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Abstract

To bridge the ever-increasing gap between deep neural net-
works’ complexity and hardware capability, network quanti-
zation has attracted more and more research attention. The
latest trend of mixed precision quantization takes advan-
tage of hardware’s multiple bit-width arithmetic operations
to unleash the full potential of network quantization. How-
ever, existing approaches rely heavily on an extremely time-
consuming search process and various relaxations when seek-
ing the optimal bit configuration. To address this issue, we
propose to optimize a proxy metric of network orthogonal-
ity that can be efficiently solved with linear programming,
which proves to be highly correlated with quantized model
accuracy and bit-width. Our approach significantly reduces
the search time and the required data amount by orders of
magnitude, but without a compromise on quantization ac-
curacy. Specifically, we achieve 72.08% Top-1 accuracy on
ResNet-18 with 6.7Mb parameters, which does not require
any searching iterations. Given the high efficiency and low
data dependency of our algorithm, we use it for the post-
training quantization, which achieves 71.27% Top-1 accu-
racy on MobileNetV2 with only 1.5Mb parameters.

Introduction
Recently, we witness an obvious trend in deep learning that
the models have rapidly increasing complexity (He et al.
2016; Simonyan and Zisserman 2014; Szegedy et al. 2015;
Howard et al. 2017; Sandler et al. 2018; Zhang et al. 2018b).
Due to practical limits such as latency, battery, and tempera-
ture, the host hardware where the models are deployed can-
not keep up with this trend. It results in a large and ever-
increasing gap between the computational demands and the
resources. To address this issue, compression and accelera-
tion methods such as neural architecture search (Zheng et al.
2019, 2020; Zhou et al. 2021; Zheng et al. 2022, 2021a,c;
Zhang et al. 2021; Zheng et al. 2023; Zhang et al. 2023),
quantization (Courbariaux et al. 2016; Rastegari et al. 2016;
Kim et al. 2019; Banner, Nahshan, and Soudry 2019; Liu
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Figure 1: Comparison of the resources used to obtain the
optimal bit configuration between our algorithm and other
mixed precision algorithms (FracBits (Yang and Jin 2021),
HAWQ (Dong et al. 2020), BRECQ (Li et al. 2021)) on
ResNet-18. “Searching Data” is the number of input images.

et al. 2019; Li et al. 2020), and pruning (Zheng et al. 2021b;
Han, Mao, and Dally 2015) have emerged. Among them,
network quantization, which maps single-precision float-
ing point weights or activations to lower bits integers for
compression and acceleration, has attracted considerable re-
search attention. Network quantization can be naturally for-
mulated as an optimization problem and a straightforward
approach is to relax the constraints to make it a tractable op-
timization problem, at a cost of an approximated solution,
e.g. Straight Through Estimation (STE) (Bengio, Léonard,
and Courville 2013).

With the recent development of inference hardware, arith-
metic operations with variable bit-width become a possibil-
ity and bring further flexibility to the network quantization.
To take full advantage of the hardware capability, mixed pre-
cision quantization (Dong et al. 2020; Wang et al. 2019;
Li et al. 2021; Yang and Jin 2021) aims to quantize differ-
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ent network layers to different bit-width, so as to achieve
a better trade-off between compression ratio and accuracy.
While benefiting from the extra flexibility, the mixed preci-
sion quantization also suffers from a more complicated and
challenging optimization problem, with a non-differentiable
and extremely non-convex objective function. Therefore, ex-
isting approaches (Dong et al. 2020; Yang and Jin 2021;
Wang et al. 2019; Li et al. 2021) often require numerous data
and computing resources to search for the optimal bit con-
figuration. For instance, FracBits (Yang and Jin 2021) ap-
proximates the bit-width by performing a first-order Taylor
expansion at the adjacent integer, making the bit variable dif-
ferentiable. This allows it to integrate the search process into
training to obtain the optimal bit configuration. However,
to derive a decent solution, it still requires a large amount
of computation resources in the searching and training pro-
cess. To resolve the large demand on training data, Dong
et al. (Dong et al. 2020) use the average eigenvalue of the
hessian matrix of each layer as the metric for bit allocation.
However, the matrix-free Hutchinson algorithm for implic-
itly calculating the average of the eigenvalues of the hes-
sian matrix still needs 50 iterations for each network layer.
Another direction is black box optimization. For instance,
Wang et al. (Wang et al. 2019) use reinforcement learn-
ing for the bit allocation of each layer. Li et al. (Li et al.
2021) use evolutionary search algorithm (Guo et al. 2020)
to derive the optimal bit configuration, together with a block
reconstruction strategy to efficiently optimize the quantized
model. But the population evolution process requires 1, 024
input data and 100 iterations, which is time-consuming.

