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Abstract

Regression trees are one of the oldest forms of AI models,
and their predictions can be made without a calculator, which
makes them broadly useful, particularly for high-stakes ap-
plications. Within the large literature on regression trees,
there has been little effort towards full provable optimization,
mainly due to the computational hardness of the problem.
This work proposes a dynamic-programming-with-bounds
approach to the construction of provably-optimal sparse re-
gression trees. We leverage a novel lower bound based on an
optimal solution to the k-Means clustering algorithm on one
dimensional data. We are often able to find optimal sparse
trees in seconds, even for challenging datasets that involve
large numbers of samples and highly-correlated features.

1 Introduction
Regression trees are one of the oldest and most popular
forms of machine learning model, dating back to the 1963
AID algorithm of Morgan and Sonquist (1963). Since then,
there has been a vast amount of work on regression trees, the
overwhelming majority of which involves greedy tree induc-
tion and greedy pruning (Breiman et al. 1984; Quinlan 1993;
Payne and Meisel 1977; Loh 2002). In these approaches,
trees are grown from the top down, with greedy splitting
at each branch node, and greedy pruning afterwards. These
techniques are easy and fast, but their trees have no notion of
global optimality. Greedily-grown trees can be much larger
than necessary, sacrificing interpretability, and their perfor-
mance suffers when compared to other machine learning ap-
proaches. Thus, questions remain – is it possible to create
optimal regression trees? Would they be competitive with
other machine learning algorithms if they were fully opti-
mized? Certainly there would be many uses for sparse in-
terpretable regression trees if we could create them with
accuracy comparable to that of other machine learning ap-
proaches.

While the quest for fully-optimal decision trees began in
the mid-90’s with the work of Bennett and Blue (1996),
fully optimal decision tree learning was rarely attempted
over the last three decades, owing to the computational hard-
ness of the problem. Works that did attempt it (Dobkin et al.
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1997; Farhangfar, Greiner, and Zinkevich 2008; Narodyt-
ska et al. 2018; Janota and Morgado 2020; Shati, Cohen,
and McIlraith 2021; Hu et al. 2020; Avellaneda 2020) had
strong constraints, such as shallow depth or perfect classi-
fication accuracy. For classification (rather than regression),
scientists have had recent success in producing fully opti-
mal trees (Günlük et al. 2021; Blanquero et al. 2020; Hu,
Rudin, and Seltzer 2019; Verwer and Zhang 2019; Angelino
et al. 2017; Lin et al. 2020; McTavish et al. 2022; Farhangfar,
Greiner, and Zinkevich 2008; Nijssen and Fromont 2007,
2010; Aghaei, Gomez, and Vayanos 2020; Verhaeghe et al.
2019; Nijssen, Schaus et al. 2020; Nijssen and Fromont
2010; Demirović et al. 2022) using mathematical program-
ming or dynamic programming. However, building sparse
optimal classification trees is a much easier problem, since
the 0-1 loss has natural discrete lower bounds, and binary
integer programming can be used; this is not true of regres-
sion, which uses (real-valued) mean squared error as its loss
function.

Let us discuss the few works that do address challenges
resembling optimal regression trees. The works of Blan-
quero et al. (2022) and Bertsimas, Dunn, and Wang (2021)
do not construct traditional sparse trees with constant predic-
tions in the leaves; their leaf nodes contain linear or polyno-
mial classifiers, thus the formula for producing predictions
is quite complex. The former (Blanquero et al. 2022) uses
ℓ∞+ℓ1 regularization for the linear models within the nodes
and the latter (Bertsimas, Dunn, and Wang 2021) uses ℓ2
regularization for polynomial models in the leaves. Neither
of these regularize the number of leaves. The evtree algo-
rithm (Grubinger, Zeileis, and Pfeiffer 2014) claims to con-
struct globally optimal trees, but since it is purely an evo-
lutionary method (no bounds are used to reduce the search
space), there is no guarantee of reaching optimality, and one
never knows whether optimality has already been reached.
Dunn (2018) and Verwer and Zhang (2017) provide mathe-
matical programming formulas for optimal regression trees,
but no open source code is available; regardless, mathemati-
cal programming solvers are generally slow. Interpretable AI
(2022) provides proprietary software that requires a license,
but it is not possible to ascertain whether it uses local
search or mathematical programming; we suspect it uses lo-
cal search heuristics, despite the claim of optimal solutions.
In other words, as far as we know, there is no other prior
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Figure 1: Optimal regression tree for seoul bike dataset with
λ = 0.05,max depth = 5. This dataset predicts the number
of bikes rented in an hour. It is binarized by splitting each
feature into four categories.

peer-reviewed work that directly produces sparse, provably-
optimal regression trees with publicly available code.

