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Abstract

Efficient planning in continuous state and action spaces is
fundamentally hard, even when the transition model is de-
terministic and known. One way to alleviate this challenge is
to perform bilevel planning with abstractions, where a high-
level search for abstract plans is used to guide planning in
the original transition space. Previous work has shown that
when state abstractions in the form of symbolic predicates
are hand-designed, operators and samplers for bilevel plan-
ning can be learned from demonstrations. In this work, we
propose an algorithm for learning predicates from demon-
strations, eliminating the need for manually specified state
abstractions. Our key idea is to learn predicates by optimiz-
ing a surrogate objective that is tractable but faithful to our
real efficient-planning objective. We use this surrogate objec-
tive in a hill-climbing search over predicate sets drawn from a
grammar. Experimentally, we show across four robotic plan-
ning environments that our learned abstractions are able to
quickly solve held-out tasks, outperforming six baselines.

1 Introduction

Hierarchical planning is a powerful approach for decision-
making in environments with continuous states, continuous
actions, and long horizons. A crucial bottleneck in scaling
hierarchical planning is the reliance on human engineers to
manually program domain-specific abstractions. For exam-
ple, in bilevel sample-based task and motion planning (Sri-
vastava et al. 2014; Garrett et al. 2021), an engineer must de-
sign (1) symbolic predicates; (2) symbolic operators; and (3)
samplers that propose different refinements of the symbolic
operators into continuous actions. However, recent work has
shown that when predicates are given, operators and sam-
plers can be learned from a modest number (50-200) of
demonstrations (Silver et al. 2021; Chitnis et al. 2022). Our
objective in this work is to learn predicates that can then be
used to learn operators and samplers.

Predicates in bilevel planning represent a discrete state
abstraction of the underlying continuous state space (Li,
Walsh, and Littman 2006; Abel, Hershkowitz, and Littman
2017). For example, On (blockl, block2) is an ab-
straction that discards the exact continuous poses of
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blockl and block2. State abstraction alone is useful for
decision-making, but predicates go further: together with
operators, predicates enable the use of highly-optimized
domain-independent Al planners (Helmert 2006).

We consider a problem setting where a small set of goal
predicates are available and sufficient for describing task
goals, but practically insufficient for bilevel planning. For
example, in a block stacking domain (Figure 1), we start
with On and OnTable, but have no predicates for describ-
ing whether a block is currently held or graspable. Our aim
is to invent new predicates to enrich the state abstraction be-
yond what can be expressed with the goal predicates alone,
leading to stronger reasoning at the abstract level.

What objective should we optimize to learn predicates for
bilevel planning? First, consider our real objective: we want
a predicate set such that bilevel planning is fast and suc-
cessful, in expectation over a task distribution, when we use
those predicates to learn operators and samplers for plan-
ning. Unfortunately, this real objective is far too expensive
to use directly, since even a single evaluation requires neural
network sampler training and bilevel planning.

In this work, we propose a novel surrogate objective that
is deeply connected to our real bilevel-planning objective,
but is tractable for predicate learning. Our main insight is
that demonstrations can be used to analytically approximate
bilevel planning time. To leverage this objective for pred-
icate learning, we take inspiration from the program syn-
thesis literature (Menon et al. 2013; Ellis et al. 2020), and
learn predicates via a hill-climbing search through a gram-
mar, with the search guided by the objective. After predicate
learning, we use the predicates to learn operators and sam-
plers. All three components can then be used for efficient
bilevel planning on new tasks.

In experiments across four robotic planning environ-
ments, we find predicates, operators, and samplers learned
from 50-200 demonstrations enable efficient bilevel plan-
ning on held-out tasks that involve different numbers of ob-
jects, longer horizons, and larger goal expressions than seen
in the demonstrations. Furthermore, predicates learned with
our proposed surrogate objective substantially outperform
those learned with objectives inspired by previous work,
which are based on prediction error (Pasula, Zettlemoyer,
and Kaelbling 2007; Jetchev, Lang, and Toussaint 2013),
bisimulation (Konidaris, Kaelbling, and Lozano-Perez 2018;
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Figure 1: Overview of our framework. Given a small set of goal predicates (first panel, top), we use demonstration data to learn new
predicates (first panel, bottom). In this Blocks example, the learned predicates P1 — P4 intuitively represent Holding, NotHolding,
HandEmpty, and NothingAbove respectively. Collectively, the predicates define a state abstraction that maps continuous states x in the
environment to abstract states s. Object types are omitted for clarity. After predicate invention, we learn abstractions of the continuous action
space and transition model via planning operators (second panel). For each operator, we learn a sampler (third panel), a neural network that
maps continuous object features in a given state to continuous action parameters for controllers which can be executed in the environment.
In this example, the sampler proposes different placements on the table for the held block. With these learned representations, we perform
bilevel planning (fourth panel), with search in the abstract spaces guiding planning in the continuous spaces.