Different from the existing approaches of black box op-
timization or constraint relaxation, we propose to construct
a proxy metric, which could have a substantially different
form, but be highly correlated with the objective function of
original linear programming. In general, we propose to ob-
tain the optimal bit configuration by using the orthogonality
of neural network. Specifically, we deconstruct the neural
network into a set of functions, and define the orthogonal-
ity of the model by extending its definition from a function
f : R → R to the entire network f : Rm → Rn. The mea-
surement of the orthogonality could be efficiently performed
with Monte Carlo sampling and Cauchy-Schwarz inequal-
ity, based on which we propose an efficient metric named
ORthogonality Metric (ORM) as the proxy metric. As illus-
trated in Fig. 1, we only need a single-pass search process
on a small amount of data with ORM. In addition, we derive
an equivalent form of ORM to accelerate the computation.

On the other hand, model orthogonality and quantiza-
tion accuracy are positively correlated on different networks.
Therefore, maximizing model orthogonality is taken as our
objective function. Meanwhile, our experiments show that
layer orthogonality and bit-width are also positively corre-
lated. We assign a larger bit-width to the layer with larger
orthogonality while combining specific constraints to con-
struct a linear programming problem. The optimal bit con-
figuration can be gained simply by solving the linear pro-
gramming problem.

In summary, our contributions are listed as follows:
• We introduce a novel metric of layer orthogonality.

We introduce function orthogonality into neural net-
works and propose the ORthogonality Metric (ORM).
We leverage it as a proxy metric to efficiently solve the
mixed precision quantization problem, which is the first
attempt in the community and can easily be integrated
into any quantization scheme.

• We observe a positive correlation between ORM and
quantization accuracy on different models. Therefore, we
optimize the model orthogonality through the linear pro-
gramming problem, which can derive the optimal bit-
width configuration in a few seconds without iterations.

• We also provide extensive experimental results on Ima-
geNet, which elaborate that the proposed orthogonality-
based approach could gain the state-of-the-art quantiza-
tion performance with orders of magnitude’s speed up.

Related Work
Quantized Neural Networks: Existing neural network
quantization algorithms can be divided into two categories
based on their training strategy: post-training quantization
(PTQ) and quantization-aware training (QAT). PTQ (Li et al.
2021; Cai et al. 2020; Nagel et al. 2019) is an offline quan-
tization method, which only needs a small amount of data
to complete the quantization process. Therefore, PTQ could
obtain an optimal quantized model efficiently, at a cost of
accuracy drop from quantization. In contrast, QAT (Gong
et al. 2019; Zhou et al. 2016; Dong et al. 2020; Zhou et al.
2017; Chen, Wang, and Pan 2019; Cai et al. 2017; Choi et al.
2018) adopts an online quantization strategy, which utilizes
the whole training dataset during quantization process. As a
result, it has superior accuracy but limited efficiency.

If viewed from a perspective of bit-width allocation strat-
egy, neural network quantization can also be divided into
unified quantization and mixed precision quantization. Choi
et al. (Choi et al. 2018) aim to optimize the parameter-
ized clip boundary of activation value of each layer dur-
ing training process. Recently, some works (Yang and Jin
2021; Dong et al. 2020; Li et al. 2021) that explore assign-
ing different bit-widths to different layers begin to emerge.
Yang et al. (Yang and Jin 2021) approximate the derivative
of bit-width by first-order Taylor expansion at adjacent in-
teger points, thereby fusing the optimal bit-width selection
with the training process.
Network Similarity: Previous works (Bach and Jordan
2002; Gretton, Herbrich, and Smola 2003; Leurgans, Moy-
eed, and Silverman 1993; Fukumizu, Bach, and Jordan
2004; Gretton et al. 2005; Kornblith et al. 2019) define co-
variance and cross-covariance operators in the Reproducing
Kernel Hilbert Spaces (RKHSs), and derive mutual informa-
tion criteria based on these operators. Gretton et al. (Gretton
et al. 2005) propose the Hilbert-Schmidt Independence Cri-
terion (HSIC), and give a finite-dimensional approximation
of it. Furthermore, Kornblith et al. (Kornblith et al. 2019)
give the similarity criterion CKA based on HSIC, and study
its relationship with the other similarity criteria. In the fol-
lowing, we propose a metric from the perspective of network
orthogonality, and give a simple and clear derivation. Simul-
taneously, we use it to guide the network quantization.

