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Abstract

Topic models and all their variants analyse text by learning
meaningful representations through word co-occurrences. As
pointed out by previous work, such models implicitly assume
that the probability of a topic to be active and its proportion
within each document are positively correlated. This correla-
tion can be strongly detrimental in the case of documents cre-
ated over time, simply because recent documents are likely
better described by new and hence rare topics. In this work
we leverage recent advances in neural variational inference
and present an alternative neural approach to the dynamic Fo-
cused Topic Model. Indeed, we develop a neural model for
topic evolution which exploits sequences of Bernoulli ran-
dom variables in order to track the appearances of topics,
thereby decoupling their activities from their proportions. We
evaluate our model on three different datasets (the UN gen-
eral debates, the collection of NEURIPS papers, and the ACL
Anthology dataset) and show that it (i) outperforms state-
of-the-art topic models in generalization tasks and (ii) per-
forms comparably to them on prediction tasks, while employ-
ing roughly the same number of parameters, and converging
about two times faster.

Introduction
Probabilistic topic models, the likes of Latent Dirichlet Al-
location (LDA) (Blei, Ng, and Jordan 2003), are generative
models of word co-occurrence that analyse large document
collections by learning latent representations (topics) encod-
ing their themes. These models represent the documents of
the collection as mixtures of latent topics, and group seman-
tically related words into single topics by means of word-
pair frequency information within the collection. Such a
generic generative structure has been successfully applied
to problems ranging from information retrieval, visualiza-
tion and multilingual modelling to linguistic understanding
in fiction and non-fiction, scientific publications and politi-
cal texts (see e.g. Boyd-Graber et al. (2017) for a review),
and keeps being extended to new domains (Rezaee and Fer-
raro 2020; Zhao et al. 2021).

Topic models implicitly assume that the documents within
a given collection are exchangeable. Yet document collec-
tions such as magazines, academic journals, news articles
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and social media content not only feature trends and themes
that change with time, but also employ their language differ-
ently as time evolves (Danescu-Niculescu-Mizil et al. 2013).
The exchangeability assumption along the time component
is hence inappropriate in these cases and topic models have
been extended to account for changes in both topic (Blei and
Lafferty 2006; Wang, Blei, and Heckerman 2012; Jähnichen
et al. 2018) and word (Bamler and Mandt 2017; Rudolph and
Blei 2018; Dieng, Ruiz, and Blei 2019) distributions, among
documents collected over long periods of time.

It is easy to imagine, however, that if one analyses the col-
lection’s content as one moves forward in time, one would
find that (some of) the topics describing those documents
appear, disappear or reappear with time. This simple intu-
ition entails that one should not only model the time- and
document-dependent topic proportions, but also the proba-
bilities for the topics to be active, and how such probabili-
ties change with time. Previous work has already pointed out
that existing topic models implicitly assume that the proba-
bility of a topic being active and its proportion within each
document are positively correlated (Williamson et al. 2010;
Perrone et al. 2017). This assumption is generally unwanted,
simply because rare topics may account for a large part of
the words in the few documents in which they are active.
It is particularly detrimental (for both modelling and pre-
diction) in a dynamic setting, because recent documents are
likely better described by new and hence rare topics.

Indeed, whenever the topic distribution over documents is
strongly skewed, topic models tend to learn the more gen-
eral topics held by the big majority of documents in the col-
lection, rather than the rare topics contained only by fewer
documents (Jagarlamudi, Daumé III, and Udupa 2012; Tang
et al. 2014; Zuo, Zhao, and Xu 2014). Document collections
that reflect evolving content typically feature skew topic dis-
tribution over its documents, with the newly added docu-
ments being well described by new, rare topics. Dynamic
topic models that feature the topic proportion-activity cou-
pling are then expected to perform badly, simply because
these will not be able to infer the new topics characteristic
of recent documents. To properly model such recent docu-
ments one should therefore allow rarely seen topics to be
active with high proportion and frequently seem topics to be
active with low proportion.