Curtis et al. 2021), and inverse planning (Baker, Saxe, and
Tenenbaum 2009; Ramirez and Geffner 2010; Zhi-Xuan
et al. 2020). We compare against several other baselines and
ablations of our system to further validate our results.

2 Problem Setting

We consider learning from demonstrations in determinis-
tic planning problems. These problems are goal-based and
object-centric, with continuous states and hybrid discrete-
continuous actions. Formally, an environment is a tuple
(A,d,C, f,¥q), and is associated with a distribution 7 over
tasks, where each task T' € T is a tuple (O, zo, g).

A is a finite set of object types, and the mapd : A — N
defines the dimensionality of the real-valued feature vector
for each type. Within a task, O is an object set, where each
object has a type drawn from A; this O can (and typically
will) vary between tasks. O induces a state space X (going
forward, we simply write X when clear from context). A
state x € X in a task is a mapping from each o € O to a
feature vector in RE(type(0)) . T is the initial state of the task.

C is a finite set of controllers. A controller
C((M,---,Ay),©) € C can have both discrete typed
parameters (A1,...,A,) and a continuous real-valued
vector of parameters ©. For instance, a controller Pick
for picking up a block might have one discrete parameter
of type block and a O that is a placeholder for a specific
grasp pose. The controller set C and object set O induce an
action space Ao (going forward, we write A when clear).
An action a € A in a task is a controller C' € C with both
discrete and continuous arguments: a = C((01,...0y),0),
where the objects (01, ... 0,) are drawn from the object set
O and must have types matching the controller’s discrete
parameters (A1,...,A,). Transitions through states and
actions are governed by f : X x A — X, a known,
deterministic transition model that is shared across tasks.

A predicate 1) is characterized by an ordered list of types
(M,...,A) and a lifted binary state classifier ¢;, : X' X
O™ — {true, false}, where cy(x, (01,...,0m)) is defined
only when each object o; has type ;. For instance, the pred-
icate Holding may, given a state and two objects, robot and
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block, describe whether the block is held by the robot in this
state. A lifted atom is a predicate with typed variables (e.g.,
Holding (?robot, ?block)). A ground atom 1) con-
sists of a predicate ¢ and objects (01, ..., 0.,), again with
all type(o;) = A; (e.g., Holding (robby, block7)).
Note that a ground atom induces a binary state classifier ¢, :
X — {true, false}, where ¢y (z) £ cy(z, (01, .., 0m)).
W is a small set of goal predicates that we assume are
given and sufficient for representing task goals, but insuf-
ficient practically as standalone state abstractions. Specifi-
cally, the goal g of a task is a set of ground atoms over pred-
icates in ¥ and objects in O. A goal g is said to hold in a
state z if for all ground atoms 1 € g, the classifier ¢, () re-

turns true. A solution to a task is a plan 7 = (ay,...,a,), a
sequence of actions a € A such that successive application
of the transition model z; = f(z;_1,a;) on each a; € T,
starting from x, results in a final state x,, where g holds.

The agent is provided with a set of training tasks from
T and a set of demonstrations D, with one demonstration
per task. We assume action costs are unitary and demon-
strations are near-optimal. Each demonstration consists of a
training task (O, xg, g) and a plan 7* that solves the task.
Note that for each 7*, we can recover the associated state
sequence starting at xq, since f is known and deterministic.
The agent’s objective is to efficiently solve held-out tasks
from 7 using anything it chooses to learn from D.