9030



Figure 2: Overview. Left: Deconstruct the model into a set of functions F . Middle: ORM symmetric matrix calculated from F .
Right: Linear programming problem constructed by the importance factor θ to derive optimal bit configuration.

Methodology
In this section, we will introduce our mixed precision quan-
tization algorithm from three aspects: how to define the or-
thogonality, how to efficiently measure it, and how to con-
struct a linear programming model to derive the optimal bit
configuration.

Network Orthogonality
A neural network can be naturally decomposed into a set
of layers or functions. Formally, for the given input x ∈
R1×(C×H×W ), we decompose a neural network into F =
{f1, f2, · · · , fL}, where fi represents the transformation
from input x to the result of the i-th layer. In other words,
if gi represents the function of the i-th layer, then fi(x) =

gi
(
fi−1(x)

)
= gi

(
gi−1

(
· · · g1(x)

))
. Here we introduce the

inner product (Arfken, Weber, and Spector 1999) between
functions fi and fj , which is formally defined as,

⟨fi, fj⟩P (x) =

∫
D
fi(x)P (x)fj(x)

T
dx, (1)

where fi(x) ∈ R1×(Ci×Hi×Wi), fj(x) ∈ R1×(Cj×Hj×Wj)

are the known functions when the model is given, and D
is the domain of x. If we set f (m)

i (x) to be the m-th el-
ement of fi(x), then P (x) ∈ R(Ci×Hi×Wi)×(Cj×Hj×Wj)

is the probability density matrix between fi(x) and fj(x),
where Pm,n(x) is the probability density function of the
random variable f (m)

i (x) · f (n)j (x). According to the defini-
tion in (Arfken, Weber, and Spector 1999), ⟨fi, fj⟩P (x) = 0

means that fi and fj are weighted orthogonal. In other
words, ⟨fi, fj⟩P (x) is negatively correlated with the or-
thogonality between fi and fj . When we have a known
set of functions to be quantized F = {fi}Li=1, with the
goal to approximate an arbitrary function h∗, the quantiza-
tion error can then be expressed by the mean square error:
ξ
∫
D |h∗(x)−

∑
i ψifi(x)|2dx, where ξ and ψi are combi-

nation coefficient. According to Parseval equality (Tanton

2005), if F is an orthogonal basis functions set, then the
mean square error could achieve 0. Furthermore, the orthog-
onality between the basis functions is stronger, the mean
square error is smaller, i.e., the model corresponding to the
linear combination of basis functions has a stronger repre-
sentation capability. Here we further introduce this insight
to network quantization. In general, the larger the bit, the
more representational capability of the corresponding model
(Liu et al. 2018). Specifically, we propose to assign a larger
bit-width to the layer with stronger orthogonality against all
other layers to maximize the representation capability of the
model. However, Eq. 1 has the integral of a continuous func-
tion which is untractable in practice. Therefore, we derive a
novel metric to efficiently approximate the orthogonality of
each layer in the next section.

Efficient Orthogonality Metric
To avoid the intractable integral, we propose to leverage the
Monte Carlo sampling to approximate the orthogonality of
the layers. Specifically, from the Monte Carlo integration
perspective in (Caflisch 1998), Eq. 1 can be rewritten as

⟨fi, fj⟩P (x) =

∫
D
fi(x)P (x)fj(x)

T
dx

=
∥∥∥EP (x)[fj(x)

T
fi(x)]

∥∥∥
F
.

