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Abstract

Travelling salesman problem (TSP) is NP-Hard with ex-
ponential search space. Recently, the adoption of encoder-
decoder models as neural TSP solvers has emerged as
an attractive topic because they can instantly obtain near-
optimal results for small-scale instances. Nevertheless, their
training efficiency and solution quality degrade dramatically
when dealing with large-scale problems. To address the
issue, we propose a novel progressive distillation framework,
by adopting curriculum learning to train TSP samples in
increasing order of their problem size and progressively
distilling high-level knowledge from small models to large
models via a distillation loss. In other words, the trained
small models are used as the teacher network to guide action
selection when training large models. To accelerate training
speed, we also propose a Delaunary-graph based action mask
and a new attention-based decoder to reduce decoding cost.
Experimental results show that our approach establishes clear
advantages over existing encoder-decoder models in terms
of training effectiveness and solution quality. In addition, we
validate its usefulness as an initial solution generator for the
state-of-the-art TSP solvers, whose probability of obtaining
the optimal solution can be further improved in such a hybrid
manner.

Introduction
Travelling salesman problem (TSP) determines the shortest
circuit passing through n given cities whose pair distance
is known in advance, and requires that each city is visited
exactly once. As a classical combinatorial optimization
problem, TSP has been intensively studied for decades.
When the problem size is small, TSP can be easily solved
to derive exact solutions (Laporte 1992). In large-scale
problems, exact approaches fail to tackle the exponential
search space and approximate methods are adopted so as
to achieve a satisfactory solution with acceptable running
time. As reviewed in (Laporte 1992; Bektas 2006), there
have emerged an enormous number of heuristic algorithms
that trade optimality for efficiency, such as genetic algo-
rithm, simulated annealing, tabu search, adaptive large-
neighborhood search and ant colony optimization. They rely
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on devising effective search space exploration strategies and
achieve promising results with affordable computation cost.

Recently, the adoption of encoder-decoder models to
solve TSP has shed new light into this classic topic of
combinatorial optimization. The design principle is that the
encoder is used for effective feature extraction from input,
and a solution in the form of a sequence of cities is generated
iteratively by the decoder. In this way, the expensive search
space exploration is avoided and the complexity of a TSP
solver becomes polynomial to the problem size. A solution
can then be returned instantly for real-time decision making.
Such desirable property has attracted researchers’ attention
and various models have been proposed (Vinyals, Fortunato,
and Jaitly 2015; Bello et al. 2017; Nazari et al. 2018;
Deudon et al. 2018; Kool, van Hoof, and Welling 2019; Ma
et al. 2019; Peng, Choi, and Xu 2021; Luo et al. 2022).
Despite the encouraging achievement, the current encoder-
decoder models still fail to conquer large-scale instances
with hundreds of cities, in which the training process
exhibits patterns of high complexity and slow convergence.
Furthermore, the reward estimated from the final cost of
sampled solutions is heavily delayed and may not be a
reliable signal to guide action selection. In our offline
experiments for TSP100, it roughly requires more than 20
million training samples and 50 hours for these models to
start getting converged.

To alleviate the issue of high training barrier, we propose
a novel progressive distillation framework which adopts
curriculum learning to train TSP samples in increasing
order of TSP problem size. In the meanwhile, the trained
small models are used as teacher network to guide ac-
tion selection when training large models. In this way,
we can progressively distill high-level knowledge from
small models to large models, via a distillation loss to
minimize the difference between the teacher and student
networks. Finally, to accelerate training speed, we propose
a Delaunary-graph based action mask to exclude cities far
away from the current decision context, and a new attention-
based decoder to reduce decoding cost. Experiments results
establish clear advantages of our approach over existing
encoder-decoder models. We also examine its usefulness as
an initial solution generator for state-of-the-art TSP solvers.
The results show that with a better starting point, their
probability of obtaining the optimal solution can be further
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improved. The datasets and source code are provided in the
supplementary materials.