3 Predicates, Operators, and Samplers

Since the agent has access to the transition model f, one ap-
proach for optimizing the objective described in Section 2
is to forgo learning entirely, and solve any held-out task by
running a planner over the state state X and action space
A. However, searching for a solution directly in these large
spaces is highly infeasible. Instead, we propose to learn ab-
stractions using the provided demonstrations. In this section,
we will describe representations that allow for fast bilevel
planning with abstractions (Section 4). In Section 5, we then
describe how to learn these abstractions.

We adopt a very general definition of an abstrac-
tion (Konidaris and Barto 2009): mappings from X and A
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Figure 2: Summary of abstractions.

to alternative state and action spaces. We first characterize
an abstract state space Sy and a transformation from states
in X to abstract states. Next, we describe an abstract action
space {2 and an abstract transition model F' : Sy x Q — Sy
that can be used to plan in the abstract space. Finally, we
define samplers ¥ for refining abstract actions back into A,
i.e., actions that can be executed. See Figure 2.

(1) An abstract state space. We use a set of predicates
U (as defined in Section 2) to induce an abstract state space
Sy. Recalling that a ground atom 1) induces a classifier ¢,
over states x € X', we have: B

Definition 1 (Abstract state). An abstract state s is the set of
ground atoms under V that hold true in x:

s = ABSTRACT(z, ¥) £ {4 : cy(z) = true, Vo € W}

The (discrete) abstract state space induced by W is de-
noted Sy. Throughout this work, we use predicate sets ¥
that are supersets of the given goal predicates U . However,
only the goal predicates are given, and they alone are typ-
ically very limited; in Section 5, we will discuss how the
agent can use data to invent predicates that will make up the
rest of W. See Figure 1 (first panel) for an example.

(2) An abstract action space and abstract transition
model. We address both by having the agent learn operators:

Definition 2 (Operator). An operator is a tuple w
(PAR, PRE, EFF', EFF~, CON) where:
e PAR is an ordered list of parameters: variables with
types drawn from the type set A.
° PRE,EFF+,EFF_ are preconditions, add effects, and
delete effects, each a set of lifted atoms over ¥ and PAR.
e CON s a tuple (C,PARcoxn) where C((A1,...,\y), ©)
is a controller and PARcoy is an ordered list of con-
troller arguments, each a variable from PAR. Further-
more, |PARcox| = v, and each argument i must be of the
respective type \;.

We denote the set of operators as 2. See Figure 1 (second
panel) for an example. Unlike in STRIPS (Fikes and Nils-
son 1971), our operators are augmented with controllers and
controller arguments, which will allow us to connect to the
task actions in (3) below. Now, given a task with object set
O, the set of all ground operators defines our (discrete) ab-
stract action space for a task:

Definition 3 (Ground operator / abstract action). A ground
operator w (w,0) is an operator w and a substitution
0 : PAR — O mapping parameters to objects. We use
PRE, EFF' EFF~, and PARcoy to denote the ground pre-
conditions, ground add effects, ground delete effects, and
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ground controller arguments of w, where variables in PAR
are substituted with objects under 6.

We denote the set of ground operators (the abstract action
space) as 2. Together with the abstract state space Sy, the
preconditions and effects of the operators induce an abstract
transition model for a task:

Definition 4 (Abstract transition model). The abstract tran-
sition model induced by predicates V and operators ) is a
partial function F : Sg X Q — Sy. F(s,w) is only de-
fined if w is applicable in s: PRE C s. If defined, F(s,w) =
(s — EFE_) UEFEY,

(3) A mechanism for refining abstract actions into task
actions. A ground operator w induces a partially specified
controller, C'((o1,...0y),®) with (01,...0,) = PARcon,
where object arguments have been selected but continuous
parameters © have not. To refine this abstract action w into
a task-level action a = C'((01, . .. 0,,), 0), we use samplers:

Definition 5 (Sampler). Each operator w € S is associated
with a sampler o : X x OIP*Rl — A(@), where A(O) is the
space of distributions over ©, the continuous parameters of
the operator’s controller.

Definition 6 (Ground sampler). For each ground opera-
forw € Q if w = {(w,0) and o is the sampler associ-
ated with w, then the ground sampler associated with w is
a state-conditioned distribution ¢ : X — A(O), where

o(z) 2 o(z, 5(PAR)).