In this work we seek to decouple the probability for a
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topic to be active from its proportion with the introduction
of sequences of Bernoulli random variables, which select
the active topics for a given document at a particular instant
of time. Earlier models attained such a decoupling via non-
parametric priors, such as the Indian Buffet Process prior
over infinite binary matrices, in both static (Williamson et al.
2010) and dynamic (Perrone et al. 2017) settings. Our con-
struction roughly follows a similar logic, but leverages the
reparametrization trick to perform neural variational infer-
ence (Kingma and Welling 2013). The result is a scalable
model that allows the instantaneous number of active topics
per document to fluctuate, and explicitly decouples the topic
proportion from its activity, thereby offering some novel lay-
ers of interpretability and transparency into the evolution of
topics over time.

We introduce the Neural Dynamic Focused Topic Model
(NDF-TM) which builds on top of Neural Variational Topic
models (Miao, Yu, and Blunsom 2016) and uses Deep
Kalman Filters (Krishnan, Shalit, and Sontag 2015) to model
the independent dynamics of both topic proportion and topic
activities. We train and test our model on three datasets,
namely the UN general debates, the collection of NEURIPS
papers and the ACL Anthology dataset. Our results show via
different metrics that NDF-TM outperforms state-of-the-art
topic models in generalization tasks, and performs compara-
bly to them on prediction tasks. Very importantly, NDF-TM
does this while employing roughly the same number of pa-
rameters and converging two times faster than the strongest
baseline.

Related Work
The NDF-TM model merges concepts from dynamic topic
models, dynamic embeddings and neural topic models.

Dynamic topic models. The seminal work of Blei
and Lafferty (2006) introduced the Dynamic Topic Model
(DTM), which uses a state space model on the natural pa-
rameters of the distribution representing the topics, thus al-
lowing the latter to change with time. The DTM methodol-
ogy was first extended by Caron, Davy, and Doucet (2007) to
a nonparametric setting, via the correlation of Dirichlet pro-
cess mixture models in time. Later Wang, Blei, and Hecker-
man (2012) replaced the discrete state space model of DTM
with a Diffusion process, thereby extending the approach to
a continuous time setting. Jähnichen et al. (2018) further ex-
tended DTM by introducing Gaussian process priors that al-
lowed for a non-Markovian representation of the dynamics.
Other recent work on dynamic topic models is that of Hida
et al. (2018)

Dynamic embeddings. Rather than modelling the con-
tent evolution of document collections like DTM, other
works focus on modelling how word semantics change with
time (Bamler and Mandt 2017; Rudolph and Blei 2018).
These works use continuous representation of words captur-
ing their semantics (as e.g. those of Pennington, Socher, and
Manning (2014)) and evolve such representation via diffu-
sion processes. More recently, Dieng, Ruiz, and Blei (2019)
represent topics as dynamic embeddings, and model words
via categorical distributions whose parameters are given by
the inner product between the static word embeddings and

Figure 1: Graphical model representation of NDF-TM.

the dynamic topic embeddings. As such, this model corre-
sponds to the dynamic extension of Dieng, Ruiz, and Blei
(2020).

Neural topic models. Another line of research leverages
neural networks to improve the performance of topic mod-
els, the so-called neural topic models (Miao, Yu, and Blun-
som 2016; Srivastava and Sutton 2017; Zhang et al. 2018;
Dieng, Ruiz, and Blei 2020, 2019) which deploy neural vari-
ational inference (Kingma and Welling 2013) for training.

Decoupling topic activity from its proportion.
Williamson et al. (2010) noted the implicit and undesirable
correlation between topic activity and proportion assumed
by standard topic models and introduced the Focused Topic
Model (FTM). FTM uses the Indian Buffet Process (IBP) to
decouple across-data prevalence and within-data proportion
in mixed membership models. Later Perrone et al. (2017)
extended FTM to a dynamic setting by using the Poisson
Random Fields model from population genetics to generate
dependent IBPs, which allow them to model temporal
correlations in data. Both of these models are trained using
complex sampling schemes, which can make the fast and
accurate inference of their model parameters difficult (Miao,
Grefenstette, and Blunsom 2017).

