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Abstract

Decision diagrams for classification have some notable ad-
vantages over decision trees, as their internal connections can
be determined at training time and their width is not bound
to grow exponentially with their depth. Accordingly, decision
diagrams are usually less prone to data fragmentation in inter-
nal nodes. However, the inherent complexity of training these
classifiers acted as a long-standing barrier to their widespread
adoption. In this context, we study the training of optimal de-
cision diagrams (ODDs) from a mathematical programming
perspective. We introduce a novel mixed-integer linear pro-
gramming model for training and demonstrate its applica-
bility for many datasets of practical importance. Further, we
show how this model can be easily extended for fairness, par-
simony, and stability notions. We present numerical analyses
showing that our model allows training ODDs in short com-
putational times, and that ODDs achieve better accuracy than
optimal decision trees, while allowing for improved stability
without significant accuracy losses.

Introduction

Decision diagrams, also known as decision graphs or deci-
sion streams, have a long history in logic synthesis and for-
mal circuit verification (Lee 1959; Bryant 1986, 1992) as
well as in optimization (Behle 2007; Bergman et al. 2016;
Lange and Swoboda 2021) and artificial intelligence top-
ics such as planning (Sanner, Uther, and Delgado 2010;
Castro et al. 2019), knowledge compilation (Abio et al.
2012; Lai, Liu, and Wang 2013; Serra 2020), and con-
straint propagation (Andersen et al. 2007; Perez and Régin
2015; Verhaeghe, Lecoutre, and Schaus 2018). In machine
learning, decision diagrams have recurrently emerged as
a possible classification model (Oliver 1993; Oliveira and
Sangiovanni-Vincentelli 1996; Mues et al. 2004; Shotton
et al. 2013; Ignatov and Ignatov 2018) or as a by-product
of model compression algorithms applied on decision trees
(Breslow and Aha 1997; Gossen and Steffen 2019; Choud-
hary et al. 2020). A decision diagram for classification is
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represented as a rooted directed acyclic graph in which each
internal node represents a splitting hyperplane, and each ter-
minal node is uniquely associated to a class. The topology
of the graph remains a free parameter of the model, such that
decision diagram learning requires to jointly determine the
splitting hyperplanes and the node-connecting arcs.

Decision diagrams possess notable advantages over de-
cision trees. Firstly, their width is not bound to grow ex-
ponentially with their depth, which allows training deep
but narrow decision diagrams without quickly facing is-
sues of data fragmentation (Shotton et al. 2013; Ignatov
and Ignatov 2018). Moreover, additional degrees of free-
dom in their topology design permit to express a richer
set of concepts and to achieve better model compression in
memory-constrained computing environments (Breslow and
Aha 1997; Kumar, Goyal, and Varma 2017).

Despite these advantages, decision diagrams have been
more rarely used than decision trees, as learning them re-
mains inherently complex. A decision diagram topology
cannot be easily optimized by construction or local opti-
mization algorithms based on impurity measures. However,
recent enhancements in global optimization techniques for
decision tree training motivate us to reevaluate this issue.
Indeed, optimal decision tree training through mathematical
programming is becoming practical due to the formidable
progress of hardware and mixed-integer linear programming
solvers, which collectively led to speed-ups as high as 10!
between 1991 and 2015—most of which due to algorithmic
improvements rather than hardware (Bixby 2012). In view of
this, we reevaluate the problem of searching for optimal de-
cision diagrams (ODDs) through modern combinatorial op-
timization lenses and propose new mathematical models and
efficient solution techniques to learn ODDs. Specifically, our
contributions are threefold:

1. We propose the first mixed-integer linear program
(MILP) to train decision diagrams for classification. This
model effectively represents the decision diagram topol-
ogy and the flow of samples within it, employing a lim-
ited number of binary variables. In practice, it includes
exponentially fewer binary variables than (Bertsimas and
Dunn 2017) when applied to decision tree topologies.