We denote the set of samplers as . See Figure 1 (third
panel) for an example.

What connects the transition model f, abstract transi-
tion model F, and samplers ¥? While previous works
enforce the downward refinability property (Marthi, Rus-
sell, and Wolfe 2007; Pasula, Zettlemoyer, and Kaelbling
2007; Jetchev, Lang, and Toussaint 2013; Konidaris, Kael-
bling, and Lozano-Perez 2018), it is important in robotics
to be robust to violations of this property, since learned ab-
stractions will typically lose critical geometric information.
Therefore, we only require our learned abstractions to sat-
isfy the following weak semantics: for every ground opera-
tor w with partially specified controller C((01,...,0,),©)
and associated ground sampler o, there exists some x €
X and some 6 in the support of o(z) such that F(s,w)
is defined and equals s’, where s ABSTRACT(z, ¥),
a = C((01,...,0,),0), and s’ = ABSTRACT(f(z,a), V).
Note that downward refinability (Marthi, Russell, and Wolfe
2007) makes a much stronger assumption: that this state-
ment holds for every x € X where F(s,w) is defined.

4 Bilevel Planning

To use the components of an abstraction — predicates W,
operators €2, and samplers > — for efficient planning, we
build on bilevel planning techniques (Srivastava et al. 2014;
Garrett et al. 2021). We conduct an outer search over ab-
stract plans using the predicates and operators, and an inner
search over refinements of an abstract plan into a task solu-
tion 7 using the predicates and samplers.



Algorithm 1 Bilevel Planning

Algorithm 2 Estimate Total Planning Time

Plan(zg, g, ¥, Q, X ):
S0 < ABSTRACT(zq, ¥)
for 7 in GENABSTRACTPLAN(S, g, €, Napstract) 0O
if 7 ~ REFINE(T, xo, ¥, &, Ngamples) then
return 7w
end if
end for

Definition 7 (Abstract plan). An abstract plan 7 for
a task (O,x0,9) is a sequence of ground operators
(Wy,...,w,) such that applying the abstract transition
model s; = F(s;—1,w,;) successively starting from sy =
ABSTRACT(z0, V) results in a sequence of abstract states
(80,.--,8n) that achieves the goal, ie., g C s,. This
(S0, ---,8n) is called the expected abstract state sequence.

Because downward refinability does not hold in our set-
ting, an abstract plan 7 is not guaranteed to be refinable into
a solution 7 for the task, which necessitates bilevel planning.
We now describe the planning algorithm in detail.

The overall structure of the planner is outlined in Algo-
rithm 1. For the outer search that finds abstract plans 7,
denoted GENABSTRACTPLAN (Alg. 1, Line 2), we lever-
age the STRIPS-style operators and predicates (Fikes and
Nilsson 1971) to automatically derive a domain-independent
heuristic popularized by the Al planning community, such as
LMCut (Helmert and Domshlak 2009). We use this heuris-
tic to run an A* search over the abstract state space Sy and
abstract action space 2. This A* search is used as a genera-
tor (hence the name GENABSTRACTPLAN) of abstract plans
7, outputting one at a time'. Parameter ngpgac gOverns the
maximum number of abstract plans that can be generated
before the planner terminates with failure.

For each abstract plan 7, we conduct an inner search that
attempts to REFINE (Alg. 1, Line 3) it into a solution 7
(a plan that achieves the goal under the transition model
f). While various implementations of REFINE are possi-
ble (Chitnis et al. 2016), we follow Srivastava et al. (2014)
and perform a backtracking search over the abstract actions
w; € 7. Recall that each w, induces a partially specified con-
troller C;((01,...,04)i, ©;) and has an associated ground
sampler ¢,. To begin the search, we initialize an indexing
variable 7 to 1. On each step of search, we sample con-
tinuous parameters 6; ~ o;(z;_1), which fully specify an
action a; = C;((o1,...,0y)i,0;). We then check whether
x; = f(x;—1,a;) obeys the expected abstract state sequence,
i.e., whether s; = ABSTRACT(z;, ¥). If so, we continue on
to ¢ <— i+ 1. Otherwise, we repeat this step, sampling a new
; ~ o;(x;—1). Parameter ngmples governs the maximum
number of times we invoke the sampler for a single value of
1 before backtracking to ¢ <— ¢ — 1. REFINE succeeds if the
goal g holds when ¢ = ||, and fails when ¢ backtracks to 0.