In what follows we propose an alternative neural ap-
proach to the dynamic Focused Topic model of Perrone et al.
(2017), trainable via backpropagation, which learns to de-
couple the dynamic topic activity from its dynamic topic
proportion.

Neural Dynamic Focused Topic Model
Suppose we are given an ordered collection of corpora D =
{D1, D2, . . . , DT }, so that the tth corpus Dt is composed
of Nt documents, all received within the tth time window.
Let Wt denote the Bag-of-word (BoW) representation for
the whole document set within Dt and let wt,d denote the
BoW representation of the d-th document in Dt.

Let us now suppose that the corpora collection is de-
scribed by a set of K unknown topics. We then assume
there are two sequences of continuous hidden variables
η1, . . . ,ηT ∈ Rdim(η) and ξ1, . . . , ξT ∈ Rdim(ξ) which en-
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code, respectively, how the topic proportions and the topic
activities change among corpora as time evolves (i.e. as one
moves from Dt to Dt+1). That is, ηt and ξt encode the
global dynamics of semantic content. We also assume there
are two local hidden variables, conditioned on the global
ones, namely a continuous variable ζt,d ∈ RK which en-
codes the content of the dth document in Dt, in terms of the
available topics, and a binary variable bt,d ∈ {0, 1}K which
encodes which topics are active in the document in question.
We combine these local variables to compute the topic pro-
portions θt,d ∈ [0, 1]K from which the dth document in Dt

is generated.

Generation
Let us denote with ψ the set of parameters of our genera-
tive model. We are first of all interested in modelling the
topic activity per document at each time step, directly from
the data. One could, for example, use aK-dimensional mask
(i.e. aK-dimensional vector, whose kth entry is either 1 or 0
depending on whether the kth topic is active or inactive) for
each document d, at each time step t. To account for the vari-
ability of the data, one could also make this mask stochas-
tic. We thus introduce K time- and document-dependent
Bernoulli variables bt,d ∈ {0, 1}K whose generation pro-
cess is given by

ξt ∼ N
(
µξψ(ξt−1), δ I

)
, (1)

πt = α0 Sigmoid (Wξ ξt + cξ) , (2)
bt,d ∼ Bernoulli(πt), (3)

where α0 is a hyperparameter controlling the percentage of
active topics, and Wξ ∈ RK× dim(ξ), cξ ∈ RK ⊂ ψ are
trainable parameters. Also note that, just as in Deep Kalman
Filters (Krishnan, Shalit, and Sontag 2015), ξt is Markovian
and evolves under a Gaussian noise with mean µξψ , defined
via a neural network with parameters in ψ, and variance δ.
The latter being a hyperparameter of the model. Finally, we
choose ξ1 ∼ N (0, 1).

Analogously, we generate the topic proportions θt,d as

ηt ∼ N
(
µηψ(ηt−1), δ I

)
, (4)

ζt,d ∼ N (Wζ ηt + cζ , 1) , (5)

θt,d =
bt,d ⊙ exp

(
ζt,d

)
∑K
k b

k
t,d ⊙ exp

(
ζkt,d

) , (6)

where bt,d is defined in (3) and ⊙ labels element-wise prod-
uct, Wζ ∈ RK× dim(η), cζ ∈ RK ⊂ ψ are trainable, and
µηψ is modelled via a neural network. Here ηt is also Marko-
vian and we set η1 ∼ N (0, 1). Note that the topic propor-
tion thus defined can be sparse vectors. That is, the model
has the flexibility to completely mask some of the topics out
of a given document, at a given time.

Once we have θt,d we generate the corpora sequence by
sampling

zt,d,n ∼ Categorical(θt,d), (7)
wt,d,n ∼ Categorical(βzt,d,n), (8)

where zt,d,n is the time-dependent topic assignment for
wt,d,n, which labels the nth word in document d ∈ Dt, and
β ∈ RK×V is a learnable topic distribution over words. We
define the latter as

β = softmax(α⊗ ρ), (9)
with α ∈ RK×E ,ρ ∈ RV×E learnable topic and word em-
beddings, respectively, for some embedding dimension E,
and ⊗ denoting tensor product.
NDF-TM is summarized in Figure 1.