(2)

We randomly get N samples x1, x2, . . . , xN from a train-
ing dataset with the probability density matrix P (x), which
allows the expectation EP (x)[fj(x)

T
fi(x)] to be further ap-

proximated as,∥∥∥EP (x)[fj(x)
T
fi(x)]

∥∥∥
F
≈ 1

N

∥∥∥∥∥
N∑

n=1

fj(xn)
T
fi(xn)

∥∥∥∥∥
F

=
1

N

∥∥fj(X)T fi(X)
∥∥
F
,

(3)

where fi(X) ∈ RN×(Ci×Hi×Wi) represents the output of
the i-th layer, fj(X) ∈ RN×(Cj×Hj×Wj) represents the out-
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put of the j-th layer, and || · ||F is the Frobenius norm. From
Eqs. 2-3, we have

N

∫
D
fi(x)P (x)fj(x)

T
dx ≈

∥∥fj(X)T fi(X)
∥∥
F
. (4)

However, the comparison of orthogonality between different
layers is difficult due to the differences in dimensionality.
To this end, we use the Cauchy-Schwarz inequality to nor-
malize it in [0, 1] for the different layers. Applying Cauchy-
Schwarz inequality to the left side of Eq. 4, we have

0 ≤
(
N

∫
D
fi(x)P (x)fj(x)

T
dx

)2

≤
∫
D
Nfi(x)Pi(x)fi(x)

T
dx

∫
D
Nfj(x)Pj(x)fj(x)

T
dx.

(5)

We substitute Eq. 4 into Eq. 5 and perform some simplifica-
tions to derive our ORthogonality Metric (ORM) 1, refer to
supplementary material for details:

ORM(X, fi, fj) =
||fj(X)T fi(X)||2F

||fi(X)T fi(X)||F ||fj(X)T fj(X)||F
,

(6)
where ORM ∈ [0, 1]. fi and fj is orthogonal when ORM =
0. On the contrary, fi and fj is dependent when ORM = 1.
Therefore, ORM is negatively correlated to orthogonality.

Calculation Acceleration. Given a specific model, cal-
culating Eq. 6 involves the huge matrices. Suppose that
fi(X) ∈ RN×(Ci×Hi×Wi), fj(X) ∈ RN×(Cj×Hj×Wj), and
the dimension of features in the j-th layer is larger than that
of the i-th layer. Furthermore, the time complexity of com-
puting ORM(X, fi, fj) is O(NC2

jH
2
jW

2
j ). The huge ma-

trix occupies a lot of memory resources, and also increases
the time complexity of the entire algorithm by several orders
of magnitude. Therefore, we derive an equivalent form to ac-
celerate calculation. If we take Y = fi(X), Z = fj(X) as
an example, then Y Y T , ZZT ∈ RN×N . We have:

||ZTY ||2F =
〈
vec(Y Y T ), vec(ZZT )

〉
, (7)

where vec(·) represents the operation of flattening matrix
into vector. From Eq. 7, the time complexity of calculating
ORM(X, fi, fj) becomes O(N2CjHjWj) through the in-
ner product of vectors. When the number of samples N is
larger than the dimension of features C ×H ×W , the norm
form is faster to calculate thanking to lower time complex-
ity, vice versa. Specific acceleration ratio and the proof of
Eq. 7 are demonstrated in supplementary material.

1ORM is formally consistent with CKA. However, we pioneer
to discover its relationship with quantized model accuracy and con-
firm its validity in mixed precision quantization from the perspec-
tive of function orthogonality, and CKA explores the relationship
between hidden layers from the perspective of similarity. In other
words, CKA implicitly verifies the validity of ORM further.

Figure 3: Relationship between orthogonality and accuracy
for different quantization configurations on ResNet-18 and
MobileNetV2.

Mixed Precision Quantization
Effectiveness of ORM on Mixed Precision Quantization.
ORM directly indicates the importance of the layer in the
network, which can be used to decide the configuration of
the bit-width eventually. We conduct extensive experiments
to provide sufficient and reliable evidence for such claim.
Specifically, we first sample different quantization configu-
rations for ResNet-18 and MobileNetV2. Then finetuning to
obtain the performance. Meanwhile, the overall orthogonal-
ity of the sampled models is calculated separately. Interest-
ingly, we find that model orthogonality and performance are
positively correlated to the sum of ORM in Fig. 3. Naturally,
inspired by this finding, maximizing orthogonality is taken
as our objective function, which is employed to integrate the
model size constraints and construct a linear programming
problem to obtain the final bit configuration. The detailed
experiments are provided in the supplementary material.

