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Abstract

Shifting social opinions has far-reaching implications in vari-
ous aspects, such as public health campaigns, product market-
ing, and political candidates. In this paper, we study a prob-
lem of opinion optimization based on the popular Friedkin-
Johnsen (FJ) model for opinion dynamics in an unweighted
directed social network with n nodes and m edges. In the FJ
model, the internal opinion of every node lies in the closed
interval [0, 1], with 0 and 1 being polar opposites of opinions
about a certain issue. Concretely, we focus on the problem of
selecting a small number of k � n nodes and changing their
internal opinions to 0, in order to minimize the average opin-
ion at equilibrium. We then design an algorithm that returns
the optimal solution to the problem in O(n3) time. To speed
up the computation, we further develop a fast algorithm by
sampling spanning forests, the time complexity of which is
O(ln), with l being the number of samplings. Finally, we exe-
cute extensive experiments on various real directed networks,
which show that the effectiveness of our two algorithms is
similar to each other, both of which outperform several base-
line strategies of node selection. Moreover, our fast algorithm
is more efficient than the first one, which is scalable to mas-
sive graphs with more than twenty million nodes.

1 Introduction
As an important part of our lives, online social networks
and social media have dramatically changed the way peo-
ple propagate, exchange, and formulate opinions (Ledford
2020). Increasing evidence indicates that in contrast to tra-
ditional communications and interaction, in the current dig-
ital age online communications and discussions have signif-
icantly influenced human activity in an unprecedented way,
leading to universality, criticality and complexity of infor-
mation propagation (Notarmuzi et al. 2022). In order to un-
derstand mechanisms for opinion propagation and shaping, a
variety of mathematical models for opinion dynamics have
been established (Jia et al. 2015; Proskurnikov and Tempo
2017; Dong et al. 2018; Anderson and Ye 2019). Among
different models, the Friedkin-Johnsen (FJ) model (Friedkin
and Johnsen 1990) is a popular one, which has been applied
to many aspects (Bernardo et al. 2021; Friedkin et al. 2016).
For example, the concatenated FJ model has been recently
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adapted to capture and reproduce the complex dynamics be-
hind the Paris Agreement negotiation process, which ex-
plains why consensus was achieved in these multilateral in-
ternational negotiations (Bernardo et al. 2021).

A fundamental quantity for opinion dynamics is the over-
all opinion or average opinion, which reflects the public
opinions about certain topics of interest. In the past years,
the subject of modifying opinions in a graph has attracted
considerable attention in the scientific community (Gionis,
Terzi, and Tsaparas 2013; Abebe et al. 2018; Chan, Liang,
and Sozio 2019; Xu et al. 2020), since it has important im-
plications in diverse realistic situations, such as commer-
cial marketing, political election, and public health cam-
paigns. For example, previous work has formulated and
studied the problem of optimizing the overall or average
opinion for the FJ model in undirected graphs by chang-
ing a certain attribute of some chosen nodes, including inter-
nal opinion (Xu et al. 2020), external opinion (Gionis, Terzi,
and Tsaparas 2013), and susceptibility to persuasion (Abebe
et al. 2018; Chan, Liang, and Sozio 2019), and so on. Thus
far, most existing studies about modifying opinions focused
on undirected graphs. In this paper, we study the prob-
lem of minimizing or maximizing average opinion in di-
rected graphs (digraph), since they can better mimic real-
istic networks. Moreover, because previous algorithms for
unweighted graphs do not carry over to digraphs, we will
propose an efficient linear-time approximation algorithm to
solve the problem.

We adopt the discrete-time FJ model in a social network
modeled by a digraph G = (V,E) with n nodes and m arcs.
In the model, each node i ∈ V is endowed with an inter-
nal/innate opinion si in the interval [0, 1], where 0 and 1 are
two polar opposing opinions regarding a certain topic. More-
over, each node i ∈ V has an expressed opinion zi(t) at time
t. During the opinion evolution process, the internal opin-
ions of all nodes never change, while the expressed opinion
zi(t + 1) of any node i at time t + 1 evolves as a weighted
average of si and the expressed opinions of i’s neighbors at
time t. For sufficiently large t, the expressed opinion zi(t)
of every node i converges to an equilibrium opinion zi. We
address the following optimization problem OPINIONMIN
(or OPINIONMAX): Given a digraph G = (V,E) and a pos-
itive integer k � n, how to choose k nodes and change
their internal opinions to 0 (or 1), so that the average overall
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steady-state opinion is minimized (or maximized).
The main contributions of our work are as follows. We

formalize the problem OPINIONMIN (or OPINIONMAX) of
optimizing the average equilibrium opinion by optimally se-
lecting k nodes and modifying their internal opinions to 0 (or
1), and show that both problems are equivalent to each other.
We prove that the OPINIONMIN problem has an optimal so-
lution and give an exact algorithm, which returns the optimal
solution in O(n3) time. We then provide an interpretation
for the average equilibrium opinion from the perspective of
spanning converging forests, based on which and Wilson’s
algorithm we propose a sampling based fast algorithm. The
fast algorithm has an error guarantee for the main quantity
concerned, and has a time complexity of O(ln), where l is
the number of samplings. Finally, we perform extensive ex-
periments on various real networks, which shows that our
fast algorithm is almost as effective as the exact one, both
outperforming several natural baselines. Furthermore, com-
pared with the exact algorithm, our fast algorithm is more ef-
ficient, and scales to massive graphs with more than twenty
million nodes.