Inference
The generative model above involves two independent
global hidden variables ξt,ηt, and two local hidden vari-
ables ζt,d and bt,d. Our task is to infer the posterior distri-
butions of all these variables.1 Denoting with Γt,d the set
{ξt,ηt, ζt,d,bt,d}, we approximate the true posterior distri-
bution of the model with a variational (and structured) pos-
terior of the form

qφ(Γt,d|wt,d,W1:T ) =

T∏
t

qφ(ηt|η1:t−1,W1:T ) qφ(ξt|ξ1:t−1,W1:T )

×
Nt∏
d

qφ(ζt,d|wt,d,ηt) qφ(bt,d|wt,d, ξt), (10)

where W1:T = (W1, . . . ,WT ) is the ordered sequence of
BoW representations for the corpus collection and φ labels
the variational parameters.

Local variables. The posterior distribution over the local
variables ζt,d,bt,d are chosen as Gaussian and Bernoulli,
respectively, each parametrized by neural networks taking
as input their conditional variables.

Global variables. The posterior distribution over the dy-
namic global variables ξt,ηt are also Gaussian, but now de-
pend not only on the latent variables at time t − 1, but also
on the entire sequence of BoW representations W1:T . This
follows directly from the graphical model in Figure 1, as
noted by e.g. Krishnan, Shalit, and Sontag (2015). We shall
use LSTM networks (Hochreiter and Schmidhuber 1997) to
model these dependencies. Specifically let

qφ(ξt|ξt−1,W1:T ) = N (µξφ,σ
ξ
φ), (11)

where µξφ, σξφ are neural networks which take as input the
pair (ξt−1, h

ξ
t ), with hξt a hidden representation encoding

the sequence W1:T . Similarly
qφ(ηt|ηt−1,W1:T ) = N (µηφ,σ

η
φ), (12)

where µηφ,σ
η
φ, again neural networks, take as input the pair

(ηt−1,h
η
t ), with hηt a second hidden representation also en-

coding W1:T . These hidden representations hit, with i =
{ξ, η}, correspond to the hidden states of LSTM networks
whose update equation read

hit = f iφ(Wt,h
i
t−1). (13)

1Note in passing that we do not need to perform inference of
the latent topics zt,d,n, simply because these can be integrated out
(aka marginalized).
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UN NEURIPS ACL
Models PPL-DC ↓ P-NLL ↓ PPL-DC ↓ P-NLL ↓ PPL-DC ↓ P-NLL ↓
DTM* 2393.5 - - - - -
DTM-REP 3 012 ± 14 8.331 ± 0.003 8 107±907 9.5 ± 0.4 8 503 ± 875 9.7 ± 0.5
D-ETM 1 748 ± 13 7.615 ± 0.005 7 746±699 8.983 ± 0.003 7 805±182 8.84 ± 0.02
NDF-LT-TM 1 578 ± 29 7.682± 0.080 6 549±21 8.923 ± 0.002 7 877±213 8.91 ± 0.03
NDF-TM 1 527 ± 36 7.640± 0.004 6 529±26 8.901 ± 0.001 7 690±215 8.88 ± 0.03

Table 1: Perplexity on document completion (PPL-DC) and predictive negative log likelihood (P-NLL). PPL-DC is calculated
by conditioning the model on the first half of the document and evaluating the perplexity on the second half of the document.
P-NLL is estimated using equation 16. The DTM* results are taken from (Dieng, Ruiz, and Blei 2019). All other results are
obtained by training the models on 5 different random splits of the datasets.