Related Work
This section focuses on the review of neural TSP solvers and
we categorize them into learning-to-generate and learning-
to-improve methods.

Learning-to-Generate Methods
The learning-to-generate methods treat TSP as a sequence
generation problem. Pointer network (PtrNet) (Vinyals,
Fortunato, and Jaitly 2015) is an early work that devises
an attention-based decoder to iteratively select an item from
the input and directly outputs the city visit order. In (Joshi,
Laurent, and Bresson 2019), an MLP classifier is built to
compute the probability of each city pair occurring in the
optimal tour, and then beam search is applied for tour
inference. The drawback of these two supervised models
is that their training heavily relies on high-quality labels,
which are expensive to harvest for large-scale TSP instances.

To reduce the reliance on training labels, reinforcemnt
learning (RL) is adopted in subsequent works. In (Bello et al.
2017), the original supervised training in PtrNet is replaced
by RL and the length of the derived tour is used as a reward
signal for parameter update. In (Nazari et al. 2018), the
authors discard the RNN-based encoder used in PtrNet and
directly uses raw embedding, i.e., d-dimensional city vectors
generated by linear embedding. In (Deudon et al. 2018), the
authors also concur the needlessness of adopting RNN in
the encoder and resort to the attention mechanism proposed
in Transformer (Vaswani et al. 2017). (Kool, van Hoof,
and Welling 2019) shares the same idea with (Deudon et al.
2018) to rely on pure attention for input encoding and they
both adopt Transformer (Vaswani et al. 2017) as the core
attention mechanism. However, it does not apply positional
encoding in the original Transformer because the resulting
node embeddings are invariant to the input order. The output
decoder is also based on multi-head attention, but without
skip-connections, batch normalization and the feed-forward
sublayer for the concern of efficiency. (Bresson and Laurent
2021) is another Transformer-based TSP solver with slightly
different customization in the decoder.

An alternative encoding is to treat the input cities as
a complete graph, since each pair of cities is reachable.
In (Yu, Yu, and Gu 2019), a graph embedding approach
called structure2vec (Dai, Dai, and Song 2016; Khalil
et al. 2017) is applied on the input nodes. Recently, graph
convolutional encoder is used in (Luo et al. 2022) to
extract hierarchical features. Its decoder scheme consists of
more than one multi-head attention decoder with identical
structures but unshared parameters.

Learning-to-Improve Methods
The learning-to-improve methods combine RL with heuris-
tic methods for more effective search space exploration.
Given an initial solution, the RL agent learns to select better
neighborhood operation to iteratively improve the current
best tour. In (Zheng et al. 2021), value-based RL approach

is adopted to improve LKH heuristic. In (Fu, Qiu, and Zha
2021), LKH is applied for small neighborhood exploration,
followed by RL-based Monte Carlo tree search (MCTS) to
handle enlarged neighborhood. In (Xin et al. 2021), sparse
graph network is proposed to create edge candidate sets,
with the purpose of guiding the search space exploration in
LKH. We also notice the combination with RL and heuristic
algorithms in more complicated scheduling problems, such
as capacitated vehicle routing problems (CVRP) (Lu, Zhang,
and Yang 2020).

The research scope in this paper falls into the category of
learning-to-generate and we will mainly compare with the
state-of-the-art encoder-decoder models. It can be viewed
as complementary to learning-to-improve methods because
they can apply our model to generate initial solution for
further improvement.

Proposed Model
Our TSP solver is built on top of the mainstream encoder-
decoder models, which are trained with reinforcement learn-
ing to eliminate the reliance on high-quality training labels.
Our technical contributions are three-fold: 1) a progressive
distillation framework combining curriculum learning to
train the samples in increasing order of their difficulty and
a novel distillation loss to transfer the knowledge from pre-
trained small models to the large models; 2) an action mask
based on Delaunay graph; and 3) an attention-based decoder
with better tradeoff between efficiency and quality. Details
of each component are explained in the following.