Furthermore, we include additional symmetry-breaking
constraints that speed up the solution process, and pro-
vide efficient heuristic search strategies to obtain good
primal solutions quickly.
We conduct an extensive computational study to evalu-
ate our approach’s scalability and compare the resulting
decision diagrams with classical decision trees. We ob-
serve that training ODDs requires a computational effort
comparable to optimal decision-tree training but leads to
more parsimonious and accurate models.

3. As our MILP semantic permits to express various addi-
tional constraints with minimal adaptation, we discuss
possible extensions to capture fairness, parsimony and
stability requirements. We show the efficacy of such ex-
tensions in our numerical study for the stability case.

Related Work

Optimal training of decision trees. Standard construc-
tion algorithms for decision-tree training based on local im-
purity measures are not guaranteed to find the most accurate
tree of a given size. To circumvent this issue, several works
have been focused on global optimization algorithms. Opti-
mal decision-tree training is known to be NP-hard (Hyafil
and Rivest 1976), but solution methods for this problem
went a long way from early dynamic programming algo-
rithms (Meisel and Michalopoulos 1973; Payne and Meisel
1977) to modern solution approaches. Nowadays, these al-
gorithms can find optimal trees for datasets with thousands
of samples and hundreds of features (Bertsimas and Dunn
2017; Demirovi¢ et al. 2020; Firat et al. 2020).

Carrizosa, Molero-Rio, and Morales (2021) recently con-
ducted a comprehensive survey of mathematical program-
ming approaches for optimal decision-tree training. Among
the works surveyed, the paper of Bertsimas and Dunn (2017)
represents a turning point, as it proposed a compact MILP
formulation that could be solved within reasonable time for a
wide range of datasets from the UCI machine learning repos-
itory. Subsequent methodological improvements occurred
through sophisticated model reformulations and decompo-
sition methods (Aghaei, Gomez, and Vayanos 2020; Firat
et al. 2020), permitting to achieve better linear programming
bounds and quickly prune sub-optimal regions of the search
space. Among other benefits, MILP-based approaches can
handle combinatorial splits on categorical features, and they
can easily include notions of fairness (Aghaei, Azizi, and
Vayanos 2019; Ye and Xie 2020) and parsimony (Blanquero
et al. 2020) through additional global objectives and con-
straints. Research in this field strives towards more effec-
tive solution approaches, based on combinations of branch-
and-bound with dynamic programming (Aglin, Nijssen, and
Schaus 2020; Demirovi¢ et al. 2020), constraint program-
ming (Verhaeghe et al. 2020), or exploiting Boolean satisfia-
bility (SAT) problem solvers (Narodytska et al. 2018). Some
of these solution approaches also open new perspectives for
other related training tasks, for example, in model compres-
sion (Vidal and Schiffer 2020).

Decision diagrams. Decision diagrams for classification
have regularly reappeared in the machine learning domain.

7578

Early studies on the topic (Oliver 1993; Kohavi and Li 1995;
Oliveira and Sangiovanni-Vincentelli 1996; Akers 1978) fol-
lowed a minimum description length perspective and led to a
first generation of learning algorithms — often transforming
an initial decision tree into a decision diagram. Oliver (1993)
argued that decision diagrams are particularly suitable to
express disjunctive concepts (e.g., exclusive OR) and pro-
posed an iterative node-merging algorithm. Kohavi (1994)
and Kohavi and Li (1995) first designed a bottom-up learn-
ing approach and then opted to train an oblivious decision
tree and post-process it into a decision diagram through iter-
ative merging. Oliveira and Sangiovanni-Vincentelli (1996)
exploited efficient algorithms known from logic synthesis
(Bryant 1986, 1992) to manipulate ordered decision dia-
grams. They design an iterative greedy approach that merges
nodes with similar sub-graphs to achieve a greater reduc-
tion of message length. An extension of support vector ma-
chines towards multi-class settings through decision dia-
grams was also presented in Platt, Cristianini, and Shawe-
Taylor (2000). Decision diagrams have also been used for
model compression (Breslow and Aha 1997; Gossen and
Steffen 2019) and as a surrogate model for neural networks
in Chorowski and Zurada (2011). They were generalized
into ensembles called decision jungles in Shotton et al.
(2013). Ignatov and Ignatov (2018) considered training deep
decision diagrams, called decision streams, and reported a
good performance on a range of datasets for credit scor-
ing, aircraft control, and image classification. Recently, Ca-
bodi et al. (2021) studied binary decision diagrams (BDDs)
in the context of interpretable machine learning, while Hu,
Huguet, and Siala (2022) focused on optimizing BDDs via
MaxSAT. Different from works on BDDs, however, we find
optimal diagrams for classification without assuming neither
Boolean features nor a fixed feature evaluation order.

