vn

x into {mask}t
and combining it with x and the classification template T , a
set of embedding vector in Equation 5 is determined.

Multi-Mask Scheme
E is a set of the embedding vectors of the augmented texts
of x as described in Equation 5. Since ei is derived using T
that already contains a mask slot {mask}T which is used
for prediction in prompt-based learning, ei can be directly
handed over to CLM to make prediction. From another per-
spective, we can treat them as n prompt-based classifiers,
each of which can predict the label of x using

fi(x) = Mθ(ei) = Mθ(x, t, ki, T ), i = 1, . . . , n (12)

In order to maximize the independence between different
prompt-based classifiers, we introduce the following three
methods. First, as Equation 12, each classifier fi(·) con-
tains a unique keyword ki, which works as a different lexical
cue and guides the Mθ to calculate the corresponding word-
occurrence probability as {mask}T . Secondly, we introduce
a perturbation function to disturb the embedding weight of
each Mθ in fi(·) with normally distributed random vari-
ables. For this method, Equation 6 is expanded as

e′i = ei + αri, (13)

where ri ∼ N(0, 1) is a normally distributed random pertur-
bation term with a weight α. Thirdly, we adopt two dropout
layers in Mθ with a dropout probability of 10% to improve
the independence between different prompt-based classi-
fiers. One is for hidden vector in the forward propagation
while the other is for attention weights.
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Next, the last layer’s hidden state of {mask}T is obtained
via

h{mask}T
= Mθ(e

′
i), (14)

and the word-occurrence probability of all tokens in V at
{mask}T is

PT = Lθ(h{mask}T
). (15)

We focus on the words that appeared in the representative
word set R. For prompt-based classifier fi(·), the predicting
probability in Equation 7 can be further written as

PMθ
(yi|e′i) = PMθ

({mask}T = r(yi)|e′i)

=
PT[r(yi)]∑
l∈Y PT[r(l)]

(16)

and the multi-mask prediction of the label y for x can be
calculated as n sub-predictions with the weighted votes as

PW
Mθ

(y|x) =
n∑

i=1

wi ∗ PMθ
({mask}T = r(y)|e′i)

=
n∑

i=1

wi ∗
PT[r(y)]∑
l∈Y PT[r(l)]

(17)

or with the plurality votes as

PP
Mθ

(y|x) = 1

n

n∑
i=1

PMθ
({mask}T = r(y)|e′i)

=
1

n

n∑
i=1

PT[r(y)]∑
l∈Y PT[r(l)]

(18)

which are optimized during fine-tuning.

Theoretical Analysis of MMLM To further prove the ef-
ficiency of the multi-mask scheme, we conduct a theoreti-
cal illustration of MMLM with a 2-way sentiment classifi-
cation using plurality vote as an example. Supposing both
the prompt-based classifier fθ(·) and y are chosen from la-
bel set {0, 1}, the error rate of each prompt-based classifiers
f i
θ(·) can be defined as

p(fi(x) ̸= y) = ϵ. (19)
Three different methods, different keywords, perturbation
function and dropout layers are proposed to maximize the
independence between different prompt-based classifiers in
few-shot scenarios. For plurality vote, the multi-mask pre-
diction of instance x can be expressed as4

F (x) =


1,

n∑
i=1

fi(x) > ⌊n
2
⌋

0,
n∑

i=1

fi(x) ≤ ⌊n
2
⌋.

(20)

Thus, the error rate of multi-mask classification by n
prompt-based classifiers is calculated as

P (F (x) ̸= y) =

⌊n/2⌋∑
q=0

Cq
n(1− ϵ)qϵn−q. (21)

4Consistent with the previous sections, n is the number of
prompt-based classifiers.

Let Z be the number of correct prediction made by the
classifiers, the error probability of the multi-mask scheme is
calculated as

P (F (x) ̸= y) = P (Z ≤ ⌊n
2
⌋)

≤ P (Z − E(Z) ≤ −n
(1− 2ϵ)

2
).