'This usage of A* search as a generator is related to top-k plan-
ning (Katz et al. 2018; Ren, Chalvatzaki, and Peters 2021). We
experimented with off-the-shelf top-k planners, but chose A™ be-
cause it was faster in our domains. Note that the abstract plan gen-
erator is used heavily in learning (Section 5).
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ETPT( xg, g, ¥, 2, m*):

So < ABSTRACT(zq, ¥)

Pterminate <— 0.0

texpected + 0.0

for 7 in GENABSTRACTPLAN(sq, g, 2, Napstract) O
Prefined < ESTIMATEREFINEPROB (7, 7*)
Prerminate <— (1 - plerminate) * Prefined
tier < ESTIMATETIME(T, x¢, ¥, )
texpected — texpecled ~+ Dterminate * titer
texpected — texpected + (1 - pterminate) : tupper

end for

return texpected

If REFINE succeeds given a candidate 7, the planner ter-
minates with success (Alg. 1, Line 4) and returns the plan
7 = (ai,...,a). Crucially, if REFINE fails, we continue
with GENABSTRACTPLAN to generate the next candidate
7. In the taxonomy of task and motion planners (TAMP),
this approach is in the “search-then-sample” category (Sri-
vastava et al. 2014; Dantam et al. 2016; Garrett et al. 2021).
As we have described it, this planner is not probabilistically
complete, because abstract plans are not revisited. Exten-
sions to ensure completeness are straightforward (Chitnis
et al. 2016), but are not our focus in this work.

5 Learning from Demonstrations

To use bilevel planning at evaluation time, we must learn
predicates, operators, and samplers at training time. We use
the methods of Chitnis et al. (2022) for operator learning
and sampler learning; see Section A.1 and Section A.3 for
descriptions. For what follows, it is important to understand
that operator learning is fast (O(|D|)), but sampler learning
is slow, and both require a given set of predicates. Our main
contribution is a method for predicate invention that pre-
cedes operator and sampler learning in the training pipeline.

Inspired by prior work (Bonet and Geftner 2019; Loula
et al. 2019; Curtis et al. 2021), we approach the predi-
cate invention problem from a program synthesis perspec-
tive (Stahl 1993; Lavrac and Dzeroski 1994; Cropper and
Muggleton 2016; Ellis et al. 2020). First, we define a com-
pact representation of an infinite space of predicates in the
form of a grammar. We then enumerate a large pool of can-
didate predicates from this grammar, with simpler candi-
dates enumerated first. Next, we perform a local search over
subsets of candidates, with the aim of identifying a good fi-
nal subset to use as W. The crucial question in this step is:
what objective function should we use to guide the search
over candidate predicate sets?

5.1 Scoring a Candidate Predicate Set

Ultimately, we want to find a set of predicates ¥ that will
lead to efficient planning, after we use the predicates to learn
operators €2 and samplers X. Le., our real objective is:

Jrea](\ll) £ E(O,mg,g)NT[TIME(PLAN(IOa g, \117 Qa E))]a
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Figure 3: Predicate invention via hill climbing. (Left) An example task in Blocks. (Middle) Hill climbing over predicate sets, starting with
the goal predicates ¥. On each iteration, the single predicate that improves Jg the most is added to the set. The rightmost table column
shows success rates on held-out evaluation tasks. Each iteration of hill climbing adds a predicate that causes all abstract plans above the dotted
line to be pruned from consideration. At iteration 0, the robot believes it can achieve the goal by simply stacking b2 on b3 and b1 on b2,
even though it hasn’t picked up either block. The first step of this abstract plan (shown in red) is thus unrefinable. At iteration 1, a predicate
with the intuitive meaning Holding is added, which makes the A* only consider abstract plans that pick up blocks before stacking them.
Still, the abstract plan shown is unrefinable on the first step because b4 is obstructing b2 in the initial state. At iteration 2, a predicate with the
intuitive meaning NothingaAbove is added, which allows the agent to realize that it must move b4 out of the way if it wants to pick up b2.
This plan is still unrefinable, though: the second step fails, because the abstraction still does not recognize that the robot cannot be holding
two blocks simultaneously. Finally, at iteration 3, a predicate with the intuitive meaning HandEmpty is added, and planning succeeds.