Most likely, the biggest obstacle towards the effective use
of decision diagrams remains the ability to learn them ef-
ficiently. Indeed, most aforementioned learning algorithms
first generate a decision tree and then transform it into a de-
cision diagram. Unfortunately, these methods also often fix
the order of the predicates through the tree, as this choice is
known to lead to a difficult combinatorial optimization prob-
lem (Bollig and Wegener 1996). Accordingly, design deci-
sions related to the graph topology (permitting to learn com-
plex concepts) are ineffectively learned through trial and er-
ror. Our approach closes this significant methodological gap
and, for the first time, allows to derive efficient algorithms
for training decision diagrams.

Mathematical Formulation

In this section, we mathematically formulate the ODD train-
ing problem as a MILP. We assume that we have a training
dataset {(x’,¢*)}™_, in which each x* € R? corresponds
to a sample characterized by a d-dimensional feature vector
and a class ¢ € C. Our formulation takes as input the dia-
gram’s depth D, i.e., the diagram’s number of decision lay-
ers, and the width w; of each layer ! € {0,..., D — 1}. This
input constitutes the skelefon of the decision diagram, and
it guarantees that any final topology found during training
(i.e., number of activated nodes per layer and their mutual



connections) is contained in the skeleton. W.l.o.g., we can
assume that w1 < 2w for all [. The MILP optimizes the
decision diagram’s topology and the splitting hyperplane of
each internal node. We allow connections between internal
nodes of consecutive layers and direct connections via long
arcs to terminal nodes representing the classes, as this per-
mits to progressively assign a final classification for specific
samples without necessarily passing through the complete
decision diagram. Accordingly, the training algorithm can
progressively send samples to the final leaves to fully ex-
ploit the remaining layers for classifying the other samples.

We designed our approach for numerical data, such that
processing other data types requires prior transformation,
e.g., one-hot encoding for categorical data, which is a com-
mon practice in decision-tree-based models. For numerical
stability, we assume that each feature has been normalized
within [0, 1]. Our model handles multiclass classification
with a dedicated leaf for each class. It also naturally finds op-
timal multivariate (i.e., diagonal) splits without extra com-
putational burden. We further show how it can be restricted
to produce only univariate splits if necessary.

Canonical Formulation

To represent the decision diagram, as illustrated on Figure 1,
we define an acyclic graph G = (V, A) with V = V1 U VC,
Each node v € V! represents an internal node, and each
node v € VC represents a terminal node corresponding to a
class c,. We represent nodes by indices V = {0, ..., |V!| +
|[VE€| — 1}; node 0 € V! represents the root of the decision
diagram and the remaining nodes are listed by increasing
depth (from left to right on the figure). Let V' be the set
of nodes at depth [, and let 6~ (v) and 67 (v) be the sets of
predecessors and successors of each node v € V. With these
definitions, §~(0) = @ and §7(0) = VIUVC. Forv €
Viwithl <1 < D-1,6(v) = V., and 67(v) =
Vi1 UVE. Finally, for v € V<, 67 (v) = V' and 6+ (v) =
&. The decision diagram produced by our model will be a
subgraph of G.

To formulate the training problem as a MILP, we start by
defining the flow variables that represent the trajectory of
the samples within the graph. We then connect these flows
to the design variables defining the structure of the decision
diagram and to those characterizing the splits.