For a specific neural network, we can calculate an orthog-
onality matrixK, where kij = ORM(X, fi, fj). Obviously,
K is a symmetric matrix and the diagonal elements are 1.
Furthermore, we show some ORM matrices on widely used
models with the different number of samples N in the sup-
plementary material. We add up the non-diagonal elements
of each row of the matrix,

γi =
L∑

j=1

kij − 1. (8)

Smaller γi means stronger orthogonality between fi and
other functions in the function set F , and it also means that
former i layers of the neural network are more independent.
Thus, we leverage the monotonically decreasing function
e−x to model this relationship:

θi = e−βγi , (9)

where β is a hyper-parameter to control the bit-width differ-
ence between different layers. We also investigate the other
monotonically decreasing functions (For the details, please
refer to the ablation study). θi is used as the importance fac-
tor for the former i layers of the network, then we define a
linear programming problem as follows:
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Decreasing ResNet-18 MobileNetV2 Changing
Function (%) (%) Rate

e−x 72.30 63.51 e−x

−logx 72.26 63.20 x−2

−x 72.36 63.0 0
−x3 71.71 - 6x
−ex - - ex

Table 1: The Top-1 accuracy (%) with different monotoni-
cally decreasing functions on ResNet-18 and MobileNetV2.

Model W bit Layer Block Stage Net

ResNet-18 5∗ 72.51 72.52 72.47 72.31
MobileNetV2 3∗ 69.37 69.10 68.86 63.99

Table 2: Top-1 accuracy (%) of different deconstruction
granularity. The activations bit-width of MobileNetV2 and
ResNet-18 are both 8. ∗ means mixed bit.

Objective: max
b

L∑
i=1

 bi
L− i+ 1

L∑
j=i

θj

 ,

Constraints:
L∑
i

M (bi) ≤ T .

(10)

M (bi) is the model size of the i-th layer under bi bit quan-
tization and T represents the target model size. b is the op-
timal bit configuration. Maximizing the objective function
means assigning the larger bit-width to more independent
layer, which implicitly maximizes the model’s representa-
tion capability. More details of network deconstruction, lin-
ear programming construction and the impact of β are pro-
vided in the supplementary material.

Note that it is extremely efficient to solve the linear pro-
gramming problem in Eq. 10, which only takes a few sec-
onds on a single CPU. In other words, our method is ex-
tremely efficient (9s on MobileNetV2) when comparing to
the previous methods (Yang and Jin 2021; Dong et al. 2020;
Li et al. 2021) that require lots of data or iterations for
searching. In addition, our algorithm can be combined as
a plug-and-play module with quantization-aware training or
post-training quantization schemes thanking to the high ef-
ficiency and low data requirements. In other words, our ap-
proach is capable of improving the accuracy of SOTA meth-
ods, where detail results are reported in the next section.

Experiments
In this section, we conduct a series of experiments to vali-
date the effectiveness of OMPQ on ImageNet. We first in-
troduce the implementation details of our experiments. Ab-
lation experiments about the monotonically decreasing func-
tion and deconstruction granularity are then conducted to
demonstrate the importance of each component. Finally, we

combine OMPQ with widely-used QAT and PTQ schemes,
which shows a better compression and the accuracy trade-off
comparing to the SOTA methods.

Implementation Details
The ImageNet dataset includes 1.2M training data and
50,000 validation data. We randomly obtain 64 training
data samples for ResNet-18/50 and 32 training data sam-
ples for MobileNetV2 following similar data pre-processing
(He et al. 2016) to derive the set of functions F . OMPQ
is extremely efficient which only needs a piece of Nvidia
Geforce GTX 1080Ti and a single Intel(R) Xeon(R) CPU
E5-2620 v4. For the models that have a large amount of pa-
rameters, we directly adopt the round function to convert the
bit-width into an integer after linear programming. Mean-
while, we adopt depth-first search (DFS) to find the bit con-
figuration that strictly meets the different constraints for a
small model, e.g. ResNet-18. The aforementioned processes
are extremely efficient, which only take a few seconds on
these devices. Besides, OMPQ is flexible, which is capable
of leveraging different search spaces with QAT and PTQ un-
der different requirements. Finetuning implementation de-
tails are listed as follows.

For the experiments on QAT quantization scheme, we use
two NVIDIA Tesla V100 GPUs. Our quantization frame-
work does not contain integer division or floating point num-
bers in the network. In the training process, the initial learn-
ing rate is set to 1e-4, and the batch size is set to 128. We
use cosine learning rate scheduler and SGD optimizer with
1e-4 weight decay during 90 epochs without distillation. We
fix the weight and activation of first and last layer at 8 bit
following previous works, where the search space is 4-8 bit.