2 Related Work
In this section, we briefly review the existing work related to
ours.

Establishing mathematical models is a key step for under-
standing opinion dynamics and various models have been
developed in the past years (Jia et al. 2015; Proskurnikov
and Tempo 2017; Dong et al. 2018; Anderson and Ye 2019).
Among existing models, the FJ model (Friedkin and Johnsen
1990) is a classic one, which is a significant extension of the
DeGroot model (Degroot 1974). Due to its theoretical and
practical significance, the FJ model has received much inter-
est since its development. A sufficient condition for stability
of the FJ model was obtained in (Ravazzi et al. 2015), its
average innate opinion was inferred in (Das et al. 2013), and
the vector of its expressed opinions at equilibrium was de-
rived in (Das et al. 2013; Bindel, Kleinberg, and Oren 2015).
Moreover, some explanations of the FJ model were also pro-
vided (Ghaderi and Srikant 2014; Bindel, Kleinberg, and
Oren 2015). Finally, in recent years many variants or exten-
sions of the FJ model have been introduced and studied by
incorporating different factors affecting opinion formation,
such as peer pressure (Semonsen et al. 2019), cooperation
and competition (He et al. 2020; Xu et al. 2020), and inter-
actions among higher-order nearest neighbors (Zhang et al.
2020).

In addition to the properties, interpretations and ex-
tensions of the FJ model itself, some social phenom-
ena have been quantified based on the FJ model, such
as disagreement (Musco, Musco, and Tsourakakis 2018),
conflict (Chen, Lijffijt, and De Bie 2018), polariza-
tion (Matakos, Terzi, and Tsaparas 2017; Musco, Musco,
and Tsourakakis 2018), and controversy (Chen, Lijffijt, and
De Bie 2018), and a randomized algorithm approximately
computing polarization and disagreement was designed
in (Xu, Bao, and Zhang 2021), which was later used in (Tu
and Neumann 2022). Also, many optimization problems for

these quantities in the FJ model have been proposed and an-
alyzed, including minimizing polarization (Musco, Musco,
and Tsourakakis 2018; Matakos, Terzi, and Tsaparas 2017),
disagreement (Musco, Musco, and Tsourakakis 2018), and
conflict (Chen, Lijffijt, and De Bie 2018; Zhu and Zhang
2022), by different strategies such as modifying node’s in-
ternal opinions (Matakos, Terzi, and Tsaparas 2017), allo-
cating edge weights (Musco, Musco, and Tsourakakis 2018)
and adding edges (Zhu, Bao, and Zhang 2021). In order to
solve these problems, different algorithms were designed by
leveraging some mathematical tools, such as semidefinite
programming (Chen, Lijffijt, and De Bie 2018) and Lapla-
cian solvers (Zhu, Bao, and Zhang 2021).

Apart from polarization, disagreement, and conflict, an-
other important optimization objective for opinion dynam-
ics is the overall opinion or average opinion at equilibrium.
For example, based on the FJ model, maximizing or min-
imizing the overall opinion has been considered by using
different node-based schemes, such as changing the node’s
internal opinions (Xu et al. 2020), external opinions (Gio-
nis, Terzi, and Tsaparas 2013), and susceptibility to persua-
sion (Abebe et al. 2018; Chan, Liang, and Sozio 2019). On
the other hand, for the DeGroot model of opinion dynam-
ics in the presence of leaders, optimizing the overall opin-
ion or average opinion was also heavily studied (Luca et al.
2014; Yi, Castiglia, and Patterson 2021; Zhou and Zhang
2021). An identical problem was also considered for a vote
model (Yildiz et al. 2013), the asymptotic mean opinion of
which is similar to that in the extended DeGroot model (Yi,
Castiglia, and Patterson 2021). The vast majority of previous
studies concentrated on unweighted graphs, with the excep-
tion of a few works (Ahmadinejad et al. 2015; Yi, Castiglia,
and Patterson 2021), which addressed opinion optimization
problems in digraphs and developed approximation algo-
rithms with the time complexity of at least O(n2.373). In
comparison, our fast algorithm is more efficient since it has
linear time complexity.

3 Preliminary
This section is devoted to a brief introduction to some useful
notations and tools, in order to facilitate the description of
problem formulation and algorithms.

3.1 Directed Graph and Its Laplacian Matrix
Let G = (V,E) denote an unweighted simple directed graph
(digraph) with n = |V | nodes (vertices) and m = |E| di-
rected edges (arcs), where V = {v1, v2, · · · , vn} is the set
of nodes, and E = {(vi, vj) ∈ V × V } is the set of di-
rected edges. The existence of arc (vi, vj) ∈ E means that
there is an arc pointing from node vi to node vj . In what
follows, vi and i are used interchangeably to represent node
vi if incurring no confusion. An isolated node is a node with
no arcs pointing to or coming from it. Let N(i) denote the
set of nodes that can be accessed by node i. In other words,
N(i) = {j : (i, j) ∈ E}. A path P from node v1 to vk is
an alternating sequence of nodes and arcs v1,(v1, v2),v2,· · · ,
vj−1, (vj−1,vj), vj in which nodes are distinct and every
arc (vi, vi+1) is from vi to vi+1. A loop is a path plus an
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arc from the ending node to the starting node. A digraph is
(strongly) connected if for any pair nodes vx and vy , there
is a path from vx to vy , and there is a path from vy to vx at
the same time. A digraph is called weakly connected if it is
connected when one replaces any directed edge (i, j) with
two directed edges (i, j) and (j, i) in opposite directions. A
tree is a weakly connected graph with no loops. An isolated
node is considered as a tree. A forest is a particular graph
that is a disjoint union of trees.