Flow variables. Each sample i and internal node u € V!
is associated to a pair of flow variables w;, € [0, 1] and
w; € [0,1]. A non-zero value in w;, (respectively w;
means that sample ¢ passes through node u on the negative
side of the separating hyperplane (on the positive side, re-
spectively). Moreover, variables z;,, € [0, 1] (respectively
z;’w € [0, 1]) characterize the flow going from the negative
and positive sides of u to other nodes v. With these defi-
nitions, we can express flow conservation within the graph
G through the following conditions for each v € V! and

ie{l,...,n}

ifv=0
otherwise

wh +w. = _ (H
v v Zueé*(v) (Zj’L_L’U + Ziuv)
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Wi = Y 2 2)
vESTt (u)

wh= Y b, (3)
vedt (u)

However, due to the interaction of the constraints com-
ing from the hyperplanes (described later in this section),
integrality of the flow variables is not guaranteed. To ob-
tain integer sample flows, we add an additional binary vari-
able \;; € {0,1} for each sample ¢ € {1,...,n} and level
1 €{0,...,D— 1}, along with the following constraints for
eachl €{0,...,D—1}andi e {l,...,n}

Z wi, <1— Ay “4)
uEVlI
Z w;; S )\il- (5)
uEVlI

With these constraints, sample ¢ can only go to the negative
(respectively positive) side of any node u of level V}'if \;;, =
0 (respectively \;; = 1). This allows us to use fewer binary
variables compared to a direct definition of the w;, and w;,
as binary (see Theorem 2), which is a desirable characteristic
to allow for efficiently solving the MILP.

Decision diagram topology. We now connect the flow
variables to the binary design variables that characterize the
topology of the diagram. Here, we define one binary variable
d, € {0,1} for each u € V that takes value 1 if this node is
used in the classification (i.e., samples can pass through it).
The terminal nodes and the root are always activated, so we
impose d,, = 1 for u € 0U V. For the negative and positive
sides of each node u € V', we create binary design vari-
ables y,,,, € {0,1} and y;f, € {0,1} taking value 1 if and
only if w links towards v on the negative and positive sides,
respectively. The following constraints connect the design
variables and the sample flows:

d“ = Z Yuv = Z y;v u e VI (6)
vest (u) vEd+ (u)

dy < Y (U + ) veVi—{o} (7
ued~ (v)

Yo+ Yo < do weVivest(u) @8)

g Sy, weViwedt(w),ie{l,...,n} 9

Ziww < Yuw weVivedt(u),ie{l,...,n}(10)

Symmetry-breaking constraints. Without any constraint
for breaking symmetry, 2Vl equivalent topologies can be
obtained by switching the positive- and negative-side arcs
of each internal node and using opposite hyperplanes. Such
symmetry has a dramatic negative impact on branch-and-
bound-based MILP solution approaches. To circumvent this
issue, we impose that arcs (u, v) and (u, w) such that y,,, =
1 and y;,, = 1 satisfy v < w for each internal node u €
V1. This corresponds to the logical constraint (y,, = 1) =
(i, = 0 Vw < v), formulated as:

vt Y U <1 uweVivedt(u)
wedt (u),w<v

(1)



Thick edges represent a pos-
sible decision-graph topology
(selected by the training algorithm)

Flow variables w,,,, w:; and z;,, in-
dicate the trajectory of sample 7. The
following conditions always hold:
(wy,, = 1) = (agz:i < bu)

(Wl = 1) = (ale: > b)

iu

The blue path corresponds to
the possible trajectory of a
sample classified as Class 1

Class 1

Class 2

Figure 1: Example of a graph G with three layers of internal nodes (w; = 2 and wy = 3) and two terminal nodes. The thick
edges indicate a possible decision diagram. The black connectors permit to illustrate flow-conservation within the graph. For
clarity, the long arcs between the black connectors of layers V} and V! and the terminal nodes of V< are not displayed.

