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Abstract

Existing image stitching approaches based on global or lo-
cal homography estimation are not free from the parallax
problem and suffer from undesired artifacts. In this paper,
instead of relying on the homography-based warp, we pro-
pose a novel deep image stitching framework exploiting the
pixel-wise warp field to handle the large-parallax problem.
The proposed deep image stitching framework consists of a
Pixel-wise Warping Module (PWM) and a Stitched Image
Generating Module (SIGMo). For PWM, we obtain pixel-
wise warp in a similar manner as estimating an optical flow
(OF). In the stitching scenario, the input images usually in-
clude non-overlap (NOV) regions of which warp cannot be
directly estimated, unlike the overlap (OV) regions. To help
the PWM predict a reasonable warp on the NOV region, we
impose two geometrical constraints: an epipolar loss and a
line-preservation loss. With the obtained warp field, we re-
locate the pixels of the target image using forward warping.
Finally, the SIGMo is trained by the proposed multi-branch
training framework to generate a stitched image from a refer-
ence image and a warped target image. For training and eval-
uating the proposed framework, we build and publish a novel
dataset including image pairs with corresponding pixel-wise
ground truth warp and stitched result images. We show that
the results of the proposed framework are qualitatively and
quantitatively superior to those of the conventional methods.

Introduction

Image stitching is a classic computer vision task widely used
in diverse applications such as robot navigation or 360°
image acquisition. Image stitching aligns multiple images
taken from different viewpoints into an image from a spe-
cific viewpoint with a wider field of view. A general pipeline
of image stitching methods is as follows: 1) obtaining trans-
formation between images based on the correspondences, 2)
warping image with the transformation, and 3) blending the
warped images while reducing unpleasant artifacts.

As far as we know, most image stitching studies formu-
late the transformation between images as a homography
(or affine) matrix. However, the approach relies on the pla-
nar scene assumption, which cannot be established when
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Figure 1: Qualitative comparison on large parallax images.
Reference image (left top), target image (right top), stitched
image of APAP (Zaragoza et al. 2013) (left bottom), and
stitched image of our method (right bottom).

the camera and the target scene are close and/or scenes in-
clude abrupt depth changes. In these large-parallax” cases,
the ghosting effect degrades the quality of the stitched re-
sults. Several studies (Gao, Kim, and Brown 2011; Zaragoza
et al. 2013; Zheng et al. 2019) reduced dependency on the
planar scene assumption, by optimizing the homography-
based transformation on each subregion (e.g. grid or super-
pixel). However, there is still a trade-off between accuracy
and convergence of warping functions when using these ap-
proaches. If we divide the image into smaller subregions to
make them nearly planar, then the correspondences on such
subregions would be scarce and therefore difficult to opti-
mize the regional warp on these regions. On the other hand,
if we use larger subregions, it would provide sufficient cor-
respondences but the planar assumption could be weakened.

To resolve this issue, we propose a deep image stitching
framework, formulating the transformation between images
as a pixel-wise warp field. In our framework, the 2D warp
vector of each pixel is directly estimated, instead of opti-
mizing the transformation function shared for each subre-
gion. Since our approach defines neither subregions nor re-
gionally shared function, it is free from the aforementioned



trade-off and therefore can handle large-parallax scenes.

To train and evaluate our framework, we build and publish
a novel Pixel-wise Deep Image Stitching (PDIS) dataset.
Note that our dataset is the first large-scale dataset including
GT pixel-wise warps, overlap region masks, and GT stitched
images, in addition to the input images. We believe that our
dataset could largely contribute to the community.

In our framework, estimating the pixel-wise warp field
is performed by a Pixel-wise Warping Module (PWM).
PWM extracts visual features from the images and matches
them, similar to estimating stereo depth or optical flow. The
2D warp vectors can be directly estimated on the overlapped
(OV) regions of the input images. However, in the stitching
scenario, the input images usually include non-overlapped
(NOV) regions, of which warp cannot be directly obtained
due to the lack of correspondences. Predicting NOV warp is
indeed a severely ill-defined problem since there can be mul-
tiple possible scene structures. Nevertheless, NOV region
should follow perspective priors such as epipolar geometry
or line preservation. We impose these geometric constraints
on PWM to make it reasonably predict the NOV warp, while
preventing over-fitting on the training dataset. With the ob-
tained pixel-wise warp, PWM relocates the pixels of the tar-
get images onto the reference image plane.