For the experiments on PTQ quantization scheme, we per-
form OMPQ on an NVIDIA Geforce GTX 1080Ti and com-
bine it with the finetuning block reconstruction algorithm
BRECQ. In particular, the activation precision of all lay-
ers are fixed to 8 bit. In other words, only the weight bit
is searched, which is allocated in the 2-4 bit search space.

Ablation Study
Monotonically Decreasing Function. We then investigate
the monotonically decreasing function in Eq. 9. Obviously,
the second-order derivatives of monotonically decreasing
functions in Eq. 9 influence the changing rate of orthogonal-
ity differences. In other words, the variance of the orthog-
onality between different layers becomes larger as the rate
becomes faster. We test the accuracy of five different mono-
tonically decreasing functions on quantization-aware train-
ing of ResNet-18 (6.7Mb) and post-training quantization of
MobileNetV2 (0.9Mb). We fix the activation to 8 bit.

It can be observed from Table 1 that the accuracy grad-
ually decreases with the increasing of changing rate. For
the corresponding bit configuration, we also observe that a
larger changing rate also means a more aggressive bit allo-
cation strategy. In other words, OMPQ tends to assign more
different bits between layers under a large changing rate,
which leads to worse performance in network quantization.
Another interesting observation is the accuracy on ResNet-
18 and MobileNetV2. Specifically, quantization-aware train-
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(a) ResNet-18

Method W/A Int-Only Uniform Model Size (Mb) BOPs (G) Top-1 (%)

Baseline 32/32 % - 44.6 1, 858 73.09

RVQuant 8/8 % % 11.1 116 70.01

HAWQ-V3 8/8 " " 11.1 116 71.56

OMPQ ∗/8 " " 6.7 97 72.30

PACT▽ 5/5 % " 7.2 74 69.80

LQ-Nets▽ 4/32 % % 5.8 225 70.00

HAWQ-V3 ∗/∗ " " 6.7 72 70.22

OMPQ ∗/6 " " 6.7 75 72.08

(b) ResNet-50

Method W/A Int-Only Uniform Model Size (Mb) BOPs (G) Top-1 (%)

Baseline 32/32 % - 97.8 3, 951 77.72

PACT▽ 5/5 % " 16.0 133 76.70
LQ-Nets▽ 4/32 % % 13.1 486 76.40

RVQuant 5/5 % % 16.0 101 75.60

HAQ */32 % % 9.62 520 75.48

OneBitwidth */8 % " 12.3 494 76.70
HAWQ-V3 */* " " 18.7 154 75.39

OMPQ */5 " " 16.0 141 76.20

OMPQ */5 " " 18.7 156 76.28

Table 3: Mixed precision quantization results of ResNet-18 and ResNet-50. “Int-Only” means only including integer during
quantization process. “Uniform” represents uniform quantization. W/A is the bit-width of weight and activation. * indicates
mixed precision. ▽ represents not quantizing the first and last layers.

ing on ResNet-18 requires numerous data, which makes
the change of accuracy insignificant. On the contrary, post-
training quantization on MobileNetV2 is incapable of as-
signing bit configuration that meets the model constraints
when the functions are set to −x3 or −ex. To this end, we
select e−x as our monotonically decreasing function in the
following experiments.
Deconstruction Granularity. We study the impact of differ-
ent deconstruction granularity on model accuracy. Specifi-
cally, we test four different granularity including layer-wise,
block-wise, stage-wise and net-wise on the quantized-aware
training of ResNet-18 and the post-training quantization of
MobileNetV2. As reported in Table 2, the accuracy of the
two models is increasing with finer granularities. Such dif-
ference is more significant on MobileNetV2 due to the dif-
ferent sensitiveness between the point-wise and depth-wise
convolution. We thus employ layer-wise granularity in the
following experiments.