Our goal is to design optimal sparse regression trees in the
classical sense, with a small number of leaves, a single con-
dition at each split, and a constant prediction in each leaf.
This makes the predictions easy to understand and compute,
even for people who cannot understand equations. Given a
trained tree, one can print it on an index card and compute
a prediction without adding or multiplying any numbers,
which makes these models easy to troubleshoot and use –
even in high-stakes settings. An example tree for the seoul
bike dataset (VE and Cho 2020; Sathishkumar, Park, and
Cho 2020; Dua and Graff 2017) constructed by our method
is shown in Figure 1.

Our formulation is a dynamic-programming-with-bounds
approach, where the search space is either reduced or
searched methodically. Such approaches have been highly
successful for classification trees (Angelino et al. 2017; Lin
et al. 2020; Nijssen, Schaus et al. 2020) but have not been
previously used for regression trees. An important novel el-
ement of our formulation is a lower bound that we call the
“k-Means equivalent points lower bound.” To reduce the
search space, we need as tight a bound as possible on the
objective. Our bound makes use of the observation that any
high-quality decision tree of C leaves will perform as bad or
worse than the performance of fully-optimal C-Means clus-
tering on the labels alone (without any features). We discuss
this in Section 3.

Our main results are: (1) The first algorithm with publicly
available code for optimal sparse regression trees in the clas-
sical sense, with a proof of optimality. We call this algorithm
Optimal Sparse Regression Trees (OSRT). (2) A substantial
speedup over evtree, owing to our analytical bounds that re-
duce the search space. Evtree globally optimizes models, but
does not provide a proof of optimality as OSRT does.

2 Notation and Objective
We denote the training dataset (X,y) as {(xi, yi)}Ni=1,
where xi ∈ {0, 1}M is a binary feature vector and yi ∈ R
is a target variable. (Real-valued features in the raw dataset

can be transformed into binary features in many different
ways, e.g., splitting the domain of the feature into equal-
sized buckets, splitting between every two realized values of
the variable in the training set, using splits from a reference
model as in McTavish et al. (2022); we use the first tech-
nique.)

We denote L(t,X,y) := 1
N

∑N
i=1 (yi − ŷi)

2 as the loss
of tree t on the training dataset, where ŷi is the prediction
of xi by tree t, i.e., we use mean squared error (MSE) as
the loss function. We define the objective function of tree
t, R(t,X,y) as a combination of tree loss and penalty on
complexity:

L(t,X,y) + λ · complexity(t)

where the complexity penalty is Ht, the number of leaves in
tree t:

R(t,X,y) := L(t,X,y) + λHt. (1)
Computationally, it is easier when a depth constraint is
added:

L(t,X,y) + λ · complexity(t), s.t. depth(t) ≤ d. (2)

Adding a depth constraint dramatically reduces the search
space, but it can lead to suboptimal values of the objective if
the depth constraint is smaller than the depth of the optimal
solution. Unlike all previous approaches, our algorithm can
find provably-optimal trees that globally minimize Equation
(1) without a depth constraint.

3 Bounds
Following Hu, Rudin, and Seltzer (2019); Lin et al. (2020),
we represent a tree as a set of leaves. Trees with identical
leaves, regardless of different internal branching nodes, are
considered equivalent. This representation allows us to save
memory and avoid duplicate computation during tree con-
struction.