To blend the warped target image and the reference image,
we devise a Stitched Image Generating Module (SIGMo).
Although our dataset provides the GT stitched result corre-
sponding to the GT warp, making the SIGMo reconstruct the
GT result with the estimated warp (which can be far differ-
ent from the GT warp) leads to blurred results, due to the
ill-posed nature of the NOV region. To address this, we de-
vise a multi-branch learning strategy. For the Ground-truth
Warp (GW) branch, the input target image is warped using
the GT warp, and the direct reconstruction loss is applied.
In the Prediction Warp (PW) branch, we feed the target im-
age warped with the predicted warp. Here, we apply input-
reconstruction loss and adversarial loss to handle undesir-
able artifacts such as blurriness or seam. Finally, in the Do-
main Adaptation (DA) branch, we use real images as input
to help the model adapt to the real scene distribution.

Our approach obtains quantitatively and qualitatively su-
perior results compared to the existing image stitching meth-
ods on both the proposed dataset and the real images. As
shown in Fig. 1, we observed that the proposed method ef-
fectively performs image stitching, for the scenes contain-
ing large parallax or non-planar objects where the existing
approaches usually have failed.

In summary, our contributions are as follows:

* We develop a novel deep image stitching framework that
estimates pixel-wise warp and blends the warped target
image with the reference image, which can address the
large-parallax problem in the image stitching task.

* We propose and publish a large-scale PDIS dataset for
the training and evaluation of the image stitching task.

* Our method obtains quantitatively and qualitatively su-
perior stitching results on both the proposed dataset and
real images compared to the existing methods, especially
for the scenes including large-parallax.
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Related Works

Warp Estimation

To relieve the parallax problem, existing image stitching
approaches have proposed to divide an input image into
subregions such as grid (Zaragoza et al. 2013), triangular
projective-consistent planes (Zheng et al. 2019), and super-
pixels (Lee and Sim 2020). Then, a transformation matrix
for each cell is optimized while assuming that the subregions
are planar. However, using a regional warp for each subre-
gion induces a trade-off between the accuracy and conver-
gence of the optimization for warp. Plenty of studies have
proposed to refine the homography-based warp with various
methods: spatially-varying affine transformation (Lin et al.
2011), meshed image plane (Lee and Sim 2020), and line-
point constraint (Jia et al. 2021). These works, however,
cannot fully resolve the drawback of using homography-
based warp since the refined warp is a locally adjusted
version of the initial warp. Several prior works have sug-
gested using optical flow for refining the artifacts caused by
homography-based methods. Video stitching methods (Kr-
ishna et al. 2021; Peleg et al. 2000) use optical flow between
the frames for stitching, but they mainly targets the over-
lapped regions. Panorama stitching methods (Li et al. 2017;
Meng and Liu 2020) first stitch the images based on feature
matching or known pose, and then refine the misalignments
in the overlap region using optical flow. However, the meth-
ods less consider about the NOV regions due to the nature of
panorama synthesis. Recently, deep-learning-based stitching
methods are actively researched. However, the works are
based on deep homography estimation (Hoang et al. 2020;
Shi et al. 2020; Nie et al. 2020a,b, 2021), still sharing the
limitation of homography-based methods. Also, CNN-based
generation approaches (Li et al. 2019) are not view-free.
Compared to them, this paper proposes a first pixel-wise
deep image stitching framework that directly estimates the
pixel-wise warp from the alignment stage, while handling
the NOV warp with geometrical constraints.

Image Blending

Blending is crucial to create natural stitching results with-
out artifacts. Existing methods exploit seam cost func-
tions (Levin et al. 2004), seam-cutting (Zhang and Liu
2014), or iterative enhancement (Lin et al. 2016). (Nie et al.
2020a) was the first to propose a fully deep framework for
image stitching, especially targeting view-free stitching. At-
tempts such as an edge-preserved deformation branch (Nie
et al. 2020b), content loss (Nie et al. 2020a) and seam
loss (Nie et al. 2021) have also been made. We also de-
vise SIGMo to target the artifacts in the blending stage. We
especially consider the holes, inevitably caused by forward
warping in our framework. Since the holes cannot be dis-
tinguished from the dummy region, image inpainting tech-
niques (Chaohao Xie 2019; Guilin Liu 2018, 2020) cannot
fully address them without a manual mask explicitly indi-
cating the area to be filled. Instead, for SIGMo, we propose
a multi-branch learning scheme that can effectively remove
seams and holes while obtaining clear stitching results.
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Figure 2: Overlap ratio distribution (top) and sample data of
the proposed PDIS dataset (bottom). (a) Reference image,
(b) Target image, (c) GT warp from the target image to the
reference image, (d) mask for overlap region on the target
image, (e) stitched result. Left scene and right scene are from
S2D3D and CARLA simulator, respectively.