(22)

Further with Hoeffding’s inequality (Hoeffding 1994), there
is

P (Z − E(Z) ≤ −n
(1− 2ϵ)

2
) ≤ exp(−1

2
n(1− 2ϵ)2),

(23)
thus the upper bound of the error probability is

P (F (x) ̸= y) ≤ exp(−1

2
n(1− 2ϵ)2). (24)

Therefore, ideally the error rate of the prompt-based multi-
mask model decreases with the raising of n, the number of
classifiers. When n → +∞ the error probability converges
to 0. This result implies that exploiting multiple lexical cues
is better than one single contextual semantic under the set-
ting of prompt-based learning.

Experiments
Datasets and Implementation Details
We conduct experiments on K=1/5/10/20 in K-shot scenar-
ios on five datasets and average the accuracy over five ran-
dom seeds for the evaluation. In order to eliminate the per-
formance fluctuation caused by different templates T (Gao,
Fisch, and Chen 2021), we use a fixed template provided
by OpenPrompt (Ding et al. 2022) to accurately observe the
performance of different label mapping methods. For the
same reason, we uniformly use RoBERTa-large (Liu et al.
2019) as a pre-training model with a batch size of 2 and 10
fine-tuning epochs.

Considering memory and text-length restrictions, we use
n = 15 of extracted keywords for AG’s News and n = 5
for the rest datasets. The memory usage is controlled within
32 GB. The maximum length for truncating each input is
512 for IMDB/Yahoo/Amazon and 128 for DBPedia/AG’s
News.

Baselines
As mentioned earlier, we mainly compare MMLM with the
traditional [CLS] fine-tuning by inputting the hidden vector
of [CLS] into a classification layer, as well as the four main-
stream label mapping methods. Among them, KPT engages
external knowledge bases which we use italics to high-
light. For more convincing results, we employ Manual Label
Mapping (vanilla), Search-based Label Mapping, Soft Label
Mapping, and External Knowledge Label Mapping (KPT)
(Hu et al. 2022) with OpenPrompt (Ding et al. 2022) us-
ing PyTorch framework (Paszke et al. 2019). For pre-trained
cloze-type language model implementation, we use the in-
terfaces provided by HuggingFace (Wolf et al. 2020) and
AdamW optimizer (Kingma and Ba 2015).
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Method AG’s News (4-way) IMDB (2-way) Amazon (2-way) DBPedia (14-way) Yahoo (10-way)
K=1 K=5 K=10 K=20 K=1 K=5 K=10 K=20 K=1 K=5 K=10 K=20 K=1 K=5 K=10 K=20 K=1 K=5 K=10 K=20

CLS FT 22.3 39.2 78.4 84.9 50.8 52.4 79.8 80.3 51.2 53.3 81.7 84.6 10.3 89.0 95.8 96.3 10.8 23.2 46.1 53.7

Manual 78.4 83.1 85.1 86.4 91.5 92.0 92.0 93.6 90.6 93.7 94.0 94.3 93.0 95.2 95.8 96.2 48.2 54.6 57.7 59.6
Search 48.3 74.6 84.1 86.1 67.5 88.3 92.6 92.6 63.1 87.3 93.8 94.3 71.5 93.7 95.7 96.0 21.6 43.0 51.2 57.0
Soft 78.6 83.5 85.4 86.6 90.7 89.6 92.9 93.5 89.1 93.6 93.9 94.1 93.9 95.2 96.2 96.3 48.8 55.3 58.8 60.6
KPT(SOTA) 82.8 85.0 86.3 87.5 92.0 92.6 93.8 94.1 92.1 93.8 94.1 94.4 94.9 95.4 96.3 96.9 53.9 57.4 59.5 60.7

MMLM(W) 83.0 85.6 87.1 88.6 92.6 93.6 93.9 94.5 92.4 94.5 95.2 95.4 95.1 95.8 96.4 97.1 54.7 58.4 59.8 61.3
MMLM(P) 82.9 85.5 86.9 88.6 92.5 93.5 93.9 94.3 92.3 94.5 95.1 95.4 94.9 95.4 96.4 96.6 54.5 58.4 59.7 61.3

Table 1: The overall classification performance on DBPedia/Yahoo/AG’s News (topic) and IMDB/Amazon (sentiment).