Our algorithm, like that of Lin et al. (2020) for classifi-
cation, is a dynamic-programming-with-bounds algorithm.
This algorithm searches the whole space of trees systemati-
cally from smaller to larger trees. If the algorithm determines
(through the use of bounds) that the current partial tree it is
constructing can never be extended to form an optimal full
tree, it stops exploring that part of the search space. Thus,
the tighter the bounds, the more the algorithm reduces the
search space and the more quickly it converges to the opti-
mal solution. Thus, we present a series of tight bounds that
reduce computation by reducing the search space.

We start with notation. A tree t is represented as a set
of Ht distinct leaves: t = {l1, l2, . . . , lHt

}. It can also be
written as:

t = (tfix, δfix, tsplit, δsplit,K,Ht)

where tfix = {l1, l2, . . . , lK} are a set of K fixed leaves
that are not allowed to be further split in this part of the
search space, δfix = {ŷl1 , ŷl2 , . . . , ŷlK} ∈ RK are predicted
targets for the fixed leaves, tsplit = {lK+1, lK+2, . . . , lHt

}
are Ht − K splitting leaves that can be further split in
this part of the search space, and their predicted targets are
δsplit = {ŷlK+1

, ŷlK+2
, . . . , ŷHt

} ∈ RHt−K .
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We generate new trees by splitting different sub-
sets of splitting leaves in tree t. We define t′ =
(t′fix, δ

′
fix, t

′
split, δ

′
split,K

′, Ht′) as a child tree of t if and only
if t′fix is a superset of tfix, and t′split is generated through split-
ting a subset of tsplit. We denote σ(t) as the set of all child
trees of t.

The following bounds start out analogous to those of Lin
et al. (2020) for classification and diverge entirely when we
get to the new k-Means Lower Bound.

3.1 Lower Bounds
The loss of a tree has contributions from its two parts: fixed
leaves and splitting leaves. Since the fixed leaves cannot be
further split in this part of the search space, their contribution
provides a lower bound for tree t and all of its child trees.
Define the objective lower bound of tree t as

R(t,X,y) ≥ L(tfix,X,y) + λHt,

where L(tfix,X,y) is the sum of losses for fixed leaves:

L(tfix,X,y) =
1

N

N∑
i=1

(yi − ŷi)
2 · 1cap(tfix,xi) (3)

1cap(tfix,xi) is 1 when one of the leaves in tfix captures xi, 0
otherwise. (tfix captures xi when xi falls into one of the fixed
leaves of t.) If splitting leaves have 0 loss, then the tree’s loss
is equal to the lower bound.

We denote the current best objective we have seen so far
as Rc. If the objective lower bound of t is worse than Rc,
i.e., L(tfix,X,y) + λHt > Rc, then t cannot be an optimal
tree, nor can any of its children, and the search space can be
pruned. To show this, we need the following bound, stating
that the child trees of t all obey the same lower bound from
the fixed leaves. Note that all proofs are in the appendix.

Theorem 3.1. (Hierarchical Objective Lower Bound). Any
tree t′ = (t′fix, δ

′
fix, t

′
split, δ

′
split,K

′, Ht′) ∈ σ(t) in the child
tree set of tree t = (tfix, δfix, tsplit, δsplit,K,Ht) obeys:

R(t′,X,y) ≥ L(tfix,X,y) + λHt.

That is, the objective lower bound of the parent tree holds
for all its child trees. This bound ensures that we do not fur-
ther explore child trees if the parent tree can be pruned via
the lower bound.

The next bound removes all of a tree’s child trees from the
search space, even if the tree itself could not be eliminated
by the previous bound.

Theorem 3.2. (Objective Lower Bound with One-step
Lookahead). Let t = (tfix, δfix, tsplit, δsplit,K,Ht) be a tree
with Ht leaves. If L(tfix,X,y) + λHt + λ > Rc, even if its
objective lower bound obeys L(tfix,X,y)+λHt ≤ Rc, then
for any child tree t′ ∈ σ(t), R(t′,X,y) > Rc.

That is, even if a parent tree cannot be pruned via its ob-
jective lower bound, if L(tfix,X,y) + λHt + λ > Rc, all of
its child trees are sub-optimal and can be pruned (and never
explored).

3.2 Equivalent Points
Before making the lower bound of the objective tighter, let
us introduce equivalent points. We define equivalent points
as samples with identical features but possibly different tar-
get values. It is impossible to partition these samples into
different leaves in any tree; a leaf that captures a set of equiv-
alent points that have different targets can never achieve
zero loss. Our bound exploits this fact.