where 2 and X are learned using ¥ as we described in Sec-
tions A.1 and A.3, PLAN is the algorithm described in Sec-
tion 4, and TIME(-) measures the time that PLAN takes to
find a solution?. However, we need an objective that can be
used to guide a search over candidate predicate sets, mean-
ing the objective must be evaluated many times. J, is far
too expensive for this, due to two speed bottlenecks: sampler
learning, which involves training several neural networks;
and the repeated calls to REFINE from within PLAN, which
each perform backtracking search to refine an abstract plan.
To overcome this intractability, we will use a surrogate ob-
Jective Jg that is cheaper to evaluate than J,,, but that ap-
proximately preserves the ordering over predicate sets, i.e.,
Jsurr(\p) < Jsurr(\l’/) — Jreal(\l’) < Jreal(\I//)~

We propose a surrogate objective that uses the demon-
strations D to estimate the time it would take to solve the
training tasks under the abstraction induced by a candidate
predicate set W, without using samplers or doing refinement.
Recalling that D has one demonstration 7* for each training
task (O, xg, g), the objective is defined as follows:

1
ol 2

0,z0,9,7*)€ED

Jurr (V) £ [ETPT(zo, g, ¥,Q,7")],

where ETPT abbreviates Estimate Total Planning Time (Al-
gorithm 2). ETPT uses the candidate predicates and induced
operators to perform the first part of bilevel planning: A*
search over abstract plans. However, for each generated ab-
stract plan, rather than learning samplers and calling RE-
FINE, we use the available demonstrations to estimate the
probability that refinement would succeed if we were to
learn samplers and call REFINE. Since bilevel planning ter-
minates upon the successful refinement of an abstract plan,

2If no plan can be found (e.g., a task is infeasible under the abstrac-
tion), TIME would return a large constant representing a timeout.
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we can use these probabilities to approximate the total ex-
pected planning time. We now describe these steps in detail.

Estimating Refinement Probability ETPT maintains a
probability prerminate, initialized to 0 (Line 2), that planning
would terminate after each generated abstract plan. To up-
date Perminate (Lines 5-6), we must estimate both whether
PLAN would have terminated before this step, and whether
PLAN would terminate on this step. For the former, we can
use (1 — Prerminate )- FOr the latter, since PLAN terminates only
if REFINE succeeds, we use a helper function ESTIMATERE-
FINEPROB to approximate the probability of successfully re-
fining the given abstract plan, if we were to learn samplers X
and then call REFINE. We use the following implementation:

ESTIMATEREFINEPROB (7, %) £ (1—¢)lCOsT(m)=Cost(m)|

Here, € > 0 is a small constant (10~ in our experiments),
and COST(+) is in our case simply the number of actions
in the plan, due to unitary costs. The intuition for this ge-
ometric distribution is as follows. Since the demonstration
7* is assumed to be near-optimal, an abstract plan 7 that is
cheaper than 7* should look suspicious; if such a 7 were re-
finable, then the demonstrator would have likely used it to
produce a better demonstration. If 7 is more expensive than
7, then even though this abstraction would eventually pro-
duce a refinable abstract plan, it may take a long time for the
outer loop of the planner, GENABSTRACTPLAN, to get to it
(Section 4). We note that this scheme for estimating refin-
ability is surprisingly minimal, in that it needs only the cost
of each demonstration rather than its contents.

Estimating Time To approximate the total planning time,
ETPT estimates the time required for each generated ab-
stract plan, conditioned on its successful refinement, and
then uses the refinement probabilities to compute the total
expectation. The time estimate is maintained in fexpecied, ini-
tialized to O (Line 3). To update fexpectea ON €ach abstract



plan (Lines 7-8), we use a helper function ESTIMATETIME,
which sums together estimates of the abstract search time
and of the refinement time. Since we are running abstract
search, we could exactly measure its time; however, to avoid
noise due to CPU speed, we instead use the cumulative
number of nodes created by the A* search. To estimate re-
finement time, recall that REFINE performs a backtracking
search, and so over many calls to REFINE, the potentially
several that fail will dominate the one or zero that succeed.
Therefore, we estimate refinement time as a large constant
(103 in our experiments) that captures the average cost of an
exhaustive backtracking search. Finally, we use a large con-
stant typper (10° in our experiments) to penalize in the case
where no abstract plan succeeds (Line 9).