The connections of digraph G = (V,E) are encoded in
its adjacency matrix A = (aij)n×n, with the element aij at
row i and column j being 1 if (vi, vj) ∈ E and aij = 0
otherwise. For a node i in digraph G, its in-degree d+i is
defined as d+i =

∑n
j=1 aji, and its out-degree d−i is defined

as d−i =
∑n
j=1 aij . In the sequel, we use di to represent the

out-degree d−i . The diagonal out-degree matrix of digraph G
is defined as D = diag(d1, d2, . . . , dn), and the Laplacian
matrix of digraph G is defined to be L = D−A. Let 1 and 0
be the two n-dimensional vectors with all entries being ones
and zeros, respectively. Then, by definition, the sum of all
entries in each row of L is equal to 0 obeying L1 = 0. Let
I be the n-dimensional identity matrix.

In a digraph G, if for any arc (i, j), the arc (j, i) exists, G is
reduced to an undirected graph. When G is undirected, aij =
aji holds for an arbitrary pair of nodes i and j, and thus
d+i = d−i holds for any node i ∈ V . Moreover, in undirected
graph G both adjacency matrix A and Laplacian matrix L of
G are symmetric, satisfying L1 = 0.

3.2 Friedkin-Johnsen Model on Digraphs
The Friedkin-Johnsen (FJ) model (Friedkin and Johnsen
1990) is a popular model for opinion evolution and forma-
tion. For the FJ opinion model on a digraph G = (V,E),
each node/agent i ∈ V is associated with two opinions: one
is the internal opinion si, the other is the expressed opinion
zi(t) at time t. The internal opinion si is in the closed in-
terval [0, 1], reflecting the intrinsic position of node i on a
certain topic, where 0 and 1 are polar opposites of opinions
regarding the topic. A higher value of si signifies that node
i is more favorable toward the topic, and vice versa. During
the process of opinion evolution, the internal opinion si re-
mains constant, while the expressed opinion zi(t) evolves at
time t+ 1 as follows:

zi(t+ 1) =
si +

∑
j∈N(i) aijzj(t)

1 +
∑
j∈N(i) aij

. (1)

Let s = (s1, s2, · · · , sn)> denote the vector of internal
opinions, and let z (t) = (z1(t), z2(t), · · · , zn(t))> denote
the vector of expressed opinions at time t.

Lemma 3.1 (Bindel, Kleinberg, and Oren 2015) As t ap-
proaches infinity, z (t) converges to an equilibrium vector
z = (z1, z2, · · · , zn)> satisfying z = (I + L)−1s .

Let ωij be the element at the i-th row and the j-th col-
umn of matrix Ω , (I + L)

−1, which is called the funda-
mental matrix of the FJ model for opinion dynamics (Gio-
nis, Terzi, and Tsaparas 2013). The fundamental matrix

has many good properties (Chebotarev and Shamis 1997,
1998). It is row stochastic, since

∑n
j=1 ωij = 1. Moreover,

0 ≤ ωji < ωii ≤ 1 for any pair of nodes i and j. The
equality ωji = 0 holds if and only if j 6= i and there is
no path from node j to node i; and ωii = 1 holds if and
only if the out-degree di of nodes i is 0. Then, according to
Lemma 3.1, for every node i ∈ V , its expressed opinion zi
is given by zi =

∑n
j=1 ωijsj , a convex combination of the

internal opinions for all nodes.

4 Problem Formulation
An important quantity for opinion dynamics is the over-
all expressed opinion or the average expressed opinion at
equilibrium, the optimization problem for which on the FJ
model has been addressed under different constraints (Gio-
nis, Terzi, and Tsaparas 2013; Ahmadinejad et al. 2015;
Abebe et al. 2018; Xu et al. 2020; Yi, Castiglia, and Patter-
son 2021). In this section, we propose a problem of minimiz-
ing average expressed opinion for the FJ opinion dynamics
model in a digraph, and design an exact algorithm optimally
solving the problem.

4.1 Average Opinion and Structure Centrality
For the FJ model in digraph G = (V,E), the overall ex-
pressed opinion is defined as the sum zsum of expressed
opinions zi of every node i ∈ V at equilibrium. By
Lemma 3.1, zi =

∑n
j=1 ωijsj and zsum =

∑n
i=1 zi =∑n

i=1

∑n
j=1 ωjisi. Given the vector for the equilibrium ex-

pressed opinions z , we use g(z ) to denote the average ex-
pressed opinion. By definition,

g(z ) =
1

n
zsum =

1

n

n∑
i=1

zi =
n∑
i=1

∑n
j=1 ωji

n
si . (2)

Since g(z ) = zsum/n, related problems and algorithms for
g(z ) and zsum are equivalent to each other. In what follows,
we focus on the quantity g(z ).

Equation (2) tells us that the average expressed opinion
g(z ) is determined by two aspects: the internal opinion of
every node, as well as the network structure characteriz-
ing interactions between nodes encoded in matrix Ω, both
of which constitute the social structure of opinion system
for the FJ model. The former is an intrinsic property of
each node, while the latter is a structure property of the net-
work, both of which together determine the opinion dynam-
ics system. Concretely, for the equilibrium expressed opin-
ion zi =

∑n
j=1 ωijsj of node i, ωij indicates the convex

combination coefficient or contribution of the internal opin-
ion for node j. And the average of the j-th column elements
of Ω, denoted by ρj , 1

n

∑n
i=1 ωij , measures the contribu-

tion of the internal opinion of node j to g(z ). We call ρj
as the structure centrality (Friedkin 2011) of node j in opin-
ion dynamics modelled by the FJ model, since it catches the
long-run structure influence of node j on the average ex-
pressed opinion. Note that matrix Ω is row stochastic and
0 ≤ ωij ≤ 1 for any pair of nodes i and j, 0 ≤ ρj ≤ 1 holds
for every node j ∈ V , and

∑n
j=1 ρj = 1.
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Using structure centrality, the average expressed opinion
g(z ) is expressed as g(z ) =

∑n
i=1 ρisi, which shows that

the average expressed opinion g(z ) is a convex combination
of the internal opinions of all nodes, with the weight for si
being the structure centrality ρi of node i.