To further reduce model symmetry and the number of
equivalent topologies, we impose that the nodes along each
layer must respect a weak in-degree ordering by including
the following constraint for each [ € {2,...,D — 1} and
eachu € Vll, v E Vll such that u < v:

D A I SO (VA )

wed™ (u) wed~ (v)

(12)

Linear separator variables and consistency with the sam-
ple flows. We associate to each internal node v € V!
a vector of variables a, € [—1,1]¢ and a variable b, €
[-1,1] to characterize the splitting hyperplane. Samples
1 € {1,...,n} following the negative-side path should sat-
isfy alx’ < b,, whereas samples taking the positive-side
path should satisfy alx® > b,,. This is done by including in-
dicator constraints in our MILP that express the following

implication logic for each i € {1,...,n} and v € V!
(wj, =1) = (a,x" +¢ <b,) (13)
(wiy, =1) = (ajx' > by) (14)

In Constraint (13), € should be a small constant
greater than the numerical precision of the solver (set
to ¢ 10~* in our experiments) that permits to ex-
press strict inequality. These logical constraints could be
reformulated as linear constraints using a big-M trans-
formation, leading to alx’+¢e < b, + M(1 —w;,) and
alx! > b, — M(1 —w;,). However, as seen in (Belotti
et al. 2016), modern MILP solvers generally benefit from
directly specifying the implication logic and apply a big-M
reformulation with tailored bound tightening.

Constraints (13-14) represent general multivariate splits.
We can further restrict the model to produce univariate splits
by adding for each feature j € {1,...,d} and internal node
v € V' abinary variable e,; € {0, 1}, along with constraints
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that impose the selection of a single feature:

d
Zevj =1 veVl (15
j=1

—eyj <aj, <e,; jE{l,....d},veV' (16)

Objective function. In a similar fashion as in (Bertsimas
and Dunn 2017), we optimize accuracy and an additional
regularization term that favors simple decision diagrams
with fewer internal nodes. The accuracy of the model can be
computed by means of variables w;, € [0,1] for each sam-
plei € {1,...,n} and leaf v € VC expressing the amount
of flow of ¢ reaching terminal node v with class c,. These
variables must satisfy the following constraints for v € V°
andi € {1,...,n}:

Wiy = Z (Z;:'U + Zz:w)

u€d~ (v)

A7)

With the help of these variables, we state our objective as

n
min % Z Z (bivwiv + Z dvv

i=1 pepC veVI—{0}

e
V=1 (18)
where ¢;, represents the mismatch penalty when assigning
sample 7 to terminal node v (typically defined as 0 if ¢’ = ¢,
and 1 otherwise), while « is a regularization parameter. The
first term of the objective penalizes misclassified samples,
whereas the second term penalizes complex models. With
those conventions, the objective lies in [0,1 + «] and an
hypothetical value of 0 would correspond to a model that
achieves perfect classification with a single split at the root
node.

Theorem 1 Formulation (1-18) produces solutions in
which all variables w and z take binary values, leading to
a feasible and optimal decision diagram.

Theorem 2 Our formulation includes O(n log [V|) binary
decision variables when applied to decision-tree skeletons.



While Theorem 1 establishes optimality for our MILP for-
mulation, Theorem 2 highlights its efficiency, illustrated in
the context of decision tree skeletons where it improves upon
the formulation of (Bertsimas and Dunn 2017), which re-
quires O(n|V|) binary decision variables. We give proofs to
Theorems 1 and 2 in the supplemental material.

Discussion

Whereas classical training algorithms are often tailored to
a specific setting and difficult to adapt to new requirements,
our MILP approach for ODD training provides an extensible
mathematical framework for expressing new requirements.
We show how our MILP can be extended to fairness, parsi-
mony, or stability measures. All extensions require minimal
effort and only require extra linear constraints over the ex-
isting variables.