Proposed Dataset

In introducing deep learning to the field of image stitch-
ing, the largest obstacle is the absence of a dataset including
ground truth (GT). Although there exist several datasets with
pairs of images, none of them provide GT that can be used
for training or evaluation of the image stitching method.
Therefore, we build and propose PDIS dataset, a novel large-
scale dataset for deep image stitching.

We utilize two distinct 3D virtual environments: the
S2D3D dataset (Armeni et al. 2016) for indoor scenes and
the CARLA simulator (Dosovitskiy et al. 2017) for outdoor
scenes. We render image pairs from multiple scenes with
virtual cameras at two different views: the reference image
and the target image. For each camera, we provide both in-
trinsic and extrinsic parameters. Here, to mimic the situa-
tions where image stitching is generally applied, we enforce
a pair of rendered images to have overlapping regions. With
the projective camera matrices of the virtual cameras and
z-buffer (i.e. depth map) obtained during the rendering pro-
cess, the warp field of the target image (to the reference im-
age) is obtained with respect to the reference image. Using
the GT warp field, our dataset also provides a binary mask
indicating which pixels of the target image are overlapped
with the reference image. In addition, the proposed dataset
also includes GT stitching results constructed from the ref-
erence image and the warped target image (according to the
obtained GT warp). Fig. 2 shows statistics on the OV ratio,
as well as some sample data of the proposed dataset. More
sample data and a detailed explanation regarding the pro-
posed dataset can be found in Supplementary Material.

Proposed Method

The proposed framework consists of two modules: Pixel-
wise Warping Module (PWM) and Stitched Image Gener-
ating Module (SIGMo), as shown in Fig. 3. Since our goal
is to stitch the target image into the reference image plane
in a pixel-wise manner, we first reposition each pixel in the
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target image to obtain the warped target image using PWM.
Then, SIGMo blends the warped target image with the ref-
erence image to generate a resulting stitched image. In this
section, we will introduce each stage in detail.

Pixel-wise Warping Module (PWM)

Instead of using a homography-based regional warp, we for-
mulate the transformation between images as a pixel-wise
warp field. Similar to estimating stereo depth or optical flow
(OF), PWM extracts visual features from the input images
and matches them. Our pixel-wise warp estimation and OF
estimation have a similar formulation: estimating pixel-wise
2D offset vector from one image to the other image. There-
fore, we borrow the network architectures from recent OF
estimation research (Teed and Deng 2020) as our backbone.

However, this does not mean that the proposed pixel-wise
warp estimation for image stitching is identical to the OF es-
timation. In usual stitching scenarios, the portion of the OV
region over the whole image is much smaller than that of the
usual settings for OF estimation (e.g. frame-based datasets).
Unlike estimating the warp on the OV region, predicting the
pixel-wise warp field of the NOV region is an ill-defined
problem due to the absence of correspondences.

At first, as a baseline, we directly train the PWM to pre-
dict the GT warp field (Wy;) from the input image pairs (I ?
and I'T), using our dataset. To consider the ill-posed nature
of predicting NOV warp, we regularize the loss for the pix-
els on the NOV region, instead of applying an identical loss
function for all pixels on the image. With the GT masks in-
dicating the OV and NOV regions (M o, and My o0, T€-
spectively), we define the warp estimation loss as follows:

‘C'warp = || gt,ov @ Wp7 Mgt ov @ Wgt ||1
+ﬂ H Mgt,nov © Wpr Mgt,nov © Wgt ||1>
¢!

where W), is the warp estimated by PWM and 3 is the
weighting factor. Surprisingly, with this loss, we observe
that the PWM can predict the reasonable warp field to some
degree, even in the NOV region. It implies that providing
GT warp as supervision for the NOV region can work as
rough guidance. We think that the network could learn how
to predict the NOV warp based on the contexts of the OV
region, since the existing OF models generally have a wide
receptive field to cover both OV and NOV regions.