4.2 Problem Statement
As shown above, for a given digraph G = (V,E), its node
centrality remains fixed. For the FJ model on G = (V,E)
with initial vector s = (s1, s2, · · · , sn)> of internal opin-
ions, if we choose a set T ⊂ V of k nodes and persuade
them to change their internal opinions to 0, the average equi-
librium opinion, denoted by gT (z ), will decrease. It is clear
that for T = ∅, g∅(z ) = g(z ). Moreover, for two node sets
H and T , if T ⊂ H ⊂ V , then gT (z ) ≥ gH(z ). Then the
problem OPINIONMIN of opinion minimization arises natu-
rally: How to optimally select a set T with a small number of
k nodes and change their internal opinions to 0, so that their
influence on the overall equilibrium opinion is maximized.
Mathematically, it is formally stated as follows.

Problem 1 (OpinionMin) Given a digraph G = (V,E), a
vector s of internal opinions, and an integer k � n, we aim
to find the set T ⊆ V with |T | = k nodes, and change the
internal opinions of these chosen k nodes to 0, so that the
average equilibrium opinions is minimized. That is,

T = arg min
U⊆V,|U |=k

gU (z ). (3)

Similarly, we can define the problem OPINIONMAX for
maximizing the average equilibrium opinion by optimally
selecting a set T of k nodes and changing their internal opin-
ions to 1. The goal of problem OPINIONMIN is to drive
the average equilibrium opinion gT (z ) towards the polar
value 0, while the of goal of problem OPINIONMAX is to
drive gT (z ) towards polar value 1. Although the definitions
and formulations of problems OPINIONMIN and OPINION-
MAX are different, we can prove that they are equivalent to
each other. In the sequel, we only consider the OPINIONMIN
problem.

4.3 Optimal Solution
Although the OPINIONMIN problem is seemingly combina-
torial, we next show that there is an exact algorithm opti-
mally solving the problem in O(n3) time.

Theorem 4.1 The optimal solution to the OPINIONMIN
problem is the set T of k nodes with the largest product
of structure centrality and internal opinion. That is, for any
node i ∈ T and any node j ∈ V \ T , ρisi ≥ ρjsj .
Proof. Since the modifying of the internal opinions does
not change the structure centrality ρi of any node i, the op-
timal set T of nodes for the OPINIONMIN problem satisfies

T = arg min
U⊆V,|U |=k

∑
i/∈U

ρisi = arg max
U⊆V,|U |=k

∑
i∈U

ρisi,

which finishes the proof. �
Theorem 4.1 shows that the key to solve PROBLEM 1 is

to compute ρi for every node i. In Algorithm 1, we present

Algorithm 1: EXACT(G, s, k)

Input : A digraph G = (V,E); an internal opinion
vector s; an integer k obeying relation
1 ≤ k ≤ |V |

Output : T : A subset of V with |T | = k
1 Initialize solution T = ∅
2 Compute Ω = (I + L)−1

3 Compute ρisi = 1
n

∑n
j=1 ωjisi for each i ∈ V

4 for t = 1 to k do
5 Select i s. t. i← arg maxi∈V \T ρisi
6 Update solution T ← T ∪ {i}
7 return T .

an algorithm EXACT, which computes ρi exactly. The algo-
rithm first computes the inverse Ω of matrix I + L, which
takesO(n3) time. Based on the obtained Ω = (ωij)n×n, the
algorithm then computes ρisi for each i ∈ V in O(n2) time,
by using the relation ρisi = 1

n

∑n
j=1 ωjisi. Finally, Algo-

rithm 1 constructs the set T of k nodes with the largest value
of ρisi, which takes O(kn) time. Therefore, the total time
complexity of Algorithm 1 is O(n3).

Due to the high computation complexity, Algorithm 1 is
computationally infeasible for large graphs. In the next sec-
tion, we will give a fast algorithm for PROBLEM 1, which is
scalable to graphs with twenty million nodes.

5 Fast Sampling Algorithm
In this section, we develop a linear time algorithm to approx-
imately evaluate the structure centrality of every node and
solve the OPINIONMIN problem by using the connection of
the fundamental matrix Ω and the spanning converging for-
est. Our fast algorithm is based on the sampling of spanning
converging forests, the ingredient of which is an extention of
Wilson’s algorithm (Wilson 1996; Wilson and Propp 1996).

5.1 Interpretation of Structure Centrality
For a digraph G = (V,E), a spanning subgraph of G is a
subgraph of G with node set being V and edge set being a
subset of E. A converging tree is a weakly connected di-
graph, where one node, called the root node, has out-degree
0 and all other nodes have out-degree 1. An isolated node is
considered as a converging tree with the root being itself. A
spanning converging forest of digraph G is a spanning sub-
digraph of G, where all weakly connected components are
converging trees. A spanning converging forest is in fact an
in-forest in (Agaev and Chebotarev 2001; Chebotarev and
Agaev 2002).