What is the ideal choice for nypgract, the maximum num-
ber of abstract plans to consider within ETPT? From an ef-
ficiency perspective, nypsract = 1 1S ideal, but otherwise, it is
not obvious whether to prefer the value of n4psyrace that will
eventually be used with PLAN at evaluation time, or to in-
stead prefer n,pgrace = ©0. On one hand, we want ETPT
to be as much of a mirror image of PLAN as possible; on
the other hand, some experimentation we conducted sug-
gests that a larger value of nypgraer can smooth the objective
landscape, which makes search easier. In practice, it may be
advisable to treat napsiract @S @ hyperparameter.

In summary, our surrogate objective Jy,, calculates and
combines two characteristics of a candidate predicate set W:
(1) abstract plan cost “error,” i.e., |COST(#) — COST(7*)|;
and (2) abstract planning time, i.e., number of nodes cre-
ated during A*. The first feature uses only the costs of the
demonstrated plans, while the second feature does not use
the demonstrated plans at all. In Appendix A.7, we conduct
an empirical analysis to further unpack the contribution of
these two features to the overall surrogate objective, finding
them to be helpful together but insufficient individually.

5.2 Local Search over Candidate Predicate Sets

With our surrogate objective Jy, established, we turn to the
question of how to best optimize it. We use a simple hill-
climbing search, initialized with ¥y < g, and adding a
single new predicate ¢ from the pool on each step i:

U, 41  argmin Jou (P; U {¢}).
PEY;

We repeat until no improvement can be found, and use the
last predicate set as our final ¥. See Figure 3 for an example
taken from our experiments in the Blocks environment.

Designing a Grammar of Predicates Designing a gram-
mar of predicates can be difficult, since there is a tradeoff
between the expressivity of the grammar and the practical-
ity of searching over it. For our experiments, we found that
a simple grammar similar to that of Pasula, Zettlemoyer,
and Kaelbling (2007) suffices, which includes single-feature
inequalities, logical negation, and universal quantification.
See Section A.4 for a full description and Figure 1 and Ap-
pendix A.7 for examples.

The costs accumulated over the production rules lead us
to a final cost associated with each predicate v, denoted
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PEN(v), where a higher cost represents a predicate with
higher complexity. We use the costs to regularize Jg,, dur-
ing local search, with a weight small enough to primar-
ily prevent the addition of “neutral” predicates that neither
harm nor hurt Jy,,. The regularization term is Jyeg(¥) e
Wreg Yy PEN(1)), where weg = 10~* in our experiments.
To generate our candidate predicate set for local search, we
enumerate Ngrammar (200 in experiments) predicates from the
grammar, in order of increasing cost.

6 Experiments

Our experiments are designed to answer the following ques-
tions: (Q1) To what extent do our learned abstractions help
both the effectiveness and the efficiency of planning, and
how do they compare to abstractions learned using other ob-
jective functions? (Q2) How do our learned state abstrac-
tions compare in performance to manually designed state ab-
stractions? (Q3) How data-efficient is learning, with respect
to the number of demonstrations? (Q4) Do our abstractions
vary as we change the planner configuration, and if so, how?

Experimental Setup We evaluate 10 methods across four
robotic planning environments. All results are averaged over
10 random seeds. For each seed, we sample a set of 50
evaluation tasks that involve more objects and harder goals
than were seen at training. Demonstrations are collected
by bilevel planning with manually defined abstractions (see
Manual method below). Planning is always limited to a 10-
second timeout. See Appendix A.6 for additional details.

Environments We now briefly describe the environments,
with further details in Appendix A.5. The first three environ-
ments were established in prior work by Silver et al. (2021),
but in that work, all predicates were manually defined; we
use the same predicates in the Manual baseline.

e PickPlacelD. A robot must pick blocks and place them
onto target regions along a table surface. All pick and
place poses are in a 1D line. Evaluation tasks require 1-4
actions to solve.