Quantization-Aware Training
We perform quantization-aware training on ResNet-18/50,
where the results and compress ratio are compared with
the previous unified quantization methods (Park, Yoo, and
Vajda 2018; Choi et al. 2018; Zhang et al. 2018a) and

mixed precision quantization (Wang et al. 2019; Chin et al.
2020; Yao et al. 2021). As shown in Table 3, OMPQ shows
the best trade-off between accuracy and compress ratio on
ResNet-18/50. For example, we achieve 72.08% on ResNet-
18 with only 6.7Mb and 75BOPs. Comparing with HAWQ-
V3(Yao et al. 2021), the difference of the model size is neg-
ligible (6.7Mb, 75BOPs vs 6.7Mb, 72BOPs). Meanwhile,
the model compressed by OMPQ is 1.86% higher than
HAWQ-V3(Yao et al. 2021). Similarly, we achieve 76.28%
on ResNet-50 with 18.7Mb and 156BOPs. OMPQ is 0.89%
higher than HAWQ-V3 with similar model size (18.7Mb,
156BOPs vs 18.7Mb, 154BOPs).

Post-Training Quantization
As we mentioned before, OMPQ can also be combined with
PTQ scheme to further improve the quantization efficiency
thanking to its low data dependence and search efficiency.
Previous PTQ method BRECQ (Li et al. 2021) proposes
block reconstruction quantization strategy to reduce quanti-
zation errors. We replace the evolutionary search algorithm
with OMPQ and combine it with the finetuning process of
BRECQ, which rapidly reduces the search cost and achieves
better performance. Experiment results are demonstrated in
Table 4, we can observe that OMPQ clearly shows the su-
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(a) ResNet-18

Method W/A Model Size (Mb) Top-1 (%) Searching Searching
Data Iterations

Baseline 32/32 44.6 71.08 - -

FracBits-PACT ∗/∗ 4.5 69.10 1.2M 120
OMPQ ∗/4 4.5 68.69 64 0
OMPQ ∗/8 4.5 69.94 64 0
ZeroQ 4/4 5.81 21.20 - -

BRECQ† 4/4 5.81 69.32 - -
PACT 4/4 5.81 69.20 - -

HAWQ-V3 4/4 5.81 68.45 - -
FracBits-PACT ∗/∗ 5.81 69.70 1.2M 120

OMPQ ∗/4 5.5 69.38 64 0
BRECQ ∗/8 4.0 68.82 1, 024 100
OMPQ ∗/8 4.0 69.41 64 0

(b) MobileNetV2

Method W/A Model Size (Mb) Top-1 (%) Searching Searching
Data Iterations

Baseline 32/32 13.4 72.49 - -

BRECQ ∗/8 1.3 68.99 1, 024 100
OMPQ ∗/8 1.3 69.62 32 0
FracBits ∗/∗ 1.84 69.90 1.2M 120
BRECQ ∗/8 1.5 70.28 1, 024 100
OMPQ ∗/8 1.5 71.39 32 0

Table 4: Mixed precision post-training quantization experiments on ResNet-18 and MobileNetV2. † means using distilled data
in the finetuning process.

Figure 4: Mixed precision quantization comparison of
OMPQ and BRECQ on ResNet-18 and MobileNetV2.

perior performance to unified quantization and mixed preci-
sion quantization methods under different model constraints.
In particular, OMPQ outperforms BRECQ by 0.52% on
ResNet-18 under the same model size (4.0Mb). OMPQ also
outperforms FracBits by 1.37% on MobileNetV2 with a
smaller model size (1.5Mb vs 1.8Mb).

We also compare OMPQ with BRECQ and unified quan-
tization, where the results are reported in Fig. 4. Obviously,

the accuracy of OMPQ is generally higher than BRECQ
on ResNet-18 and MobileNetV2 with different model con-
straints. Furthermore, OMPQ and BRECQ are both better
than unified quantization, which shows that mixed precision
quantization is superior.

Conclusion

In this paper, we have proposed a novel mixed precision al-
gorithm, termed OMPQ, to effectively search the optimal
bit configuration on the different constraints. Firstly, we de-
rive the orthogonality metric of neural network by general-
izing the orthogonality of the function to the neural network.
Secondly, we leverage the proposed orthogonality metric
to design a linear programming problem, which is capable
of finding the optimal bit configuration. Both orthogonal-
ity generation and linear programming solving are extremely
efficient, which are finished within a few seconds on a sin-
gle CPU and GPU. Meanwhile, OMPQ also outperforms
the previous mixed precision quantization and unified quan-
tization methods. Furthermore, we will explore the mixed
precision quantization method combining multiple knapsack
problem with the network orthogonality metric.
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