However, excessively forcing the model to reduce the loss
between the predicted warp and GT warp on the NOV re-
gion lead to overfitting on the trained dataset, similar to that
of the monocular depth estimation task. Although the result
shows some feasibility, the predicted NOV warp is not suffi-
cient to achieve plausible image stitching results. To help the
PWM predict proper NOV warp in the perspective of image
stitching, we explore additional priors that can be imposed
on NOV region. In this paper, we focus on the fact that the
NOV regions of the input images should follow the geomet-
rical rules induced by perspective projection, even though
they do not include correspondences with each other. Under
the perspective prior, we devise two geometrical constraints:
an epipolar loss and a line-preservation loss.

The epipolar loss is based on an epipolar geometry, a
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Figure 3: Overall framework for pixel-wise deep image stitching. Given I and I7, PWM relocates the pixels in I to the
I domain using the estimated warp field W in order to obtain "7, Then, I and IV are padded or cropped to match the
predefined size of the stitched image. Finally, 77 and 1"V are fed into the SIGMo to obtain a stitched image I°.

pose-dependent relationship between the pixels of multi-
view images. In specific, a pixel of the target image should
be relocated to the epipolar line corresponding to that pixel.
Although it is difficult to explicitly use the epipolar geom-
etry at the time of inference (since the relative pose is un-
known and it is inaccurate to infer), we can use it as a
geometry-aware guideline for training PWM. We formulate
the epipolar loss as a form of Sampson distance error to con-
strain the warped pixel p} to be on the epipolar line of p;,
the pixel before being warped. Using the GT fundamental
matrix F' computed from the projective matrices of the vir-
tual cameras, we define the epipolar loss L.,; as follows:

ad (p}

Z sz)

=1

V. Fp;)?
+ (FTplV)3

(F pz + (F Tp}/V )%7

@)
where IV is the number of pixels in the target image, and
(F'p;)y represents k-th entry of the vector F'p;.

In addition, we impose the line-preservation loss on
PWM. The pixels located on a line should also form a line
after warping, regardless of whether the pixels are in the
OV region or NOV region. Also, from the perspective of
the image stitching, preserving lines of target images dur-
ing warping is crucial for the perceptual quality of stitched
results. To realize the line-preservation loss, we first detect
line segments L = {ly,...,l,} from the target image us-
ing ULSD (Li et al. 2020). For each detected line [;, we
build a set of pixels P, = {pi1,...,Dim, } that are located
on the line. In ideal, on the warped target image, the set of
the warped pixels P}V = {p}}’,...,p}, } also should form
a line. To formulate this constraint as a back-propagable loss
function, we fit a line [}V for each warped set of pixels PV
The distance between the line [}V and the pixel p}’}/ is com-
puted as

laizi; + biyi; + ¢l
Va2 +b?

raix+biy+e = Oandp}’}/ =

3

a1y . ply) =

where 1}V (x4, yij)- Finally,
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we define the line-preservation loss L;;,. as follows:

Zl 12”11 d(lz 7pz])
>

In summary, the total loss function for training the PWM
is defined as follows:

Eline = (4)

=114

ACPWM = )\warpﬁwarp + )\epiﬁepi + )\lineﬁline~ (5)

With the predicted pixel-wise warp field, we obtain a
warped target image by relocating each pixel in the target
image. Here, we use softmax splatting (Niklaus and Liu
2020), which is a well-known forward warping method in
video frame interpolation. We denote the warping process
as a function 20, which gets the target image I7 and warp
W and returns the warped target image I"V'7" as follows:

T =1t w).

(6)

Stitched Image Generating Module (SIGMo)

We propose the SIGMo (denoted as §) to generate a stitch-
ing result 7°* by blending the reference image I and the
warped target image IV as follows:

15 =3I, 1. (7
Aforementioned in the dataset section, the proposed
dataset provides stitching results I 5; for each given pair

of the reference image and the target image. I, E‘?t is con-
structed from the target image warped by the GT warp field
W4 However, we cannot assure that the warp estimated by
PWM (W),,) is identical to the GT warp. Therefore, enforc-
ing SIGMo to follow the GT stitching results could weaken
its blending capability. Indeed, when we directly trained the
SIGMo using I, cS:T as the reconstruction target, we observed
that SIGMo generates severely blurred results.