Let u be a set of equivalent points where samples have
exactly the same feature vector x, such that ∀j1, j2, ...j|u| ∈
u:

xj1 = xj2 = · · · = xj|u| .

We define the equivalence loss Eu as the sum of squares er-
ror for set u when the estimate of the leaf is the best pos-
sible, namely the mean of targets for points in u. Define
ȳu = 1

|u|
∑

(xi,yi)∈u yi:

Eu =
1

N

∑
(xi,yi)∈u

(yi − ȳu)
2
. (4)

Theorem 3.3. (Equivalent Points Lower Bound). Let t =
(tfix, δfix, tsplit, δsplit,K,Ht) be a tree with K fixed leaves
and Ht − K splitting leaves. For any child tree t′ =
(t′fix, δ

′
fix, t

′
split, δ

′
split,K

′, Ht′) ∈ σ(t):

R(t′,X,y) ≥ L(tfix,X,y) + λHt +
∑
u∈U

Eu · 1cap(tsplit,u),

(5)
where U is the set of equivalent points sets in training
dataset (X,y) and 1cap(tsplit,u) is 1 when tsplit captures set
u, 0 otherwise.

Combining with the idea of Theorem 3.2, we have:

R(t′,X,y) ≥ L(tfix,X,y)+λHt+λ+
∑
u∈U

Eu ·1cap(tsplit,u).

(6)
The bound we introduce next, one of the main novel el-

ements of the paper, is much tighter than the Equivalent
Points Lower Bound.

3.3 k-Means Lower Bound
Let us consider the points within each leaf of a regression
tree. The smallest possible losses within a leaf are achieved
when the label values within the leaf are all similar to each
other. If we know we will construct a tree with C leaves and
we could rearrange the points into any of the leaves, how
would we arrange them to minimize loss? The best loss we
could possibly achieve would come from grouping points
with the most similar targets together in the same leaf. This
procedure is equivalent to computing an optimal clustering
of the targets (in 1 dimension) that minimizes the sum of
squared errors between each point and the position of its
cluster center (the mean of the cluster). The solution to this
clustering problem gives the lowest loss we can possibly
achieve for any regression tree with C leaves. We can use
this as a lower bound on the loss for tsplit by setting C equal
to the Ht −K number of unsplittable leaves. There exists a
deterministic algorithm that takes linear time for computing
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the optimal k-Means loss on one dimensional data, which
takes advantage the fact that the number line is totally or-
dered (Song and Zhong 2020).

Definition 3.1. (k-Means Problem for 1D targets) Given a
set of N ′ 1D points y′ and a number of clusters C, the goal
is to assign points into C clusters so that the sum of squared
Euclidean distances between each point and its cluster mean
is minimized. Define k-Means(C,y′) to be the optimal ob-
jective of the k-Means algorithm for clustering 1D points y′

of size N ′ into C clusters (C ≥ 1):

k-Means(C,y′) := min
z,A

N ′∑
i=1

(y′i − zA(y′
i)
)2. (7)

A(y′i) is a function that specifies the cluster assignment of
y′i among c1, c2, . . . , cC , and zc is the centroid of cluster c,
which is the mean of the points assigned to that cluster.

zc :=

∑
A(y′

i)=c y
′
i∑

A(y′
i)=c 1

. (8)

We note here that for an assignment, A, of points to a
tree’s C leaves, choosing the mean zc as the predicted label
in each leaf c yields the following for the k-Means objective,
which is optimized over z for a fixed A:

k-Means-obj(C,y′, A) := min
z

N ′∑
i=1

(y′i − zA(y′
i)
)2. (9)

That is, minimizing the regression loss (sum of squares
to the mean target in each leaf) also yields the k-Means’
choice of cluster center as the mean of the targets for
points belonging to a leaf. Clearly k-Means-obj(C,y′, A) ≥
k-Means(C,y′) since the latter is minimized over the as-
signment of points to clusters without regard to the tree
structure at all. This logic is used in our lower bound.