Curriculum Learning
Curriculum learning (CL) has been shown to be effective to
tackle tasks that are difficult to learn from scratch (Narvekar
et al. 2020) and has been applied for neural combinatorial
optimization in previous work (Lisicki, Afkanpour, and Tay-
lor 2020). To apply CL, our strategy is to use problem size
(i.e., the number of input cities) as difficulty indicator and
develop a curriculum of training samples with increasing
number of cities. In our setting of the curriculum schedule
to train samples from size m to n (n > m), we adopt a
parameter C to determine the number of training epochs.
Thereafter, in the i-th epoch, we will use TSP instances
with size m + i⌊n−m

C ⌋ for model training. For example,
suppose we start from TSP50 samples and our final goal
is to train TSP250, i.e., m = 50 and n = 250. If we set
C = 4, we use samples of TSP100 in the first training
epoch. When the model parameters are updated, we will use
training samples of TSP150 in the next epoch. The process
repeats until TSP250 samples are trained in the fourth epoch.
Let N (N > C) be the hyperparameter to control the total
number of training epochs. For the remaining N−C epochs,
the model will continue to be trained with TSP samples of
size n (i.e., 250 in this example).

Distillation Loss
Before we formally present the definition of distillation loss,
we start with a toy example to illustrate the motivation.
Figure 1a shows an instance of TSP150 with 150 points
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generated by uniform distribution in the 2D space [0, 1]2,
as well as its optimal visit path Pg derived from an exact
solver. In the setting of Figure 1b, we select one of the cities
pi and build a local circular window centered at pi. The size
of the circular window is determined by a ratio parameter r
to determine the number of cities in the window. If we set
r = 0.4, there are 60 cities in the circle, which constitute
a small-scale TSP instance. We mark those preceding pi in
the optimal path Pg as visited. Afterwards, we run the exact
TSP solver for the small-scale instance to obtain its optimal
solution Ps for the unvisited cities within the local window.
We observe that there is high chance (128 out of 150 points
in this example) of selecting the same next city for pi in
the optimal solutions Pg and Ps. In other words, we can
consider that the cities far away from pi play small effect
when determining the optimal next city to visit.

(a) The global optimal solution. (b) The local optimal solution.

Figure 1: Consistency of optimal action selection from
global view and local view.

Inspired by the observation, we can use an RL agent that
has been well trained in small-scale instances as the teacher
network to guide the training of another RL agent on large-
scale TSP problems, which is viewed as the student network.
Even though traditional knowledge distillation refers to
knowledge transfer from a big teacher network to a small
network, we still call our large-scale TSP model as student
network because it can benefit from the guidance of the
small teacher network when determining the next city to
visit in a local circular area.

To transfer the knowledge learned from the teacher
network to the student network, we follow the conventional
way of introducing a distillation loss Lkd that minimizes
the difference between the logits produced by these two
networks. Let pθ(ut|st) be the policy learnt by the the
student network for large-scale TSP instances and pθ′(u′

t|s′t)
be the policy learnt by teacher network for small-scale
instances. Here, t refers to t-th step of decoding, st is
the state and ut is the logits produced by the policy
network. In our definition of Lkd, we intend to minimize
the difference between these two policies. To ensure that
they are comparable, we need to project pθ(ut|st) to the
same action space with the teacher network. This is done by
introducing a mask Mlocal to remove cities outside the local
region (as shown in Figure 1b) and normalize the probability

distribution for the remaining cities:

plocalθ (ut|st) = softmax(pθ(ut|st) ·Mlocal)

With the derived plocalθ (ut|st), we use KL divergence to
measure the discrepancy between the policies generated by
teacher network and student network:

Lkd =
T∑

t=1

DKL(pθ′(u′
t|s′t) || plocalθ (ut|st))

Finally, the distillation loss Lkd is integrated with
original RL policy training loss and trained by
REINFORCE (Williams 1992) gradient estimator with
baseline b(s).