Method K=1 K=5 K=10 K=20
MMLM(W) 83.0 85.6 87.1 88.6
(-dropout) 82.8 85.4 87.0 88.2
(-dropout-disturb) 82.7 85.3 86.9 88.0

-Mul 82.4 84.9 86.4 87.2
-Mul-Aug 78.4 83.1 85.1 86.4

Table 2: MMLM ablation studies. -Mul and -Aug represent
removing multiple classifiers and augmentation respectively.

Overall Performance
As shown in Table 1, traditional CLS fine-tuning works
poorly in few-shot scenarios since the number of labeled in-
stances is extremely limited. Especially in the case of K=1,
where only 2 instances for IMDB and Amazon, and 4 in-
stances for AG’s News are available, CLS fine-tuning al-
most performs like a random classification. Though, KPT
performs better than the other methods because it exploits
external knowledge (Hu et al. 2022).

In contrast, MMLM stimulates the compressed knowl-
edge in the pre-trained model only by augmentation and
multi-mask scheme. The results demonstrate that MMLM
outperforms all other existing label mapping methods on
all three sentiment classification datasets. Though KPT can
greatly improve on the relatively difficult 4-way classifica-
tion dataset AG’s News, our proposed MMLM still achieves
comparable performance when K≥1.

Furthermore, both two voting methods are also shown
to be effective while MMLM with weighted vote acquires
slightly higher accuracy than plurality vote.

Ablation Study
To separately observe the impact of the prompt-based aug-
mentation and the multi-mask scheme individually, we con-
duct ablation studies in this section. We compare three main
settings of MMLM models, original MMLM, MMLM with-
out multi-mask scheme, and MMLM without multi-mask
scheme and augmentation respectively.

For MMLM−Mul, we only use one classifier by only us-
ing one lexical cue. For MMLM−Mul−Aug, it becomes
equivalent to vanilla label mapping after the two modules

Figure 3: Comparison between different n values on AG’s
News for K=5, K=10, and K=20.

are removed.
As shown in Table 2, when K is relevantly small, the

prompt-based augmentation can greatly improve the model
performance. When K is larger (e.g., K=20), the multi-mask
scheme is of more help for performance improvement as it
integrates information of multiple instances.

Besides, we also illustrate the effectiveness of disturbed
embeddings and dropout layers in the multi-mask scheme.
For MMLM−dropout, we set the dropout rates for attention
and forward layers to 0. For MMLM−dropout− disturb,
we further remove the perturbation term.

The results demonstrate that dropout layers and disturbed
embeddings are both effective for performance improve-
ment, on which the former has a slightly higher impact.

Impact of Number of Classifiers
As proved in the earlier section, the misleading lexical cue
has less impact when increasing the number of prompt-
based classifiers. In other words, ideally, the prediction accu-
racy will improve if more classifiers are used. Although we
propose three methods to enlarge the independence between
different prompt-based classifiers, they are still not fully in-
dependent since they share the same cloze-type pre-trained
language model. Therefore, we further conduct a series of
experiments to verify the efficiency of our proof.

Figure 3 illustrates the few-shot classification accuracy
raises with the increasing n. This shows MMLM can be ex-
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Method K=1 K=5 K=10 K=20
NO AUG 78.4 83.1 85.1 86.4

SINGLE 81.3 84.9 86.7 87.9
MMLM(W) 83.0 85.6 87.1 88.6
MMLM(P) 82.9 85.5 86.9 88.6

Table 3: Comparison between vanilla model (NO AUG) and
the model with all keywords being stuffed into one classifier
(SINGLE) where the number of keywords is 15.