To address this, we propose a novel multi-branch learn-
ing framework for SIGMo, as depicted in Fig 4. In the GT
Warp (GW) branch, we obtain the GT warped target image
IV =017, W,,) with the Wy, provided by our dataset.

Then we feed I and I ;’f T to the SIGMo. Since the I;/ZT
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Figure 4: Illustration of a multi-branch training framework
for the SIGMo. It shows the GT Warp (GW), Prediction
Warp (PW), and Domain Adaptation (DA) branches. The
dashed lines represent weight sharing between the SIGMo.

perfectly fits with the GT stitched image [, ft, we can directly

train the SIGMo to reconstruct the [ 5,5 from the reference

image I and 1)y”". We apply the perceptual loss (Johnson,
Alahi, and Fei-Fei 2016) and the L1 loss as follows:

ﬁGW = )\GW,per H V(IS;*) - V(Ig}gt) ”1
+)\GW,rec H Igt* - Igst ”17

®)

SR, 1)YT) is the output of SIGMo when
using 137", and V' is the perceptual embedding function.
Through the GW branch, we can help the network implicitly
handle the occlusion and hole caused by forward warping.
On the other hand, in a Predicted Warp (PW) branch,
we obtain I)V" = (17, W,,.), where W, is the warp pre-
dicted by PWM. Instead of using I, ,ft as the reconstruction
target, we make SIGMo preserve the pixels of inputs (I
and /. ;,/Z Ty while blending them. To address the hole of I ;Z T

we obtain binary occupancy masks M%® and M7 for the
reference image and the warped target image, respectively.
Then, according to the masks, we impose a reconstruction
loss only to the pixels existing in 17 and IV, as follows:

Sx
where I}

| MEO IS — MR IR |,
+ H MW @IST* _ MWT QIEI{T H17
)

»CPW,rec =

where I5% = F(I7, 1)V'T) is the result of SIGMo.
Furthermore, to handle the other undesired artifacts such

as seams or misalignments, we impose an adversarial loss

for the output of SIGMo. We employ an unconditional patch

discriminator (Isola et al. 2017), denoted as D, where [ gf is
used as a real sample. The adversarial loss is defined as:

Lp  =E;s[(DUg) —1)°] +Es: [(D(1;7))?]
Lpwadw = Ers- [(D(I5r) —1)2],
(10)

The total loss function for the PW branch is defined as
EPW = /\pw,rec‘cPW,rec + /\pw,advﬁPW,ad'u-
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Although the proposed GW and PW branches enable the
SIGMo to generate plausible results on our dataset, the gen-
eralization issue for in-the-wild images still remains a cru-
cial problem. To address this, we additionally devise a Do-
main Adaptation (DA) branch, which helps SIGMo adapt
to the distribution of the real images. Since we have neither
GT warp nor GT stitched results for the real images, we only
impose input-reconstruction loss for £ 4, similar to Eq.9.

In summary, with the aforementioned three branches
(GW, PW, and DA), the total loss function for training the
SIGMo is defined as follows:
1D

Lsiamo = Low +Lpw + Lpa.

Experiments

We train mainly using our PDIS dataset, and additionally
use UDIS dataset (Nie et al. 2021) for real images. In PWM,
we borrow the architecture of (Teed and Deng 2020), which
has shown promising results in OF estimation. We first train
PWM alone, and then train the SIGMo with fixed PWM.
We use AdamW optimizer (Loshchilov and Hutter 2017)
(81 = 0.5, By = 0.999, and Ir=1e-4), with batch size of 8.
For perceptual loss (Eq. 8), we use layer relu2_2 from the
VGG16 (Simonyan and Zisserman 2014) pre-trained on Im-
ageNet (Krizhevsky, Sutskever, and Hinton 2012).