L(θ|s) = Epθ(π|s)

[
(L(π)− b(s)) log pθ(π|s) + βLkd

]
Progressive Distillation Framework
The integration of curriculum learning and knowledge dis-
tillation constitutes our progressive distillation framework.
On one hand, the curriculum learning strategy progressively
trains the model with more and more difficult samples,
resulting in multiple snapshots of trained models. On the
other hand, these trained models in previous snapshots can
be further used by the teacher network to guide the training
of the current model.

Knowledge Distillation Curriculum Learning

TSP50 TSP100 TSP150 TSP200 TSP250

Figure 2: An example of progressive distillation from TSP50
to TSP250.

To facilitate understanding, we present an example in
Figure 2 to explain the idea of progressive distillation.
Suppose we start from a model fully trained on TSP50
instances and our goal is to train a new model to handle
TSP250. We set N = 10, C = 4 and the ratio for the local
window size to be 0.4. In the first epoch, we train the model
using samples of TSP100. In the meanwhile, the number
of cities in the local window is 0.4 ∗ 100 = 40 and we
apply the pre-trained TSP50 model as the teacher network
for knowledge transfer. The generated distillation loss is
incorporated in the training objective for parameter update.
In the second epoch for TSP150, we repeat the process and
select TSP100 instead of TSP50 as the teacher network.
This is because the number of cities in the local window
is 0.4 ∗ 150 = 60 and we pick its closest snapshot with
larger problem size. After that, we continue the training with
TSP200 and TSP250, respectively. Finally, when we finish
the curriculum learning process, we will train the model with
only TSP250 samples for another 10− 4 = 6 epochs, using
TSP100 as the teacher network.

The pseudo code of our model training based on pro-
gressive distillation is depicted in Algorithm 1. The pre-
trained model θ0 from an existing approach is used for
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Algorithm 1: Model training by progressive distillation
Input: total training epochs N , curriculum learning epochs C,
steps per epoch T , starting TSP size m, ending TSP size n,
distillation learning rate β, pre-trained model θ0, local window size
ratio r

1: Initialize θ ← θ0
2: for epoch← 1, . . ., N do
3: p size← n
4: if epoch ≤ C then
5: p size← m+ epoch⌊n−m

C
⌋

6: end if
7: Select teacher network based on r ∗ p size
8: for step = 1, ..., T do
9: generate batch of training samples with p size cities

10: Lkd ← 0
11: for each decoding step t do
12: Generate city mask Mlocal based on state st
13: plocalθ (ut|st) = softmax(pθ(ut|st) ·Mlocal)
14: Lkd ← Lkd +DKL(pθ′(u

′
t|s′t) || plocalθ (ut|st))

15: end for
16: ▽L ← (L(π)− b(s))▽θ log pθ(π) + β ▽θ Lkd

17: θ ← Adam(θ,▽L)
18: end for
19: end for

model parameter initialization. In the first C samples, the
model is trained with a curriculum of increasing size of
TSP samples, with additional knowledge distillation from
previous snapshots. In the last N − C epochs, the model is
trained with only samples of size n and the distillation loss
for action guidance in the local window is still applied.

Delaunay Graph-based Action Mask In previous TSP
solvers, the cities are selected step by step and their action
space consists of all the unvisited cities. However, we
observe that cities far away are unlikely to generate the
optimal solution and can be excluded from the search space.
In other words, previous approaches can be considered
as using complete graph to model action space, with an
additional mask to exclude cities that have been visited. In
contrast, we intend to build a graph on the data points to
capture their spatial proximity. The action mask is defined
in a way that only the neighbors in the graph will be the next
city to visit (as shown in Figure 3). We choose Delaunay
graph because it has several desirable properties to capture
proximity relationship. For each point pi, there exists an
edge (pi, pj) in GP such that pj is the nearest neighbor
of pi. This implies that the closest neighbor graph is in
fact a subset of Delaunay graph. Another property is that
no point in P is inside the circumference of any triangle
in GP . Such no-crossing-edge property could be useful for
TSP scheduling.