Training Objective

To optimize the model parameters {ψ,φ} we minimize
the variational lower bound on the logarithm of the
marginal likelihood pψ(wt,d,n|β). Following standard meth-
ods (Bishop 2006), the latter can readily be shown to be

L[β, ψ, φ] =
T∑
t=1

Nt∑
d=1

Nd∑
n=1

EΓ

{
log pψ(wt,d,n|β,Γ)

}
− KL [qφ(η1|W1:T ); p(η1)]− KL [qφ(ξ1|W1:T ); p(ξ1)]

−
T∑
t=2

KL
[
qφ(ηt|η1:t−1,W1:T ); pψ(ηt|ηt−1)

]
−

T∑
t=2

KL
[
qφ(ξt|ξ1:t−1,W1:T ); pψ(ξt|ξt−1)

]
−

T∑
t=1

Nt∑
d=1

(
Eηt

{
KL
[
qφ(ζt,d|wt,d,ηt); pψ(ζt,d|ηt)

] }
+ Eξt

{
KL [qφ(bt,d|wt,d, ξt); pψ(bt,d|ξt)]

})
, (14)

where KL labels the Kullback-Leibler divergence and β is
defined in Eq. 9.

Experiments
In this section we introduce our datasets and define our base-
lines. Details about pre-processing and experimental setup
can be found in the supplementary material, provided within
the repository of our code. Nevertheless, let us mention here
that two important hyperparameters of the model are the
maximum topic number K and the percentage of active
topics α0. Both these hyperpameters are chosen via cross-
validation, with K = 50 and α0 = 0.5 given the best re-
sults2. Source code to reproduce our experiments is available
online.2

2Specifically, K was chosen from the set 50, 100 and 200. We
found 50 to be the best value for all models, i.e. including the base-
lines. Similarly α0 was chosen from the set 0.1, 0.5, 1.0

2Source code: https://github.com/cvejoski/Neural-Dynamic-
Focused-Topic-Model

Datasets
We evaluate our model on three datasets, namely the collec-
tion of UN speeches, NEURIPS papers and the ACL An-
thology. The UN dataset3 (Baturo, Dasandi, and Mikhaylov
2017) contains the transcription of the speeches given at the
UN General Assembly during the period between the years
1970 and 2016. It consists of about 230950 documents. The
NEURIPS dataset4 contains the collection of papers pub-
lished in between the years 1987 and 2016. It consists of
about 6562 documents. Finally, the ACL Anthology (Bird
et al. 2008) contains a collection of computational linguistic
and natural language processing papers published between
1973 and 2006. It consists of about 10514 documents.

Baselines
Our main aim is to study the effect of the topic proportion-
activity coupling in the performance of dynamic topic mod-
els5 on data collections displaying evolving content. To do
so we compare against three models:

(1) DTM-REP — the neural extension of DTM, fit-
ted using neural variational inference (Dieng, Ruiz, and
Blei 2019). This model uses a logistic-normal distribution,
parametrized with feedforward neural networks, as poste-
rior for the topic proportion distribution; as in Miao, Grefen-
stette, and Blunsom (2017). It also uses Kalman Filters to
model the topic dynamics, but parametrizes the posterior
distribution over the dynamic latent variables with LSTM
networks, just as in Deep Kalman Filters (Krishnan, Shalit,
and Sontag 2015) (and just as NDF-TM too, see e.g. Eq. 13).
As such, DTM-REP works as the dynamic extension of
Miao, Grefenstette, and Blunsom (2017)’s model. It follows
that the DTM-REP model thus defined only differs from
NDF-TM in the way we model the topic proportions. Com-
paring our model against DTM-REP should therefore explic-
itly show the effect of lifting the topic proportion-activity
coupling in dynamic neural topic models.