Let F be the set of all spanning converging forests of di-
graph G. For a spanning converging forest φ ∈ F , let Vφ and
Eφ denote its node set and arc set, respectively. By defini-
tion, for each node i ∈ Vφ, there is at most one node j ∈ Vφ
obeying (i, j) ∈ Eφ. For a spanning converging forest φ,
define R(φ) = {i : (i, j) /∈ φ, ∀j ∈ Vφ}, which is actu-
ally the set of roots of all converging trees that constitute φ.
Since each node i in φ belongs to a certain converging tree,
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we define function rφ(i) : V → R(φ) to map node i to the
root of the converging tree including i. Thus, if rφ(i) = j
we conclude that j ∈ R(φ), and nodes i and j belong to the
same converging tree in φ. Define Fij to be the set of those
spanning converging forests, where for each spanning con-
verging forest nodes i and j are in the same converging tree
rooted at node j. That is, Fij = {φ : rφ(i) = j, φ ∈ F}.
Then, we have Fii = {φ : i ∈ R(φ), φ ∈ F}.

Spanning converging forests have a close connection with
the fundamental matrix of the FJ model, which is in fact the
in-forest matrix of a digraph G introduced (Chebotarev and
Shamis 1997, 1998). Using the approach in (Chaiken 1982),
it is easy to derive that the entry ωij of the fundamental ma-
trix Ω can be written as ωij = |Fij |/|F|.

With the notions mentioned above, we now provide an
interpretation and another expression of structure centrality
ρi for any node i. For the convenience of description, we
introduce some more notations. For a node i ∈ V and a
spanning converging forest φ ∈ F of digraph G = (V,E),
let M(φ, i) be a set defined by M(φ, i) = {j : rφ(j) = i}.
By definition, for any φ ∈ F , if i /∈ R(φ), M(φ, i) = ∅; if
i ∈ R(φ), |M(φ, i)| is equal to the number of nodes in the
converging tree in φ, whose root is node i. For two nodes i
and j and a spanning converging forest φ, define s(φ, j, i) as
a function taking two values, 0 or 1:

s(φ, j, i) =

{
1 if rφ(j) = i,

0 if rφ(j) 6= i.
(4)

Then, the structure centrality ρi of node i is recast as

ρi =
1

n

n∑
j=1

ωji =
1

n|F|

n∑
j=1

|Fji| =
1

n|F|

n∑
j=1

∑
φ∈F

s(φ, j, i)

=
1

n|F|
∑
φ∈F

n∑
j=1

s(φ, j, i) =
1

n|F|
∑
φ∈F

|M(φ, i)|, (5)

which indicates that ρi is the average number of nodes in the
converging trees rooted at node i in all φ ∈ F , divided by n.

5.2 An Expansion of Wilson’s Algorithm
We first give a brief introduction to the loop-erasure
operation to a random walk (Lawler and Gregory
1980), which is a process obtained from the ran-
dom walk by performing an erasure operation on its
loops in chronological order. Concretely, for a ran-
dom walk P = v1, (v1, v2), v2, . . . , vk−1, (vj−1, vj), vj ,
the loop-erasure PLE to P is an alternating sequence
ṽ1, (ṽ1, ṽ2), ṽ2 . . . , ṽq−1, (ṽq−1, ṽq), ṽq of nodes and arcs
obtained inductively in the following way. First set ṽ1 = v1
and append ṽ1 to PLE. Suppose that sequence ṽ1, (ṽ1, ṽ2),
ṽ2, . . ., ṽh−1, (ṽh−1, ṽh), ṽh has been added to PLE for
some h ≥ 1. If ṽh = vj , then q = h and ṽh is the
last node in PLE. Otherwise, define ṽh+1 = vr+1, where
r = max{i : vi = ṽh}.

Based on the loop-erasure operation on a random walk,
Wilson proposed an algorithm to generate a uniform span-
ning tree rooted at a given node (Wilson 1996; Wilson and
Propp 1996). Following the three steps below, we introduce

the Wilson’s algorithm to get a spanning tree τ = (Vτ , Eτ )
of a connected digraph G = (V,E), which is rooted at node
u. (i) Set τ = ({u}, ∅) with Vτ = {u}. Choose i ∈ V \ Vτ .
Then create an unbiased random walk starting at node i. At
each time step, the walk jumps to a neighbor of current po-
sition with identical probability. The walk stops, when the
whole walk P reaches some node in τ . (ii) Perform loop-
erasure operation on the random walk P to get PLE = ṽ1,
(ṽ1, ṽ2), ṽ2, . . ., (ṽq−1, ṽq), ṽq , and add the nodes and arcs
in PLE to τ . Then update Vτ with the nodes in τ . (iii) If
Vτ 6= V , repeat step (ii), otherwise end circulation and re-
turn τ .

For a digraph G = (V,E), connected or disconnected, we
can also apply Wilson’s Algorithm to get a spanning con-
verging forest φ0 ∈ F , by using the method similar to that
in (Avena and Gaudillière 2018; Pilavcı et al. 2021), which
includes the following three steps. (i) We construct an aug-
mented digraph G′ = (V ′, E′) of G = (V,E), obtained
from G = (V,E) by adding a new node ∆ and some new
edges. Concretely, in G′ = (V ′, E′), V ′ = V ∪ {∆} and
E′ = E ∪ {(i,∆)} ∪ {(∆, i)} for all i ∈ V . (ii) Using Wil-
son’s algorithm to generate a uniform spanning tree τ for the
augmented graph G′, whose root node is ∆. (iii) Deleting all
the edges (i,∆) ∈ τ we get a spanning forest φ0 ∈ F of G.
Assigning R(φ0) = {i : (i,∆) ∈ τ} as the set of roots for
trees φ0 makes φ0 become a converging spanning forest of
G.