Input Encoding Unlike previous works, we propose a
new encoding strategy that relies on Delaunay graph. As
mentioned in (Kool, van Hoof, and Welling 2019), the
attention mechanism can be interpreted as a weighted
message passing algorithm between nodes in a graph. We
use the adjacency relationship in the Delaunay graph to
calculate the compatibility uij for nodes i and j:

(a) Complete Graph (b) Delaunay Graph

Figure 3: Motivation of using Delaunay graph.

u
(t)
ij =

{
q
(t)
i ·k(t)

j√
dk

, if node i is adjacent to j

−∞, otherwise
(1)

From u
(t)
ij , we can compute attention weight

a
(t)
ij = softmax(u

(t)
ij ) (2)

Finally, the vector h(t)
i received by node i is the combina-

tion of messages from neighbors vj .

h
(t)
i =

∑
j

a
(t)
ij v

(t)
i (3)

Attention-Based Decoder Attention-based decoder has
been frequently used in previous RL-based models to im-
prove the accuracy of next city prediction. At step t, the
decoder outputs city πt based on the embeddings from the
encoder and previous cities πt′ with t′ < t. In (Kool,
van Hoof, and Welling 2019), the Transformer-style multi-
head attention was adopted. To avoid interaction with all the
previous outputs, its query vector qc is defined on top of a
context vector hc:

qc = WQhc (4)

h(t)
c = [h, hπt−1

, hπ1
] (5)

Here, h is the mean of embeddings for all the cities, hπt−1
is

the output from the previous decoded city and hπ1
is the

output of the first decoded city. In (Bresson and Laurent
2021), an additional layer of self-attention is used and all
the outputs from previous steps hπ1

, hπ2
, . . . , hπt−1

will be
taken into account. Furthermore, its decoder is required to
query the next possible city among the non-visited cities
using a query-attention layer. Therefore, its computation
complexity is O(n), in contrast to O(1) in (Kool, van Hoof,
and Welling 2019).

To obtain a better trade-off between computation over-
head and training effectiveness, we propose a new type of
attention-based decoder which runs much faster than (Bres-
son and Laurent 2021) and is more effective than (Kool,
van Hoof, and Welling 2019). The idea is replace hc

used in (Kool, van Hoof, and Welling 2019) with a more
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Method
TSP150 TSP300 TSP500

Length Gap Time Length Gap Time Length Gap Time

PtrNet-RL 12.907 37.63% 3.96 22.428 72.81% 12.72 34.631 108.86% 22.92
GCN 12.201 30.10% 0.90 20.646 59.08% 5.40 29.029 75.07% 17.28
Transformer-1 10.390 10.79% 0.24 16.624 28.09% 0.78 22.560 36.04% 1.92
Transformer-2 9.857 5.11% 0.66 15.811 21.83% 1.68 22.315 34.58% 4.02
GCE-MAD 10.225 9.03% 0.36 16.459 26.82% 1.44 23.047 39.00% 3.78
PDAM 9.830 4.84% 0.30 14.641 12.81% 0.84 19.727 18.97% 2.04

Table 1: Comparison with learning-to-generate models on TSP150, TSP300 and TSP500. The average inference time is in the
unit of millisecond.

informative context vector. We observe that h is in fact
a static vector during decoding and cannot capture the
dynamic context at different step t. Our strategy is to
decompose it into two dynamic vectors [h

(t)
v , h

(t)
u ], with

h
(t)
v capturing the context from decoded cities and h

(t)
u

aggregating the embeddings for the non-visited cities. To
avoid examining all the previous cities π1, π2, . . . , πt−1, we
introduce a forget gate and define h(t)

v in a recursive manner:

h(t)
v = zh(t−1)

v + (1− z)u(t−1) (6)
z = ϕ(W zhz) (7)

hz = [h(t−1)
v , h(t)

u , hπt−1 , hπ1 ] (8)

Here, u(t−1) is the output of multi-head attention cal-
culated by softmax(QKT

√
dk

)V . For the definition of h
(t)
u ,

it is explicitly represented as the mean of embeddings for
all the legal cities that are non-visited and not excluded
by the Delaunay graph-based action mask. More details of
implementation are provided in the technical report1.