(2) D-ETM — the Dynamic Embedded Topic Model (Di-
eng, Ruiz, and Blei 2019), which captures the evolution of
topics in such a way that both the content of topics and their
proportions evolve over time. This model adds complexity

3https://www.kaggle.com/unitednations/un-general-debates
4https://www.kaggle.com/benhamner/nips-papers
5This means we do not consider static topic models
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UN NEURIPS ACL
Models TC ↑ TD ↑ TC ↑ TD ↑ TC ↑ TD ↑
DTM* 0.1317 0.0799 - - - -
DTM-REP 0.11 ± 0.30 0.59 ± 0.10 -0.62±0.07 0.15±0.01 -0.82 ± 0.08 0.55 ± 0.02
D-ETM 0.43 ± 0.20 0.61 ±0.01 -0.54±0.09 0.82 ±0.01 -0.71±0.16 0.63±0.05
NDF-LT-TM 0.43 ± 0.18 0.56 ± 0.03 -0.53±0.02 0.90±0.01 -0.74±0.11 0.73±0.01
NDF-TM 0.46 ± 0.20 0.63 ± 0.01 -0.50±0.04 0.85±0.02 -0.64±0.12 0.74±0.01

Table 2: Topic coherence (TC) and Topic diversity (TD) for all models. TC is calculated by taking the average pointwise mutual
information between two words drawn randomly from the same topic. TD is the percentage of unique words in the top 25
words of all topics. The DTM* results are taken from (Dieng, Ruiz, and Blei 2019). All other results are obtained by training the
models on 5 different random splits of the datasets.

to DTM-REP by modelling words via categorical distribu-
tions whose parameters are given by the inner product be-
tween the static word embeddings and the dynamic topic
embeddings. In this way, D-ETM does not (necessarily) suf-
fers from the topic proportion-activity coupling, for it can
implicitly model their decoupling via its additional degrees
of freedom.

(3) NDF-LT-TM — the Neural Dynamic Focused topic
model with linear transition. We introduce this last baseline
for the sake of ablation, viz. to investigate the effect of the
neural networks µξψ,µ

η
ψ in Eqs. 1 and 4. NDF-LT-TM is

defined by replacing these neural networks with the identity
function.

Results
In order to quantify the performance of our models, we first
focus on two aspects, namely its prediction capabilities and
its ability to generalize to unseen data. Later we also (qual-
itatively) discuss how the model actually performs the de-
coupling between topic activities and proportions.

(1) To test how well our models perform on a prediction
task we compute the predictive negative log likelihood (P-
NLL). Since to our knowledge the latter does not appear
explicitly in the dynamic topic model literature, we briefly
revisit how to estimate it in what follows.

In order to predict N steps into the future we rely on the
generative process of our model, albeit conditioned on the
past. Essentially, one must generate Monte Carlo samples
from the posterior distribution and propagate the latent rep-
resentations (ξt and ηt in our model) into the future with
the help of the prior transition function (Eqs. 1 and 4, re-
spectively)6. This procedure is depicted on the conditional
predictive distribution of our model

p(WT+1|W1:T ) =

∫
pψ(WT+1|ΓT+1)

× pψ(ΓT+1|ΓT )qφ(Γ1:T |W1:T )dΓ1:T , (15)

where we replaced the true (intractable) posterior with the
approximate posterior qφ(Γ1:T |W1:T ), and where Γt,d la-
bels the set {ξt,ηt, ζt,d,bt,d} as before.

6Note that one is effectively performing a sequential Monte
Carlo sample (Speekenbrink 2016), in which future steps are parti-
cles sampled from the posterior and propagated by the prior.

Models 0.5 0.6 0.7 0.8
WF-IBP 5.2 5.5 6.2 13.8
D-ETM 27.2 26.8 26.8 25.1
NDF-TM 35.3 27.8 27.8 27.3

Table 3: Percentage (wrt. the score of the static model) of the
PPL-DC difference between dynamic and static models on
the NEURIPS dataset, as the percentage of held-out words
was increased from 50% to 80%. Higher is better.

We can now define the predictive log likelihood as

P-NLL = Epψ(ΓT+1|ΓT )Eqφ(Γ1:T |W1:T ){
log pψ(WT+1|ΓT+1)

}
. (16)

(2) To test generalization we use three metrics, namely
perplexity (PPL) on document completion, topic coherence
(TC) and topic diversity (TD). The document completion
PPL is calculated on the second half of the documents in
the test set, conditioned on their first half (Rosen-Zvi et al.
2012). The TC is calculated by taking the average pointwise
mutual information between two words drawn randomly
from the same topic (Lau, Newman, and Baldwin 2014) and
measures the interpretability of the topic. In contrast, TD
is the percentage of unique words in the top 25 words of all
topics (Dieng, Ruiz, and Blei 2020). Note that one also often
finds in the literature the topic quality metric (TQ), defined
as the product of TC with TD.