Ablations

Geometrical Losses for PWM  We experimentally verify
the effect of losses for PWM by ablating the proposed epipo-
lar loss and line-preservation loss, while using the warp es-
timation loss as a baseline. For evaluation, we employ three
metrics: L1 loss between the predicted warp and the GT
warp, Average Epipolar Distance (AED), and Line Preser-
vation loss (LP). We evaluate each setting with the metrics
on the whole, OV, and NOV regions of the target image. In
PDIS dataset, AED was measured using the GT fundamen-
tal matrix. However, since the GT fundamental matrix is not
accessible for the UDIS dataset, we used the fundamental
matrix calculated from the estimated OF on the OV region.
Detailed process for acquiring the reliable fundamental ma-
trix from the OF can be found in Supplementary Material.
As shown in Table 1, using the epipolar loss reduces AED,
as well as the Warp L1 loss, in both OV and NOV regions.
Furthermore, with additional line-preservation loss, PWM
achieves even better results for all metrics and all regions.
In particular, the improvement in the NOV region is sig-
nificantly higher than in the OV region. With the results,
we confirm that the proposed epipolar and line-preservation
losses not only help PWM predict better warp in terms of
L1 loss, but also effectively provide geometrical priors, as
we intended. Also, in Fig 5, we provide qualitative com-
parison between the stitching results obtained by ablating
the epipolar and line-preservation losses. Both qualitative
and quantitative results strongly support that the proposed
losses enable PWM to provide a more accurate and geo-
metrically plausible warp, which is our key contribution to
achieve pixel-wise warp estimation for image stitching.



Losses PDIS dataset UDIS dataset
Warp L1 AED LpP AED LP
WP Epi Line || OV | NOV | Total | OV | NOV | Total | OV | NOV | Total | OV | NOV | Total | OV | NOV | Total
v 11.1 | 19.7 | 13.8 | 651 | 11.4 | 886 | 143 | 1.62 | 148 || 298 | 6.44 | 436 | 1.34 | 1.63 | 1.42
v v 10.1 | 19.0 | 129 | 6.04 | 10.28 | 8.08 | 1.49 | 1.57 | 1.51 || 2.64 | 538 | 3.69 | 1.32 | 1.54 | 1.38
v v v 876 | 169 | 114 | 4.60 | 6.65 | 5.53 | 1.26 | 1.29 | 1.27 | 2.30 | 4.86 | 3.18 | 1.10 | 1.25 | 1.14

Table 1: Quantitative results of the ablation study regarding the loss functions (Lyqrp, Lepi> and Line) for AED and LP denote
Average Epipolar Distance and Line-preservation loss, respectively. Bold numbers represent the best results.

Branch PDIS dataset (Whole region) UDIS dataset (Reference region)
Pred GT DA | LPIPS({) PSNR(T) SSIM(T) BRISQUE(]) | LPIPS(]) PSNR(T) SSIM(1) BRISQUE(])
v 0.1746 25.22 0.7493 48.40 0.0419 33.83 0.9714 50.87
v v 0.1220 25.44 0.8810 47.66 0.0419 32.05 0.9623 48.77
v v v 0.1009 26.31 0.9148 43.80 0.0270 35.53 0.9804 44.53
Table 2: Quantitative results of the ablation study regarding the multi-branch learning framework for SIGMo.
Method PDIS dataset UDIS dataset
PSNR(T) SSIM(T) LPIPS(J) | PSNR(D)
UDIS 31.4430 0.9399 0.0341 21.1715
Ours 34.8244  0.9746 0.0066 23.3109

Table 3: Quantitative comparison of the proposed method
with UDIS (Nie et al. 2021) on PDIS and UDIS datasets.

Figure 5: (a) Input images, (b) Result with warp estimation
loss, (c) Result with additional epipolar loss, (d) Result with
additional epipolar loss and line-preservation loss.

Multi-branch Learning We conduct an ablation experi-
ment to observe the effect of each branch of the proposed
multi-branch learning framework. As shown in Table 2, we
set the PW branch as the baseline and compared the per-
formance by adding the GW branch and the DA branch.
Please refer to the Supplementary material for implemen-
tation details for each model used in the ablation experi-
ments. LPIPS (Zhang et al. 2018), PSNR, and SSIM (Wang
et al. 2004) are used as metrics. For PDIS dataset, the met-
rics are measured between the GT stitched image and the
stitched image generated using the GT warp. However, since
GT stitched images do not exist in the UDIS dataset, we
evaluate the image quality of the reference image region
only. In addition, we use BRISQUE (Mittal, Moorthy, and
Bovik 2012) metric to evaluate no-reference image quality.
Since GT images are not required to measure the BRISQUE
score, we directly evaluate the entire stitched images in both
datasets. When the GW branch is added to the baseline,
LPIPS, PSNR, and SSIM metrics show that the performance
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Figure 6: (a) Input images, (b) Result with PW, (c) Result

with PW+GW (d) Result with PW+GW+DA.