Experimental Study
In this section, we conduct extensive experiments for per-
formance evaluation. We denote our progressive distillation
method as PDAM. Since it belongs to learning-to-generate,
we select multiple representative approaches in this category
as our comparison baselines, including GCN (Joshi, Lau-
rent, and Bresson 2019) as a supervised model with graph
embedding, PtrNet-RL (Bello et al. 2017) as an encoder-
decoder framework with RL, Transformer-1 (Kool, van
Hoof, and Welling 2019) and Transformer-2 (Bresson and
Laurent 2021) as two Transformer-based approaches, and
GCE-MAD(Luo et al. 2022) that uses graph convolutional
encoder and multiple Transformer-based decoders.

Since PDAM can instantly return a satisfactory result, we
also validate its usefulness as an initial solution generator
that is complementary to the state-of-the-art TSP solvers,
including LKH family (Helsgaun 2000, 2009, 2017) as the
most competitive heuristic algorithm, and LKH3-RL (Fu,
Qiu, and Zha 2021) and NeuroLKH (Xin et al. 2021) as the
representative learning-to-improve methods. In terms of the

1https://www.docdroid.net/9bhLAIS/report-pdf

exact solver, we follow (Zheng et al. 2021) to run Concorde2

and return exact solutions.
For datasets, we follow previous learning-to-generate

models to use uniform distribution in two-dimensional space
[0, 1]2. In addition, we examine the performance in the
Euclidean TSP instances in the TSPLIB repository3. Due
to space limit, the results have been documented in the
technical report .

As to hyper-parameter setting, we set N = 100, C = 60,
r = 0.4, β = 0.1 and T = 2000 for the training framework
based on progressive distillation. The Transformer has 6-
layers encoder and 1-layer decoder, both with 128 hidden
units in each layer.For batch size, we set 512 for TSP150,
128 for TSP300 and 32 for TSP500. This is because training
TSP500 is expensive in memory consumption and we have
to reduce the batch size to avoid out-of-memory error. In the
implementation of decoder, we simply apply greedy search
and select the next city with the highest probability for each
decoding step. All the experiments are conducted on a single
GPU (NVIDIA Tesla V100 with 32GB memory).

Comparison with Learning-to-Generate Models
In the first experiment, we compare PDAM with existing
learning-to-generate models and report the tour length, gap
to the optimality, and inference time in Table 1 on three
scales, including TSP150, TSP300 and TSP500. For each
scale, we randomly generate 1, 000 query instances in the
Euclidean space and report the average tour length and
inference time per instance. Among the learning-to-generate
models, PtrNet-RL and GCN exhibit poor performance in
terms of both inference time and solution quality. Their
running time grows dramatically with the increasing of
problem size because the RNN decoding in PtrNet-RL is
expensive and GCN requires beam search for tour inference.
Their performance gap is also widened from TSP150 to
TSP500 because their model training becomes more difficult
to get converged. GCN relies on supervised learning and
requires a considerable number of training labels. PtrNet-
RL adopts RNN-based network and is less effective than the
Transformer-based models. We also note that Transformer-1
achieves similar performance to GCE-MAD. Transformer-
2 is the most effective among the comparison models.