Method AG’s News (NullPrompt)
K=1 K=5 K=10 K=20

Manual 65.0 76.5 79.7 85.5
Search 37.1 63.5 77.6 85.6
Soft 66.6 74.9 81.3 85.4
KPT (SOTA) 76.4 82.6 85.6 86.7

MMLM (W) 77.5 83.2 86.2 87.6
MMLM (P) 77.0 83.2 85.8 87.2

Table 4: Comparison with Null Prompt.

pected for more performance improvement if n can be in-
creased with more GPU resources or longer sentence length.

Comparison With Multi-Keywords in One
Sentence
To compare with a different form of cloze-based augmen-
tation with prompt, instead of generating n prompt-based
classifiers, we stuff all extracted lexical cues into one sen-
tence to form a single prompt-based classifier. For example,
an augmented instance can be constructed as ”Boring start-
ing but overall ok and worth watching. Keyword: Boring,
ok, worth. It was {mask}T .”.

As shown in Table 3, it achieves lower performance than
MMLM on AG’s News, which indicates the effectiveness of
the multi-mask scheme. But this single-sentence augmenta-
tion model still outperforms the vanilla model, further show-
ing the reasonability of our proposed augmentation method.

Alleviating Effect of Templates
To alleviate this concern that templates may bring fluctua-
tion to the classification performance (Gao, Fisch, and Chen
2021; Liu et al. 2021), we follow the idea of NullPrompt
(Logan IV et al. 2022) and use ‘{TEXT} {mask}T ’ to com-
pare all label mappings. As Table 4 shows, MMLM still
outperforms all baselines on AG’s News under this fair com-
parison setting, further demonstrating its effectiveness.

Case Study of Lexical Cue Extracting
We previously demonstrated that employing the proposed
multi-mask scheme can reduce the misclassification rate
within one iteration. Taking a step further, we expect to re-
duce the number of extracted misleading lexical cues. As
in Figure 4, the top-3 influential cues begin with containing
two misleading keywords ‘first’ and ‘Russian’. The model is

Figure 4: Improvement of the extracted keywords and the
prediction result.

Epoch Class Word with Probability (%)

Ep 0
Acc
0.86

W nuclear (5.8) tsunami (4.9) dealt (4.8)
S brawl (4.9) hamstring (4.7) Texas (4.5)
B Oil (8.9) GDP (5.0) Lisbon (4.9)
T Google (5.0) hacking (4.9) Mac (4.8)

Ep 9
Acc
0.90

W Haiti (5.0) dealt (4.9) IRA (4.9)
S Olympic (9.9) Ravens (7.9) trade (5.0)
B inflation (9.4) Marsh (5.0) Lisbon (4.9)
T IBM (5.0) Technology (5.0) hacking (4.9)

Table 5: Performance improvement with the change of
word-occurrence probability at {mask}t in the keyword ex-
tractor. (W: World; S: Sports; B: Business; T: Technology.)

more likely to make a wrong prediction even if the informa-
tion of misleading lexical cues becomes dim by the multi-
mask scheme. This problem can be minimized by iterating
the optimizations. For instance, after 9 iterations, the top-5
keywords are partly replaced. This is because the parameters
in the keyword extractor are updated with the parameters in
the classifier since they share the same parameter. The word-
occurrence probability at {mask}t also changes towards a
class-related bias as shown in Tabel 5.

Conclusion
In this paper, we demonstrate how multi-mask approach
improves label mapping performance in the prompt-based
setting. While existing works focus on data augmentation
for generation-type language models, we propose an aug-
mentation method for cloze-type language models to satisfy
the conditions of few-shot learning. Further, because lexical
cues are proven to play a significant role in large language
models like BERT/RoBERTa for classification, containing
misleading lexical cues in input text easily leads to wrong
predictions. By exploiting multiple instances with multiple
classifiers, MMLM is able to reduce the impact of mislead-
ing lexical cues. Theoretical analysis shows that exploiting
multiple lexical cues is better than one and empirical studies
confirm that our proposed model achieves SOTA results in
different experimental settings.
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