is improved for PDIS images. In Fig.6, it can be observed
that adding the GW branch helps SIGMo fill the holes cre-
ated by forward warping through direct GT reconstruction
loss as we intended. However, since the L1 reconstruction
loss is used for the GW branch, the image is slightly blurred
as shown in Fig. 6 (a). Finally, the model with both GW
and DA branches achieves the best for all metrics on both
datasets. Comparing Fig. 6 (c) with Fig. 6 (a), it can be seen
that the overall clarity of the real image is improved. Also,
the blurriness caused by the GW branch becomes clearer.
These are because the model adapts to the distribution of the
real scene through the DA branch during training. In sum-
mary, with all branches of the proposed blender framework,
we can obtain clear stitching results with minimal artifacts.

Comparisons with Existing Methods

To clarify the superiority of the proposed image stitching
method based on pixel-wise warp estimation, we quantita-
tively compare our method with the UDIS (Nie et al. 2021),
which is based on the deep homography estimation. We con-
duct the experiment on the validation set of PDIS dataset
(synthetic) and the UDIS dataset (Nie et al. 2021) (real). For
the PDIS dataset, we evaluate the PSNR, SSIM, and LPIPS
between the OV region of the stitched result and the GT
stitched image. The OV mask and the GT stitched image are
provided by our dataset. For the UDIS dataset, we only use
the PSNR (which can be evaluated at pixel-level) between
the reference image and the warped target image, since there



Figure 7: Qualitative comparisons of the stitched images of various methods. From left to right: (a) input images (reference T,
target |), (b) APAP (Zaragoza et al. 2013), (c) AANAP (Lin et al. 2015), (d) UDIS (Nie et al. 2021), (e) the proposed method.
More comparative experiments can be found in the Supplementary material.

Figure 8: Case of small OV region. Left (blue) is the result
of UDIS (Nie et al. 2021) where the right (red) is ours.

is no GT mask for the OV region. As shown in Table 3, the
proposed method outperforms the homography-based UDIS
method both on the PDIS and UDIS datasets. Although our
framework is trained on the proposed synthetic dataset, the
superior performance of the proposed method on the real im-
ages (UDIS dataset) supports the generalizability of the pro-
posed framework. Also, it is worth noting that the proposed
method’s inference time (0.13s) is significantly shorter than
the other methods (APAP: 4.2s and UDIS: 0.24s). Fig. 7
shows the qualitative comparison between our method and
the conventional methods (Zaragoza et al. 2013; Lin et al.
2015; Nie et al. 2021) on the PDIS and UDIS dataset. As in-
tended, the proposed method robustly stitches the input im-
ages without misalignments and severe distortion, while the
other methods often fail to converge or produce misalign-
ments. It supports that our pixel-wise deep image stitching
method generates substantial stitching results. We have also
tested our method in more challenging cases: stitching of
images having a small OV region (Fig. 8).
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Conclusions

Most existing studies in image stitching have exploited
the homography-based warp, which causes parallax prob-
lems. In this paper, to address the large parallax problem,
we propose to estimate the pixel-wise warp instead of the
homography-based warp. We devise a novel pixel-wise deep
image stitching framework composed of a Pixel-wise Warp-
ing Module (PWM) and a Stitched Image Generating Mod-
ule (SIGMo). PWM estimates the 2D warp field from a tar-
get image to the reference image and warps the target im-
age with the predicted warp. To handle the ill-posed nature
of predicting warp on the non-overlapped region, we train
PWM with the proposed epipolar loss and line-preservation
loss. Then, SIGMo generates plausible stitching results by
blending the reference image and the warped target image,
with the help of the proposed multi-branch training strategy.
To train and evaluate the proposed framework, we also build
a large-scale synthetic dataset including GT warp and GT
stitched images, which can serve as a benchmark for the field
of image stitching. As a result, with the proposed frame-
work and the dataset, we obtain impressive stitching results.
Our method can handle challenging scenes with large par-
allax as we intended. It supports the superiority of the pro-
posed pixel-wise warp estimation approach compared to the
homography-based approaches.
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