Comparison With Baselines
The results on both P-NLL and PPL tasks are shown in Ta-
ble 1. Both our models (NDF-TM and NDF-LT-TM) outper-
form all baselines on the completion PPL metric, on all the
datasets. Similarly, our models outperform all baselines on
both the TC and TD metrics, on all datasets, as shown in
Table 2. These results (empirically) demonstrate that decou-
pling the topic activity from the topic proportion generically
improves the performance of topic models on generalization
tasks. In particular, we see that adding a non-linear transfor-
mation to the prior transition functions (Eqs. 1 and 4) over-
all improves the model performance (i.e. compare NDF-TM
against NDF-LT-TM).

Regarding the prediction task we first notice that NDF-TM
outperforms DTM-REP in all datasets. As explained in the
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Figure 2: Average time-dependent topic activity bt,d of all K = 50 topics in NDF-TM for UN (left), NIPS (middle) and ACL
(right) datasets.

0 100 200
Epochs

1010

1018

1026

P
P

L

ACL

NDF-TM

D-ETM

0 5 10 15 20
Epochs

106

1010

1014

P
P

L

UN

NDF-TM

D-ETM

Figure 3: Learning curves for D-ETM and NDF-TM (100
topics each) on the ACL and UN evaluation datasets. The
mean and the 2x std are obtained by training the models on
5 different random splits of the data.

Baselines subsection, DTM-REP and NDF-TM only differ
in the topic proportion-activity coupling, from which one
can infer that lifting the coupling explicitly helps when pre-
dicting the content of future documents. Yet NDF-TM only
performs comparably to D-ETM, the strongest baseline, on
this task. Note that D-ETM learns different embeddings for
each topic at each time step (i.e. K ∗ T embeddings in to-
tal). One can argue that the flexibility to change the semantic
content of topics as time evolves gives D-ETM the possibil-
ity to implicitly model rare yet relevant topics. In compari-
son, NDF-TM learns onlyK topic embeddings, and has only
about α0K active embeddings (in average), at each time
step. The number of parameter for both models is about the
same however, because NDF-TM embeds the (fairly large)
BoW vectors for the inference of its two global variables.
Learning a single, global embedding for these BoW vectors
would lower the number of needed parameters in NDF-TM,
way below those needed in D-ETM, and we shall explore
such an approach in the future. Nevertheless, in practice, and
as shown in Figure 3, NDF-TM converges ∼2.8x faster than
D-ETM in the ACL dataset (left figure). It also converges
∼2x faster than D-ETM in the UN dataset (right figure), and
this is the worst case we have observed. Thus, ultimately,
NDF-TM is more efficient than D-ETM.

We have also tried to compare against the non-parametric

model of Perrone et al. (2017). In their work they evalu-
ated the PPL-DC on four splits of a NEURIPS datasets.7
The splits differ from each other on the percentage of held-
out words used to define their test sets. Intuitively, the larger
the percentage of held-out words, the more a dynamic topic
model has to rely on its inferred temporal representations.
The reported results seem however to be in a completely
different scale from those we get (e.g. their simplest, static
model yields PPL-DC values of the order of 1000, whereas
our best models yield results twice as large). We there-
fore decided to compare the difference in performance be-
tween their dynamic WF-IBP model and their static base-
line, against the difference in performance between our neu-
ral dynamic models and a static LDA model (LDA-REP),
fitted with the reparametrization trick. Table 3 shows our re-
sults.