2http://www.math.uwaterloo.ca/tsp/concorde/index.html
3http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Method
TSP300 TSP500 TSP1000

Length S-Rate Time Length S-Rate Time Length S-Rate Time

Concorde (exact) 12.978 100% 3.66 16.581 100% 18.72 23.131 100% 190.56

LKH-3 13.002 83.1% 0.48 16.696 78.9% 1.74 24.005 75.3% 20.64
LKH3-RL 12.895 85.4% 0.84 16.678 81.4% 2.94 23.575 77.4% 36.72
NeuroLKH 12.890 86.2% 0.96 16.620 83.5% 3.36 23.272 78.1% 42.12

PDAM + LKH3 12.998 +0.7% 0.48 16.678 +1.3% 1.77 23.870 +0.8% 21.14
PDAM + LKH3-RL 12.892 +0.1% 0.85 16.653 +2.2% 2.96 23.429 +0.9% 36.84
PDAM + NeuroLKH 12.887 +0.7% 0.96 16.613 +0.9% 3.42 23.259 +0.7% 42.78

Table 2: Compare strong TSP solvers with their counterparts of applying PDAM for initial solution generation. S-Rate refers to
the success rate of achieving the optimal solution. The inference time is in the unit of second.

Compared with Transformer-2, our proposed PDAM derives
significantly better solutions in large-scale TSP instances.
The performance gap to optimality in TSP500 is reduced
from 34.58% to 18.97% with even less inference time.
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Figure 4: Training convergence.

Model Training Convergence
In Figure 4, we investigate the pattern of training con-
vergence for the RL-based learning-to-generate models. In
TSP150, the convergence patterns of Transformer-2 and
PDAM are smooth and close to each other. In contrast,
PtrNet-RL shows dramatic fluctuation in the early training
stage. When the problem size increases to TSP500, the
training becomes much more challenging. We can see that
it is difficult for PtrNet-RL to get converged. GCN shows
an overall trend of convergence, but to an inferior local
optimal. Our PDAM can steadily get converged in TSP500
and it is interesting to observe the stage-wise pattern for
cost decline, because the model is trained with curriculum
learning framework.

Effectiveness as Initial Solution Generator
In this experiment, we validate the usefulness of PDAM by
applying it as the initial solution generator for strong TSP
solvers, including the heuristic LKH-3 and two learning-
to-improve methods (LKH3-RL and NeuroLKH). From the
results in Table 2, we can observe that the quality of the
returned tours is improved from two perspectives. First, the
average tour length can be further reduced. For example,
PDAM+LKH3 reduces the tour length returned by LKH-
3 from 24.005 to 23.870 in TSP1000. Second, we can

observe that using PDAM can improve the success rate
(abbreviated as S-Rate) of obtaining the optimal solution.
Similar experimental results on selected real datasets from
TSPLIB are reported in Table 3. Due to space limit, more
details are presented in the supplementary material.

Method gr229 gr431 gr666

LKH 2/10 3/10 5/10
LKH-RL 7/10 7/10 9/10
NeuroLKH 5/10 8/10 9/10
PDAM+NeuroLKH 10/10 9/10 10/10

Table 3: Success rate of obtaining optimal solution in three
real datasets gr229, gr431 and gr666 in TSPLIB.

Analysis on Modal Adaptation
We also examine the adaptation of the learned models to
tackle problems with larger scale. More specifically, we
apply the models trained on TSP300 to run instances of
larger scale, including TSP500, TSP1000 and TSP2000. The
results are reported in Table 4, where LKH-3 is used as the
baseline to estimate the performance gap. Compared with
the two Transformer-based models, our PDAM achieves
the best performance and the superiority is widened when
the problem size increases. Such generality owes to the
curriculum learning strategy to train the model with TSP
instances in different scales. It’s also interesting to observe
that even though in previous experiment the fully trained
model of Transformer-1 is inferior to Transformer-2 (as
shown in Table 1), it demonstrates slightly better adaptation
to handle larger-scale TSP instances, probably due to its
simpler network structure.