The spanning converging forest φ0 obtained using the
above steps is uniformly selected from F (Avena and
Gaudillière 2018). In other words, for any spanning converg-
ing forest φ in F , we have P(φ0 = φ) = 1/|F|. Following
the three steps above for generating a uniform spanning con-
verging forest of digraph G, in Algorithm 2 we present an
algorithm to generate a uniform spanning converging forest
φ of digraph G, which returns a list RootIndex with the i-th
element RootIndex[i] recording the root of the tree in φ node
i belongs to. That is, RootIndex[i]=rφ(i).

Below we give a detailed description for Algorithm 2.
InForest is a list recording whether a node is in the forest
or not in the random walk process. In line 1, we initialize
InForest[i] to false, for all i ∈ V . If node i is not a root
of any tree in the forest φ, Next[i] is the node j satisfying
(i, j) ∈ φ; if node i belongs to the root set R(φ), Next[i]
= −1. We initialize Next[i] = −1 in line 2. We start a ran-
dom walk at node u in the extended graph G′ in line 5 to
create a forest branch of G. The probability of visiting node
∆ starting from u is 1/(1 + du). In line 7, we generate a
random real number in (0, 1) using function RAND(). If the
random number satisfies the inequality in line 8, the walk
jumps to node ∆ at this step. According to the previous anal-
ysis, in extended graph G′, those nodes that point directly
to ∆ belong to the root set R(φ). In lines 9-11, we set the
node u as a root node and update InForest[u], Next[u], and
RootIndex[u]. If the inequality in line 8 does not hold, we
use function RANDOMSUCCESSOR(u,G) to return a node
randomly selected from the neighbors of u in G in line 13.
Then we update u to Next[u] and go back to line 6. The for
loop stops when the random walk goes to a node already
existing in the forest. When the loop stops, we get a newly
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Algorithm 2: RANDOMFOREST(G)

Input : G : a digraph
Output : RootIndex : a vector recording the root

index of every node
1 InForest[i]← false , i = 1, 2, . . . , n
2 Next[i]← −1 , i = 1, 2, . . . , n
3 RootIndex[i]← 0, i = 1, 2, . . . , n
4 for i = 1 to n do
5 u← i
6 while not InForest[u] do
7 seed← RAND()
8 if seed ≤ 1

1+du
then

9 InForest[u]← true
10 Next[u]← −1
11 RootIndex[u]← u

12 else
13 Next[u]← RANDOMSUCCESSOR(u,G)
14 u← Next[u]

15 RootNow← RootIndex[u]
16 u← i
17 while not InForest[u] do
18 InForest[u]← true
19 RootIndex[u]← RootNow
20 u← Next[u]

21 return RootIndex

created branch. In lines 15-20, we add the loop-erasure of
the branch to the forest and then update RootIndex.

We now analyze the time complexity of Algorithm 2. Be-
fore doing this, we present some properties of the diagonal
element ωii of matrix Ω for all nodes i ∈ V .
Lemma 5.1 For any i = 1, 2, . . . , n, the diagonal element
ωii of matrix Ω sastisfies 1

1+di
≤ ωii ≤ 2

2+di
.

Lemma 5.2 For any unweighted digraph G = (V,E), the
expected time complexity of Algorithm 2 is O(n).

Proof. Wilson showed that the expected running time of
generating a uniform spanning tree of a connected digraph
G rooted at node u is equal to a weighed average of com-
mute times between the root and the other nodes (Wilson
1996). Marchal rewrote this average of commute times in
terms of graph matrices in Proposition 1 in (Marchal 2000).
According to Marchal’s result, the expected running time of
Algorithm 2 is equal to the trace

∑n
i=1 ωii(1 +di) of matrix

Ω(I +D). Using Lemma 5.2, we have
∑n
i=1 ωii(1 +di) ≤∑n

i=1
2+2di
2+di

≤ 2n
(

1− 1
n+1

)
. Thus, the expected time

complexity of Algorithm 2 is O(n). �

5.3 Fast Approximation Algorithm
Here by using (5), we present an efficient sampling-based al-
gorithm FAST to estimate ρi for all i ∈ V and approximately
solve the problem OPINIONMIN in linear time.

The ingredient of the approximation algorithm FAST is
the variation of Wilson’s algorithm introduced in the preced-

Algorithm 3: FAST (G, k, l)
Input : G : a digraph

k : size of the target set
l : number of generated spanning forests

Output : T̂ : the target set
1 Initialize : T̂ ← ∅, ρ̂i ← 0, i = 1, 2, . . . , n
2 for t = 1 to l do
3 RootIndex← RANDOMFOREST(G)
4 for i = 1 to n do
5 u← RootIndex[i]
6 ρ̂u ← ρ̂u + 1

7 ρ̂← ρ̂/nl % ρ̂ = (ρ̂1, ρ̂2, . . . , ρ̂n)>

8 for i = 1 to k do
9 u← arg max

q∈V \T̂
ρ̂qsq

10 T̂ ← T̂
⋃
{u}

11 return T̂

ing subsection. The details of algorithm FAST are described
in Algorithm 3. First, by applying Algorithm 2 we generate
l random spanning converging forests φ1, φ2, . . . , φl. Then,
we compute ρ̂i = 1

nl

∑l
j=1 |M(φj , i)| for all i ∈ V . Note

that each of these l spanning converging forests has the same
probability of being created from all spanning converging
forests in F (Avena and Gaudillière 2018). Thus, we have
E
(

1
nl

∑l
j=1 |M(φj , i)|

)
= ρi, which implies that ρ̂i in

Algorithm 3 is an unbiased estimation of ρi. Then, ρ̂isi is
an unbiased estimation of ρisi. Finally, we choose k nodes
from V with the top-k values of ρ̂isi.