Theorem 3.4. (k-Means Lower Bound). Consider tree
t = (tfix, δfix, tsplit, δsplit,K,Ht). and any child tree t′ =
(t′fix, δ

′
fix, t

′
split, δ

′
split,K

′, Ht′) ∈ σ(t). Let (Xtsplit ,ytsplit) be
samples captured by the splitting leaves tsplit. Then,

R(t′,X,y) ≥L(tfix,X,y) + λK

+min
C

(
1

N
k-Means(C,ytsplit) + λC

)
.

3.4 k-Means Equivalent Points Lower Bound
We can make the bound from the last section even tighter.
In fact, in the k-Means lower bound above, we ignored in-
formation inherent to the regression tree problem, because
we ignored all of the features X. We can achieve a tighter
bound if we leverage our knowledge of X to again consider
equivalent points. Specifically, all points with the same fea-
tures must be assigned to the same leaf. We first present the
definition of a modified k-Means problem and then state our
theorem.

Definition 3.2. (Constrained k-Means Problem for 1D tar-
gets) Given a set of N ′ 1D target points y′ with feature

vector X′ and number of clusters C, the goal is to assign
points into C clusters so that the sum of squared Euclidean
distances between each point and its cluster mean is min-
imized, under the constraint that all points with the same
feature vector x′ must be assigned to one cluster.

Constrained k-Means(C,X′,y′)

= min
z,A

N ′∑
i=1

(y′i − zA(y′
i)
)2 (10)

s.t. if xi = xi′ , then A(y′i) = A(y′i′).

Adding this constraint makes the k-Means Lower Bound
tighter.

Theorem 3.5. (k-Means Equivalent Points Lower Bound).
Consider tree t = (tfix, δfix, tsplit, δsplit,K,Ht). and any
child tree t′ = (t′fix, δ

′
fix, t

′
split, δ

′
split,K

′, Ht′) ∈ σ(t). Let
(Xtsplit ,ytsplit) be samples captured by the splitting leaves
tsplit. Then,

R(t′,X, y) ≥ L(tfix,X,y) + λK+

minC
(

1
N Constrained k-Means(C,Xsplit,ytsplit) + λC

)
(11)

where Constrained k-Means is defined in Equation 10.

3.5 Computing k-Means Equivalent Points Bound
We now define a weighted version of the k-Means problem,
where each sample point is associated with a weight. We
derive these weights later as sizes of the equivalent sets.

Definition 3.3. (Weighted k-Means Problem) Given a set of
N ′ 1D points y′ with weights w ∈ RN ′

and number of
clusters C, the goal is to assign points into C clusters so
that the weighted sum of squared Euclidean distances be-
tween each point and its cluster centroid is minimized. De-
fine Weighted k-Means(C,y′,w) as the optimal objective of
the k-Means algorithm clustering 1D points y′ of size N ′

into C clusters (C ≥ 1):

Weighted k-Means(C,y′,w)

= min
z,A

N ′∑
i=1

wi · (y′i − zA(y′
i)
)2. (12)

A(y′i) is a function that specifies the cluster assignment of
y′i among c1, c2, . . . , cC , and zc is the centroid of cluster c,
which is the weighted mean of the points assigned to that
cluster. The weighted mean for cluster cj is:

zcj =

∑
A(y′

i)=cj

wi · y′i∑
A(y′

i)=cj

wi
(13)

which is similar to the one defined by Song and Zhong
(2020).

Song and Zhong (2020) present an efficient O(kN) so-
lution to this weighted k-Means problem, where k is the
number of clusters and N the number of data samples. We
leverage this algorithm for the k-Means Equivalent Points
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Lower Bound (Theorem 3.5). In the following theorem, we
show that solving this weighted k-Means problem is equiva-
lent to solving a constrained k-Means problem on a modified
dataset.
Theorem 3.6. (Constrained k-Means with Equivalent
Points is equivalent to weighted k-Means) Recall in Defini-
tion 3.2, we have N ′ 1D target points y′ with features X′and
number of clusters C. We also have a constraint that all
points in any equivalent set u must be assigned to the same
leaf. Define a modified dataset (Xmod,ymod,wmod), where
all points of equivalent set u in the original dataset (X′,y′)
are represented by a single point (xu, yu, wu), where xu is
the same as the feature vector of equivalent set u,

yu =
1

|u|
∑

(x′
i,y

′
i)∈u

y′i, (14)

and the weight is the size of the equivalent set u
wu = |u|. (15)

An optimal clustering of the modified dataset will directly
provide an optimal clustering of the original dataset with the
equivalent points constraint from Equation 10. (All points
from the original dataset contributing to a weighted point in
the modified dataset will be assigned to its cluster.)