Ablation Study
In the ablation study, we assess the effect of the proposed
techniques in PDAM, including curriculum learning frame-
work, distillation loss for knowledge transfer, the graph
based action mask and the attention-based decoder. Note that
when the curriculum learning framework is discarded, distil-
lation loss is still applicable. For example, to train TSP250,
we can still use a fully trained TSP100 model as the teacher
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Method TSP300 TSP500 TSP1000 TSP2000
Length Gap Length Gap Length Gap Length Gap

LKH-3 12.98 0.0% 16.58 0.0% 23.24 0.0% 32.76 0.0%
Transformer-1 16.62 28.0% 22.79 37.5% 33.87 45.7% 53.92 64.6%
Transformer-2 15.81 21.8% 22.55 36.0% 34.17 47.0% 54.57 66.6%
GCE-MAD 16.43 26.6% 22.89 38.1% 34.05 46.5% 54.29 65.7%
PDAM 14.64 12.8% 20.51 23.7% 29.85 28.4% 47.18 44.0%

Table 4: Models trained on TSP300 and tested on larger instances.

network to guide action selection in TSP250. In Table 5,
we train these models with the same number of epochs on
TSP150 instances and report the final solution quality for
performance comparison. The results show that curriculum
learning and distillation loss are two key components in
PDAM, with considerable performance degradation when
they are removed. The graph-based action mask also plays
positive effect, reducing the average tour length from 9.89
to 9.83.

Method Length Gap

Full model 9.83 0%
w/o curriculum 10.09 2.62%
w/o distillation loss 9.97 1.45%
w/o action mask 9.89 0.55%

Table 5: Ablation study.

To assess the advantage of our proposed decoder, we
replace it with alternative Transformer structures imple-
mented in Transformer-1, Transformer-2 and GCE-MAD,
respectively. The results in Table 6 show that our decoder
achieves the best trade-off between training/inference effi-
ciency and solution quality. It achieves comparable solutions
with Transformer-2, but with only its half training/inference
time. Even though GCE-MAD has multiple decoders, its ef-
ficiency is better than Transformer-2 because these decoders
can run in parallel.

Method Length Train time Test time

Our decoder 9.8302 113 h 0.28 s
Transformer-1 9.9507 108 h 0.27 s
Transformer-2 9.8268 281 h 0.61 s
GCE-MAD 9.9384 168 h 0.57 s

Table 6: Comparison with different decoders.

In Figure 5, we pay a closer attention to the advantages
brought by curriculum learning, and reveal the performance
improvement when the samples are trained in increasing
order of problem size. When we start from a pre-trained
TSP10 model to train TSP150, we split the training curve
into four stages: 1) from TSP10 to TSP50; 2) from TSP50 to
TSP100; 3) from TSP100 to TSP150 and 4) the final stage
with only TSP150 samples. We compare with the baseline

model without curriculum learning, which directly trains a
TSP150 model from scratch using training samples of size
150. As shown in the figure, our model demonstrates much
faster convergence pattern in the first 20 hours of training.
It is also interesting to find that before our curriculum
learning covers TSP150 training sample (i.e. before reaching
stage 4), it has already achieved better performance than
the baseline. This finding verifies the effectiveness of the
curriculum learning framework. We also compare with
another transfer learning strategy which trains TSP150
with a warm start from a fully trained TSP50 model. The
observation is that the training of TSP150 can benefit from
the warm start trick and converges to a better solution than
the baseline which is trained from scratch. Nevertheless, the
warm start training strategy is still inferior to our curriculum
learning framework.
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Figure 5: Effect of curriculum learning.

Conclusion
In this paper, we proposed a new progressive distillation
framework based on curriculum learning and knowledge
distillation to tackle the high barrier of training large-
scale TSPs. We also proposed a Delaunary graph based
action mask and a new type of attention-based decoder for
performance improvement. Experimental results validated
the superiority of our approach over its competitors in this
category. We also validate its advantage when applied as an
initial solution generator for existing TSP solvers.
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