Theorem 5.3 The time complexity of Algorithm 3 is O(ln).

Running Algorithm 2 requires determining the number of
sampling l, which determines the accuracy of ρ̂isi as an ap-
proximation of ρisi. In general, the larger the value of l, the
more accurate the estimation of ρ̂isi to ρisi. Next, we bound
the number l of required samplings of spanning converging
forests to guarantee a desired estimation precision of ρ̂isi by
applying the Hoeffding’s inequality (Hoeffding and Wassily
1963).

We now demonstrate that with a proper choice of l, ρ̂isi
as an estimator of ρisi has an approximation guarantee for
all i ∈ V . Specifically, we establish an (ε, δ)-approximation
of ρ̂isi: for any small parameters ε > 0 and δ > 0, the
approximation error ρ̂isi is bounded by ε with probability at
least 1− δ. Theorem 5.4 shows how to properly choose l so
that ρ̂isi is an (ε, δ)-approximation of ρisi.

Theorem 5.4 For any ε > 0 and δ ∈ (0, 1), if l is
chosen obeying l =

⌈
1

2ε2 ln 2
δ

⌉
, then for any i ∈ V ,

P {|ρ̂[i]si − ρisi| > ε} ≤ δ.

Recall that our problem aims to determine the optimal set
T , which consists of k nodes with the largest ρisi. To avoid
calculating ρi directly, we propose a fast algorithm (Algo-
rithm 3), which returns a set T̂ containing top k nodes of the
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Figure 1: Average of equilibrium expressed opinions for our two algorithms EXACT and FAST, and four baseline heuristics
RANDOM (Rand), IN-DEGREE (ID), INTERNAL OPINION (IO), and EXPRESSED OPINION (EO), on four directed real networks:
(a) Filmtrust, (b) Dblp, (c) Humanproteins, and (d) P2p-Gnutella08.

highest ρ̂[i]si. Based on the result of Theorem 5.4, we can
get a union bound between gT̂ (z ) and gT (z ), as stated in
the following theorem.
Theorem 5.5 For given parameters k, ε, δ, if l is chosen ac-
cording to Theorem 5.4, the inequality |gT̂ (z ) − gT (z )| <
2kε holds with high probability.

Proof. According to Theorem 5.4, we suppose now in-
equalities |ρ̂[i]si − ρisi| > ε hold for any i ∈ V . Since the
nodes in set T have the top value of ρisi, we have

gT̂ (z )−gT (z ) =
∑
i/∈T̂

ρisi−
∑
i/∈T

ρisi =
∑
i∈T

ρisi−
∑
i∈T̂

ρisi ≥ 0.

By Theorem 5.4, one obtains

gT̂ (z )− gT (z ) ≤
∑
i∈T

ρ̂[i]si −
∑
i∈T̂

ρisi + kε

≤
∑
i∈T̂

ρ̂[i]si −
∑
i∈T̂

ρisi + kε ≤ 2kε,

which completes the proof. �
Therefore, for any fixed k, the number of samples does

not depend on n.

6 Experiments
In this section, we conduct extensive experiments on vari-
ous real-life directed networks, in order to evaluate the per-
formance of our two algorithms EXACT and FAST in terms
of effectiveness and efficiency. The data sets of selected real
networks are publicly available in the KONECT (Kunegis
2013) and SNAP (Leskovec and Sosič 2016), the detailed
information of which is presented in the first three columns
of Table 1. In the dataset networks, the number n of nodes
ranges from about 1 thousand to 24 million, and the num-
ber m of directed edges ranges from about 2 thousand to 58
million. All our experiments are programmed in Julia using
a single thread, and are run on a machine equipped with 4.2
GHz Intel i7-7700 CPU and 32GB of main memory.

6.1 Effectiveness
We first compare the effectiveness of our algorithms EX-
ACT and FAST with four baseline schemes for node selec-
tion: RANDOM, IN-DEGREE, INTERNAL OPINION, and EX-
PRESSED OPINION. RANDOM selects k nodes at random.
IN-DEGREE chooses k nodes with the largest in-degree,
since a node with a high in-degree may has a strong influ-
ence on other nodes (Xu et al. 2020). For INTERNAL OPIN-
ION and EXPRESSED OPINION, they have been used in (Gio-
nis, Terzi, and Tsaparas 2013). INTERNAL OPINION returns
k nodes with the largest original internal opinions, while
EXPRESSED OPINION selects k nodes with the largest equi-
librium expressed opinions in the FJ model corresponding to
the original internal opinion vector.

In our experiment, the number l of samplings in algo-
rithm FAST is set be 500. For each node i, its internal
opinion si is generated uniformly in the interval [0, 1]. For
each real network, we first calculate the equilibrium ex-
pressed opinions of all nodes and their average opinion for
the original internal opinions. Then, using our algorithms
EXACT and FAST and the four baseline strategies, we se-
lect k = 10, 20, 30, 40, 50 nodes and change their internal
opinions to 0, and recompute the average expressed opinion
associated with the modified internal opinions. We also exe-
cute experiments for other distributions of internal opinions.
For example, we consider the case that the internal opinions
follow a normal distribution with mean 0 and variance 1.
For this case, we perform a linear transformation, mapping
the internal opinions into interval [0, 1], so that the smallest
internal opinion is mapped to 0, while the largest internal
opinion corresponds to 1. As can be seen from Figure 1, for
each network algorithm FAST always returns a result close
to the optimal solution corresponding to algorithm EXACT
for both uniform distribution and standardized normal dis-
tribution, outperforming the four other baseline strategies.