That is, solving the Weighted k-Means problem produces
the same solution(s) as solving the Constrained k-Means
problem. Thus, solving the weighted k-Means problem on
the modified dataset provides the same result as solving the
constrained k-Means on the original dataset.

In Equation 11, we observe that computing the k-Means
Equivalent Points Lower bound requires that we find the
minimum of Constrained k-Means across all possible C.
One can easily see that it is sufficient to iterate C from 1
to |ytsplit |, where every data point is in its own cluster. How-
ever, this would be costly when dealing with large datasets.
The following theorem, as proved in Aggarwal, Schieber,
and Tokuyama (1994), shows that the loss improved from
adding more clusters decreases as the number of clusters in-
creases. It means we do not need to generate k-Means so-
lutions for all C up to the size of the subproblem, we can
stop as soon as the objective improvement from adding new
clusters becomes less than the regularization λ.
Theorem 3.7. (Convexity of Weighted k-Means in number
of clusters, from Aggarwal, Schieber, and Tokuyama 1994)
Recall Weighted k-Means(C,y′,w) from Definition 3.3 for
number of clusters C, 1D points y′, and weights w. We have

Weighted k-Means(C − 1,y′,w)

+ Weighted k-Means(C + 1,y′,w)

≥ 2×Weighted k-Means(C,y′,w). (16)
Other bounds that help reduce the search space (e.g.

Leaf Bounds, Splitting Bounds, Permutation Bound, Subset
Bound) can be found in Appendix B.

4 Algorithm
We implemented OSRT based on the GOSDT (Lin et al.
2020) framework, which uses a dynamic-programming-
with-bounds formulation. Each subproblem in this formu-
lation is identified by a support set s = {s1, s2, . . . , sN},

where si is a boolean value indicating whether point i is
in the support set s. Each leaf and branching node corre-
sponds to a subproblem, recording which samples traverse
through that node (or leaf). GOSDT records and updates
lower and upper bounds of the objective for each subprob-
lem and stores them in a dependency graph. The dependency
graph summarizes the relationship among subproblems. In
dynamic programming formulations, finding tight bounds is
crucial in reducing the runtime of the algorithm, because that
is the key to eliminating large portions of search space. Our
k-Means-based bounds for regression are tight and substan-
tially reduce time-to-optimality, as we show in Section 6.4
and Appendix J.1. Like GOSDT, our method finds the opti-
mal trees when the lower and upper bounds of the objective
converge. Algorithm 1 below is a subroutine of OSRT.

Compute Lower Bound (Algorithm 1): This algorithm
implements the k-Means Equivalent Points Lower Bound
as defined in Theorem 3.5. We leveraged a k-Means solver
from Song and Zhong (2020), which is a dynamic program-
ming formulation that fills in a C by N matrix, where C
represents the number of clusters and N corresponds to the
number of samples. We do not assume a maximum value
for C and instead grow the table one row at a time, using
the fill kmeans dp function from their implementation. Each
point (a, b) in the table represents the optimal k-Means loss
using a clusters and the first b datapoints.

Line 1-3: Compute equivalent target set by grouping
equivalent points together, and gather all of their labels.
Lines 4-5: Compute weight w and value v that defines the k-
Means problem. Lines 6-8: Initialize current loss, loss, pre-
vious loss, loss′, number of clusters used, nClusters, and
dynamic programming table, dp table. Lines 9-17: Solve
weighted k-Means problem by adding clusters one at a time.
Line 11: Retrieve loss using nClusters clusters from the last
entry of the last filled row of dynamic programming table.
Lines 12-14: Terminate algorithm if we can no longer ben-
efit from adding more clusters as the reduction of loss by
adding one cluster is monotonically decreasing. See Theo-
rem 3.7. Line 18: Compute constant correction term, correc-
tion, that restores weighted k-Means to constrained k-Means
problem (see Theorem 3.6).