Fairness. The confusion (or error) matrix can be directly
calculated from the binary variables w;,, of our model, which
take value one if and only if sample ¢ reaches terminal node
v with class ¢,. Hence, we can introduce classical fairness
metrics into our MILP, either as an additional term in the
objective or as a constraint, without significantly changing
its complexity. To illustrate this, consider a binary classifi-
cation dataset in which outcome 1 is the most desirable. For
any subgroup g C {1, ...,n}, the number of samples classi-
fied as 1 by the ODD can be calculated as Zy = ), g Wiy
where v, is the terminal node associated to the positive
class. This permits to express demographic parity (see, e.g.,
Mehrabi et al. 2019) with the following linear constraints:

Z Wi, 2 g Z Wiy

€91 1E€92

(19)

where g1 and g, are two (non-necessarily disjoint) sub-
groups and £ represents a minimal discrepancy ratio between
two subgroups. Compliance with the classic four-fifths rule
(Biddle 2006; Zafar et al. 2017) is achieved with & =
0.8. In a similar fashion, the number of false-positives
and false-negatives for any subgroup ¢ can be calculated
as Z;P ; Zieg,ci;ép Wi, and ZSN ZiGg,.C'i:P(l. - U)iv,,),
permitting in turn to express most other classical fairness no-
tions. e.g., equal opportunity or predictive equality (Mehrabi
et al. 2019).

Parsimony and stability. Our MILP’s flexibility for ODD
training is not limited to fairness. It is possible to bound the
number of activated nodes to a predefined limit D to en-
sure parsimony by imposing ;.\, d; < D. Finally, it is
possible to impose that a minimum number S of samples
passes through each activated internal node to enhance sta-
bility, through the following conditions:

> > (G

=1 u€d—(v)

+25,) > 8d, veVl

(20)

Training Strategy
We introduce a two-step search strategy, which permits to
train an initial decision diagram quickly, and then refine it
to eventually reach an optimal topology. First, we use an
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efficient multi-start construction and improvement heuristic
to derive an initial topology. Then, we solve the complete
MILP using an off-the-shelf branch-and-cut implementation
(Gurobi in our case), where the value of the solution ob-
tained in the first step is used as a cutoff value in the branch-
and-bound search.

Step 1—Initial construction and improvement. We use
a top-down construction approach that shares some com-
mon traits with CART (Breiman et al. 1984). For each layer
I € {0,...,D — 2} and internal node u € V[, we select
the univariate split that maximizes the information gain. In
contrast to CART, we determine the internal connections of
the decision diagram at the training stage. Therefore, addi-
tional decisions need to be taken regarding the destination
of the sample flows emerging from each layer. To this end,
we adopt a greedy merging policy: as long as the number
of sample flows is greater than w;;, we merge the pair of
flows that least decreases the information gain. In the last
layer connecting to the terminal nodes V<, we finally di-
rectly connect each sample flow to the terminal node of its
most represented class.

To obtain a better initial diagram, we repeat the construc-
tion process for 60 seconds and consider only a random sub-
set of 60% of the features during each split selection. Addi-
tionally, we apply a bottom-up pruning strategy that consists
of iteratively eliminating any internal (i.e., splitting) node
that is (i) connected only to terminal nodes, and (ii) such
that the removal improves Objective (18).

Step 2—Solution of the MILP. In this step, we apply
Gurobi on the complete MILP described in the previous
section. Gurobi is a state-of-the-art solver for MILPs that
utilizes a branch-and-cut process to derive lower and upper
bounds on the objective value and to prune regions of the
search space that have no chance to contain an optimal solu-
tion. To further guide the branch-and-bound search towards
promising regions of the feasible space, we set an objec-
tive cutoff value equal to the value of the solution found in
Step 1. The completion of this process gives a global op-
timum of the training model for the considered objective
and regularization parameter. We set a CPU time limit of
Tuax = 600 seconds for this phase. The process terminates
with the best solution found so far if Ty« iS attained.

We remark that our training method always terminates af-
ter a fixed amount of time, regardless of dataset size, and
returns the best-found decision diagram so far.