For the cases that internal opinions obey power-law distri-
bution or exponential distribution, here we do not report the
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Network Nodes Arcs Running time (s) for EXACT and FAST Relative error (×10−3)
Optimal l = 500 l = 1000 l = 2000 l = 500 l = 1000 l = 2000

Filmtrust 874 1,853 0.023 0.019 0.037 0.042 1.08 0.55 0.11
Humanproteins 2,239 6,452 0.251 0.032 0.039 0.056 0.19 0.16 0.03
Adolescenthealth 2,539 12,969 0.354 0.034 0.068 0.134 0.72 0.59 0.09
P2p-Gnutella08 6,301 20,777 4.825 0.067 0.123 0.244 0.83 0.64 0.04
Wiki-Vote 7,115 103,689 7.405 0.078 0.156 0.312 1.13 0.87 0.13
Dblp 12,590 49,744 40.870 0.106 0.210 0.419 0.38 0.13 0.08
Wikipedialinks 17,649 296,918 110.744 0.248 0.477 0.932 1.32 0.97 0.06
Twitterlist 23,370 33,101 259.484 0.127 0.250 0.498 0.25 0.12 0.01
P2p-Gnutella31 62,586 147,892 - 0.628 1.236 2.550 - - -
Soc-Epinions 75,879 508,837 - 1.260 2.501 4.973 - - -
Email-EuAll 265,009 418,956 - 3.016 5.929 11.844 - - -
Stanford 281,903 2,312,500 - 7.474 14.908 29.815 - - -
NotreDame 325,729 1,469,680 - 4.823 9.574 19.232 - - -
BerkStan 685,230 7,600,600 - 14.021 28.009 56.130 - - -
Google 875,713 5,105,040 - 26.583 53.655 106.005 - - -
NorthwestUSA 1,207,940 2,820,770 - 27.758 55.509 110.410 - - -
WikiTalk 2,394,380 5,021,410 - 20.277 37.622 75.105 - - -
Greatlakes 2,758,120 6,794,810 - 64.391 128.167 255.147 - - -
FullUSA 23,947,300 57,708,600 - 559.147 1116.550 2230.770 - - -

Table 1: The running time and the relative error of Algorithms 1 and 3 on real networks for various sampling number l.

results since they are similar to that observed in Figure 1.

6.2 Efficiency and Scalability

As shown above, algorithm FAST has similar effectiveness
to that of algorithm EXACT. Below we will show that algo-
rithm FAST is more efficient than algorithm EXACT. To this
end, in Table 1 we compare the performance of algorithms
EXACT and FAST. First, we compare the running time of
the two algorithms on the real-life directed networks listed in
Table 1. For our experiment, the internal opinion of all nodes
in each network obeys uniform distribution from [0, 1], k is
equal to 50, and l is chosen to be 500, 1000, and 2000. As
shown in Table 1, FAST is significantly faster than EXACT
for all l, which becomes more obvious when the number of
nodes increases. For example, EXACT fails to run on the last
11 networks in Table 1, due to time and memory limitations.
In contrast, FAST still works well in these networks. Partic-
ularly, algorithm FAST is scalable to massive networks with
more than twenty million nodes, e.g., FullUSA with over
2.9× 107 nodes.

Table 1 also reports quantitative comparison of the effec-
tiveness between algorithms EXACT and FAST. Let gT and
gT̂ denote the average opinion obtained, respectively, by al-
gorithms EXACT and FAST, and let γ = |gT − gT̂ |/gT be
the relative error of gT̂ with respect to gT . The last three
columns of Table 1 present the relative errors for different
real networks and various numbers l of samplings. From
the results, we can see that for all networks and different
l, the relative error γ is negligible, with the largest value
being less than 0.0014. Moreover, for each network, γ is
decreased when l increases. This again indicates that the re-
sults returned by FAST are very close to those corresponding
to EXACT. Therefore, algorithm FAST is both effective and
efficient, and scales to massive graphs.

7 Conclusions

In this paper, we studied how to optimize social opinions
based on the Friedkin-Johnsen (FJ) model in an unweighed
directed social network with n nodes and m edges, where
the internal opinion si, i = 1, 2, · · · , n, of every node i is
in interval [0, 1]. We concentrated on the problem of min-
imizing the average of equilibrium opinions by selecting a
set U of k � n nodes and modifying their internal opinions
to 0. Although the problem seems combinatorial, we proved
that there is an algorithm EXACT solving it in O(n3) time,
which returns the k optimal nodes with the top k values of
ρisi, i = 1, · · · , n, where ρi is the structure centrality of
node i.

Although algorithm EXACT avoids the naı̈ve enumeration
of all

(
n
k

)
cases for set U , it is not applicable to large graphs.

To make up for this deficiency, we proposed a fast algorithm
for the problem. To this end, we provided an interpretation
of ρi in terms of rooted spanning converging forests, and
designed a fast sampling algorithm FAST to estimate ρi for
all nodes by using a variant of Wilson’s Algorithm. The al-
gorithm simultaneously returns k nodes with largest values
of ρisi in O(ln) time, where l denotes the number of sam-
plings. Finally, we performed experiments on many real di-
rected networks of different sizes to demonstrate the perfor-
mance of our algorithms. The results show that the effec-
tiveness of algorithm FAST is comparable to that of algo-
rithm EXACT, both of which are better than the baseline al-
gorithms. Furthermore, relative to EXACT, FAST is more ef-
ficient, since is FAST is scalable to massive graphs with over
twenty million nodes, while EXACT only applies to graphs
with less than tens of thousands of nodes. It is worth men-
tioning that it is easy to extend or modify our algorithm to
weighed digraphs and apply it to solve other optimization
problems for opinion dynamics.
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