5 Comparison of Regression Tree
Optimization Methods

Unlike other methods, OSRT can optimize regression trees
without a hard depth constraint and support mean absolute
error (L1 loss). Table 1 summarizes the comparison of dif-
ferent regression tree optimization methods. Blue cells are
comparative advantages, and red cells are comparative dis-
advantages.

6 Experiments
We ran experiments on 12 datasets; the details are described
in Appendix C.1. Our evaluation answers the following:
1. Are trees generated by existing regression tree optimiza-

tion methods truly optimal? How well do optimal sparse
regression trees generalize? How far from optimal are
greedy-approach models? (§6.1)
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OSRT IAI Evtree GUIDE CART ORT DTIP
Guarantee optimality Yes No No No No Yes Yes
Optimization strategy DPB Local Search Evolutionary Greedy search Greedy Search MIO MIO
Can optimize without
depth constraint Yes No No Yes Yes No No

Support (weighted) least
absolute deviation Yes No No No Yes Unknown Unknown

Implementation available Yes Yes (Executable
Only) Yes Yes (Executable

Only) Yes No No

Table 1: Comparison of OSRT, IAI (Interpretable AI 2022), Evtree (Grubinger, Zeileis, and Pfeiffer 2014), GUIDE (Loh 2002),
CART (Breiman et al. 1984), ORT (Dunn 2018) and DTIP (Verwer and Zhang 2017). Executables for IAI and GUIDE are
available, but their source code is not. DPB is dynamic programming with bounds, MIO is mixed integer optimization.

Algorithm 1: compute lower bound(dataset, sub, λ)
→ lower bound

// For a subproblem sub and regularization λ, compute its
Equivalent k-Means Lower Bound

1: Let U = the set of unique samples xi ∈ sub
// For each unique sample in U , create a set of all targets y
// corresponding to copies of that sample in sub
// (equivalent point sets)
2: E = ∅
3: ∀xi ∈ U,Exi

.append({yj} | ∀xj ∈ sub, yj if xi = xj)
// For each unique sample in U , compute the number of
// identical samples to it (producing the vector w) and the
// average of all targets (producing the vector v)
4: w← {|Ex| | Ex ∈ E} where Ex ⊂ y is a set of
targets for one unique x ∈ U .
5: v← {Ex | Ex ∈ E} where Ex denotes average of Ex

6: loss, loss′ ← inf
7: nClusters← 1
// We initialize the dynamic programming table with
// no rows, but one column for each element of U
8: dp table← [][|E|]
9: while true do

// Fill in the (nClusters− 1)th row of dp table
10: dp table← fill kmeans dp(nClusters− 1, w, v,

dp table)
11: loss← dp table[(nClusters− 1, |E| − 1)]
12: if loss′ − loss ≤ λ then

// Adding this cluster does not reduce loss enough
// to justify addition of another cluster

13: break
14: end
15: nClusters← nClusters + 1
16: loss′ ← loss
17: end
// Correct from weighted k-Means to constrained k-Means
18: correction←

∑
xj∈sub y

2
j −

∑
xi∈U wiv

2
i

19: return loss′ + λ× nClusters + correction

2. Does each method yield consistently high-quality re-
sults? (§6.2)

3. How fast does OSRT converge, given that it guarantees
optimality? (§6.3)

4. How much do our novel bounds contribute to the perfor-
mance of OSRT? (§6.4)

5. What do optimal regression trees look like? (§6.5)

6.1 Optimality and Generalization
We compare trees produced by CART (Breiman et al. 1984),
GUIDE (Loh 2002), IAI (Interpretable AI 2022), Evtree
(Grubinger, Zeileis, and Pfeiffer 2014) and OSRT, trained on
various datasets. For each method, we swept a range of hy-
perparameters to illustrate the relationship between loss and
sparsity (IAI, Evtree, and OSRT all penalize the number of
leaves). Optimization experiments in Appendix D and cross-
validation experiments in Appendix H, along with a demon-
stration of these results in Figure 2 show: (1) trees pro-
duced by other methods are usually sub-optimal even if they
claim optimality (they do not prove optimality), and only our
method can consistently find the optimal trees, which are the
most efficient frontiers that optimize the trade-off between
loss and sparsity, (2) OSRT has the best generalization per-
formance among methods, and (3) we can now quantify how
far from optimal other methods are.