Experimental Analyses

We focus our experiments on the same selection of 54
datasets as in Bertsimas and Dunn (2017). All these datasets
are publicly available from the UCI machine learning repos-
itory (Dua and Graff 2017). They reflect a wide range of
classification applications and contain between 47 to 6435
data points with 2 to 484 features. The list of datasets is ac-
cessible along with our detailed experimental results in the
supplemental material. We split each dataset into a training,
validation, and testing subset of samples with respective pro-
portions of 50%, 25%, and 25%. We repeat all our experi-
ments five times for each dataset, using a different seed and



Proven optimality Improved solution Total
Skeleton a=0.01 0.1 02 05 1.0 0.01 0.1 0.2 0.5 1.0
I 152 155 162 179 225 35 91 134 202 202 1537
11 150 154 162 179 227 36 91 124 194 193 1510
I 148 152 161 177 223 38 89 129 200 205 1522
v 149 156 163 178 226 62 124 150 226 221 1655
I (tree) 155 158 163 177 225 30 98 131 208 207 1552
Total 754 775 811 890 1126 201 493 668 1030 1028 7776

Table 1: Performance of the MILP-based training method

thus a different random separation of the samples for each
run.

All our algorithms have been implemented in Python 3.8
and can be readily executed from a single script. We use
Gurobi 9.1.0 (via gurobipy) for solving the mathematical
models. Each validation and test experiment has been run
on a single thread of an Intel Gold 6148 Skylake @2.40GHz
CPU. Overall, the experiments of this paper took eight hours
on 10 CPUs of the mentioned type for five seeds. All data,
source code, and additional details on the computational re-
sults are provided in the supplemental material and will be
provided as a public Git repository upon publication.

We divide our computational experiments into two stages.
Firstly, we conduct a calibration experiment using only the
training and validation sets, considering different decision
diagram skeletons and different levels of the regularization
parameter .. The goal of this experiment is twofold: it per-
mits to find the best skeleton and o hyperparameter for each
dataset, and allows us to evaluate our methodology’s compu-
tational performance, scalability, and sensitivity for differ-
ent parameters. Finally, in the second stage of experiments,
we use the test set to compare our optimal decision diagram
models against the optimal decision tree model, using the
best-found o hyperparameter for each model and dataset.

Hyperparameters Calibration and Computational
Performance

We study the computational tractability of our approach for
a € {0.01,0.1,0.2,0.5,1} and for four decision diagram
skeletons: (1-2-4-8), (1-2-4-4-4), (1-2-3-3-3-3-3) and
(1-2-2-2-2-2-2-2), hereby referred to as Skeletons I to
IV, respectively. All these skeletons have 15 internal nodes;
therefore, the final trained decision diagrams will contain
no more than 15 active nodes. We further employ Skele-
ton (1-2-4-8) to find optimal decision trees (ODTs). To this
end, we specialize our model by fixing the decision variables
representing the internal topology to match a decision tree;
hence, generating optimal ODT solutions similar to Bertsi-
mas and Dunn (2017).

Computational performance. We run our algorithm for
each dataset, split type (univariate and multivariate), random
seed, skeleton, and value of «. First, we evaluate our ability
to find either the global optimum or an improved solution to
the training problem, compared to the solution found in Step
1. Table 1 shows, for each skeleton and v combination, the
number of runs (out of 54 datasets x 5 seeds = 270 runs) for
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which a global optimum or an improved solution was found.
Our algorithm can find optimal topologies in 32% of all runs
(4356 out of 13500 runs). Model difficulty is inversely pro-
portional to « values, as large values of the regularization
parameter discourages complex topologies with many ac-
tive nodes. The difficulty of the training problem is gener-
ally sensitive to the number of samples in the dataset but
relatively insensitive to the number of features (see results
in the supplemental material). Because of the large size of
some datasets and their resulting training models, in many
cases optimality is not achieved within the short computa-
tional budget of 600 seconds used in our experiments. Still,
Step 2 of our methodology improves upon the initial heuris-
tic solution in 58% of all runs, which demonstrates the value
of the mathematical programming-based training approach
and indicates that it might be possible to solve more in-
stances to optimality when allocating larger computational
budgets to each instance.
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Performance Analyses and Model Comparison