Qualitative Results
One of our main claims is that decoupling topic activity from
topic proportion helps the model better describe sequentially
collected data. We have seen above this is indeed the case
from a quantitative point of view. Nevertheless, one could
ask whether (or how) this decoupling is effectively taking
place as time evolves. To study how the model encodes the
temporal aspects of the data, we track the time evolution of
both (i) the probability for topics to be active and (ii) the
topic proportions. Figure 2 shows the first of these. Imme-
diately we notice there is much more structure on the topic
activities in both the NEURIPS and ACL datasets, as com-
pared to the UN dataset. We can understand these findings
by arguing (a posteriori) that NEURIPS and ACL feature
more emergent and volatile topics (wrt. their activity) as
compared to those characteristic of the UN dataset. Typi-
cally, (dynamic) topic models fitted on the UN dataset tend

7Note that this dataset is different from the NEURIPS dataset
in our main experiments. We only used this new one to com-
pare against Perrone et al. (2017). The dataset is available at
https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+
1987-2015.
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Figure 4: Entropy of topic distribution inferred by DTM-REP
(squares), D-ETM (triangles) and NDF-TM (circles), aver-
aged over documents as time evolves. Values shown with
one standard deviation for both UN (above) and NEURIPS
(below) datasets. Note that the maximum entropy value is
log(K = 50) ≈ 3.9. The inset shows the details of the time-
dependent topic-proportion entropy featured by NDF-TM.
Note how the entropy decreases with time in the UN dataset
(leaving aside the pick around the window 2005-2010) but
fluctuates strongly for the (skewed) NEURIPS dataset.

to infer topics which circle about e.g. war, peace or climate.
In contrast, topic models trained on, say, NEURIPS, generi-
cally infer more varied topics, ranging from e.g. Neural Net-
works and their training to Reinforcement Learning. See,
for example, Table 6 in the supplementary material provided
within the repository of our code, which shows six randomly
sampled topics from each dataset as inferred by NDF-TM.

It is easy to imagine that the more generic topics in
the UN dataset (like war, climate, etc) have reached some
type of equilibrium and thus display overall a less skewed
distribution over the document collection. If this were the
case, topic models featuring the proportion-activity cou-
pling would fit well the data by only inferring the more
generic topics. Figure 4 shows the (Shannon) entropy of the
topic distribution, averaged over documents as time evolves,
as inferred by all models.8 Note how the entropy inferred
by DTM-REP (which features the proportion-activity cou-

8The Shannon entropy of the topic distribution per document
and time is defined here byHt,d = −

∑K
i θ

(i)
t,d log θ

(i)
t,d, where θ(i)t,d

is the ith component of θt,d.
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Figure 5: Evolution of topic proportion and activity proba-
bility for the topic middle east inferred from the UN dataset
via NDF-TM.

pling) for UN is close to zero, meaning that DTM-REP usu-
ally describes the documents with few topics, whereas for
NEURIPS the entropy of the average topic distribution is
close to its maximum value (log(K = 50) ≈ 3.9), mean-
ing that it allocates almost equal probability for all K topics
(that is, the model needs all topics to fit the data well), as ex-
pected for a skew topic distributions. In contrast, NDF-TM
uses the additional Bernoulli variable sequences to redis-
tribute the noise in the topic dynamics. Note also how the
topic entropy of D-ETM is often similar to that of NDF-TM,
meaning D-ETM does in fact implicitly lift the proportion-
activity coupling.

Figure 5 shows our results for one topic inferred from the
UN dataset, namely middle east. Note, for example, that the
topic proportion for this topic peaks in the year 1990, which
coincides with the Gulf War, to then drop right after. Such
a drop is also reflected in the topic activity. Later, in 2011,
the Syrian Civil War started. This event is captured by the
topic activity which peaks at 2011, even though the topic
proportion probability is decreasing. That is, even when the
proportion of the middle east topic is low within the docu-
ments of that year, it must remain active to properly describe
the data.

Conclusion
We have introduced the Neural Dynamic Focused Topic
Model for sequentially collected data, which explicitly de-
couples the dynamic topic proportions from the topic activi-
ties through the addition of sequences of Bernoulli variables.
We have shown that our approach consistently yields co-
herent and diverse topics, which correctly capture historical
events. Future work includes using NDF-TM together with
Variational Autoencoders for topic-guided text generation.
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