6.2 Controllability
Unlike IAI and Evtree, our method does not rely on random
seeds. The results returned by OSRT are consistently high
quality, while those of IAI and Evtree are not. Figure 3 shows
the stochasticity of various methods. Trees produced by IAI
and Evtree have large variance in complexity and accuracy
if we do not fix the random seed. High variance of loss and
sparsity can result in inaccuracy and overfitting. Details and
results of this experiment can be found in Appendix F.

6.3 Speed and Scalability
Our method is one of the fastest regression tree optimization
methods and the only one that also guarantees optimality.
Figure 4 shows that OSRT performs well in run time, and
Figure 5 shows its outstanding scalability when tackling a
large dataset with over 2 million samples. As the number of
sample increases, Evtree slows down more than other meth-
ods and cannot converge within a 30-minute time limit when
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Figure 2: Training and testing loss achieved by IAI, Evtree, GUIDE, CART, OSRT on dataset airfoil, d = 5.

Figure 3: Variance (horizontal and vertical lines) of trees
generated by IAI, Evtree, OSRT using 10 different random
seeds on dataset real-estate.
the sample size exceeds 50,000. More results are shown in
Appendices G and I.

6.4 Value of k-Means Lower Bound
The squared error used in regression tasks tends to make
the equivalent points lower bound loose, preventing us from
pruning more of the search space. The novel k-Means lower
bound allows us to aggressively prune the search space, and
Figure 6 shows that for the airfoil data set, the k-Means
lower bound converged in less than one-fourth the time it
took the equivalent points bound to converge. More results
can be found in Appendix J.1.

6.5 Optimal Trees
Figure 7 presents two optimal trees generated by OSRT on
dataset servo, with and without a depth constraint respec-
tively, using the same regularization parameter. It shows that
imposing a depth constraint sacrifices the global optimality
of Equation 1. More results regarding the ablation study of
depth limit can be found in Appendix J.2, and Appendix L

Figure 4: Training time of trees generated by CART,
GUIDE, IAI, Evtree, OSRT.
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Figure 5: Training time of CART, GUIDE, IAI, Evtree and
OSRT as a function of sample size on dataset household,
d = 5, λ = 0.035. (30-minutes time limit; Evtree timed out
when sample size is beyond 50,000)

Figure 6: The time saved by k-Means lower bound (blue)
over equivalent points bound (yellow), using λ = 0.005.
The optimal solution is found when the lower bound equals
objective. The k-Means bound converges in under a second.
compares optimal trees generated by OSRT and sub-optimal
trees generated by other methods.

7 Conclusion
We provide the first method to find provably-optimal re-
gression trees within a reasonable time. Our method quickly
and consistently finds an optimal sparse model that tends to
generalize well. Our method also scales well even for large
datasets. OSRT provides a naturally human-interpretable op-
tion for solving regression problems in contrast to other, un-
interpretable methods such as ridge regression, support vec-
tor regression, ensemble methods and neural networks.

Code Availability
The implementation of OSRT is available at https://github.
com/ruizhang1996/optimal-sparse-regression-tree-public.
Our experiment code is available at https://github.com/
ruizhang1996/regression-tree-benchmark.

pgain = 4

0.67 pgain = 5

0.53 pgain = 6

0.52 motor = D

1.40 3.68

True False

(a) (Max depth 4) Optimal tree with 5 leaves, R2 = 69.63%.

pgain = 4

0.67 pgain = 5

0.53 pgain = 6

0.52 motor = D

1.40 motor = E

2.40 4.10

True False

(b) (No depth limit) Optimal tree with 6 leaves, R2 = 75%.

Figure 7: Optimal trees generated by OSRT on dataset servo
with (a) depth limit 4 and (b) no depth limit. Tree (b) has
only one more leaf but explains 5% more training data vari-
ance than Tree (a).
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