Accuracy of ODDs. We now compare the performance
and structure of ODDs with those of ODTs. We use the best
skeleton for each ODD, as obtained during the hyperparam-
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Figure 4: Fragmentation of an ODT and an ODD trained on the “teaching-assistant evaluation” dataset

eter calibration phase. We apply the same « hyperparam-
eter calibration process for ODTs. To compare both meth-
ods based on near-optimal topologies, we focus on a sub-
set of 18 datasets for which optimal ODDs and ODTs can
be consistently obtained, and for which the final topologies
are non-trivial (i.e., use at least two internal nodes). We re-
fer the interested reader to the supplemental material for a
more detailed discussion on the selection of those datasets.
Moreover, we note that we do not extend this analysis to
other heuristic tree models such as CART, since the supe-
rior performance of ODTs over CART has already been
discussed for the same dataset collection in Bertsimas and
Dunn (2017).

Overall, ODDs and ODTs with univariate splits exhibit
comparable accuracy as can be seen in the detailed numer-
ical results in the supplemental material. With multivariate
splits, however, ODDs show a higher accuracy compared to
their ODT counterparts. Figure 2 shows the distribution of
the classification accuracy on the test data over the selected
datasets for the respective best ODT and ODD models, high-
lighting that the respective ODDs show fewer low-accuracy
outliers. Their accuracy distribution is generally more com-
pact and exhibits higher first, second, and third quartiles.
Figure 3 complements this analysis by representing the ac-
curacy of all 18 x 5 instances for ODD and ODT in the mul-
tivariate splits case, sorted in ascending order. The sorted
accuracy of the ODDs superposes that of the best ODTs,
which points towards a better classification performance.

The improved performance of ODDs over ODTs results
from the additional freedom in its topology, which permits
to express more complex concepts and generally avoids data
fragmentation. Figure 4 illustrates the resulting different
topologies and visualizes the data fragmentation for an ODT
and an ODD trained on the “teaching-assistant evaluation”
dataset. Both models contain seven internal nodes, but the
ODD has a much more balanced data fragmentation, i.e.,
the share of samples processed through each node is more
balanced for the ODD.

Stability of ODDs. Stability is a desirable characteristic
of tree and diagram classifiers, as it preserves effective clas-
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sification rules in face of new data and enhances model
interpretability. Table 2 measures the impact on accuracy
when enforcing a certain level of stability when training
ODDs with our MILP approach. This is achieved by acti-
vating Constraints (20) and varying the minimum number of
samples S required to pass through any active node in the
optimal topology. A tradeoff is expected as tighter stability
constraints reduce the solution space when constructing the
ODD. As observed, more stable ODDs can be obtained at a
marginal out-of-sample accuracy loss.

Split S =0.06n 0.10n 0.15n 0.20n
Multivariate 0.828 0.827 0.823 0.823
Univariate 0.840 0.838 0.837 0.835

Table 2: Test accuracy when enforcing minimum flow of
samples through active nodes

Conclusions

We studied the training of optimal decision diagrams from
a combinatorial optimization perspective. Specifically, we
proposed the first MILP that allows to train ODDs for clas-
sification. We conducted an extensive numerical study on
54 benchmark datasets reflecting a wide variety of practi-
cal classification tasks. The degrees of freedom of the model
permit to find good ODD topologies that exhibit less data
fragmentation than ODTs. Concerning out-of-sample accu-
racy, we showed that ODDs perform favorably when com-
pared to ODTs for the case of multivariate splits.

The flexibility of our mathematical programming ap-
proach permits to extend the proposed model to address a
variety of important side requirements. Therefore, we be-
lieve that it can serve as an important building block for
more elaborate models, suited for a variety of application do-
mains. As future research perspective, we suggest the inves-
tigation of heuristic construction techniques that permit to
generate decision diagrams for classification independently
of dataset size.
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