Blocks. A robot in 3D must interact with blocks on a
table to assemble them into towers. This is a robotic ver-
sion of the classic blocks world domain. Evaluation tasks
require 2-20 actions to solve.

Painting. A robot in 3D must pick, wash, dry, paint, and
place widgets into either a box or a shelf. Evaluation
tasks require 11-25 actions to solve.

Tools. A robot operating on a 2D table surface must as-
semble contraptions with screws, nails, and bolts, using
a provided set of screwdrivers, hammers, and wrenches
respectively. This environment has physical constraints
that cannot be modeled by our predicate grammar. Eval-
uation tasks require 7-20 actions to solve.

Methods We evaluate our method, six baselines, a manu-
ally designed state abstraction, and two ablations. Note that
the Bisimulation, Branching, Boltzmann, and Manual base-
lines differ from Ours only in predicate learning.
e Ours. Our main approach.
e Bisimulation. A baseline that learns abstractions by ap-
proximately optimizing the bisimulation criteria (Givan,
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Figure 4: Ours versus baselines. Percentage of 50 evaluation tasks solved under a 10-second timeout, for all four environments. All results

are averaged over 10 seeds. Black bars denote standard deviations. Learning times and additional metrics are reported in Appendix A.7.

Ours Manual Down Eval No Invent
Environment | Succ | Node | Time || Succ | Node | Time || Succ | Node | Time || Succ | Node | Time
PickPlacelD | 98.6 | 4.8 0.006 || 98.4 | 6.5 0.045 || 98.6 | 4.8 0.008 || 39.6 14.1 1.369
Blocks 98.4 | 2949 | 0.296 || 98.6 | 2941 | 0.251 || 98.2 | 2949 | 0.318 || 3.2 427.7 | 1.235
Painting 100.0 | 501.8 | 0.470 || 99.6 | 2608 | 0.464 | 98.8 | 489.0 | 0.208 || 0.0 - -
Tools 96.8 1897 | 0.457 || 100.0 | 4771 | 0.491 || 42.8 152.5 1 0.060 || 0.0 - -

Table 1: Ours versus Manual and ablations. Percentage of 50 evaluation tasks solved under a 10-second timeout (Succ), number of nodes
created during GENABSTRACTPLAN (Node), and wall-clock planning time in seconds (Time). All results are averaged over 10 seeds. The
Node and Time columns average over solved tasks only. Standard deviations are provided in Appendix A.7.

Dean, and Greig 2003), as in prior work (Curtis et al.
2021). Specifically, this baseline learns abstractions that
minimize the number of transitions in the demonstra-
tions where the abstract transition model F' is applicable
but makes a misprediction about the next abstract state.
Note that because goal predicates are given, goal distin-
guishability is satisfied under any abstraction.

e Branching. A baseline that learns abstractions by op-
timizing the branching factor of planning. Specifically,
this baseline learns predicates that minimize the number
of applicable operators over demonstration states.

e Boltzmann. A baseline that assumes the demonstrator
is acting noisily rationally under (unknown) optimal ab-
stractions (Baker, Saxe, and Tenenbaum 2009). For any
candidate abstraction, we compute the likelihood of the
demonstration under a Boltzmann policy using the plan-
ning heuristic as a surrogate for the true cost-to-go.

o GNN Shooting. A baseline that trains a graph neural
network (Battaglia et al. 2018) policy. This GNN takes in
the current state z, abstract state s, and goal g. It outputs
an action a, via a one-hot vector over C corresponding to
which controller to execute, one-hot vectors over all ob-
jects at each discrete argument position, and a vector of
continuous arguments. We train the GNN using behavior
cloning on the data D. At evaluation time, we sample tra-
jectories by treating the outputted continuous arguments
as the mean of a Gaussian with fixed variance. We use
the transition model f to check if the goal is achieved,
and repeat until the planning timeout is reached.

e GNN Model-Free. A baseline that uses the same GNN,
but directly executes the policy instead of shooting.
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o Random. A baseline that simply executes a random con-
troller with random arguments on each step. No learning.

e Manual. An oracle approach that plans with manually
designed predicates for each environment.

e Down Eval. An ablation of Ours that uses npgyace = 1
during evaluation only, in PLAN (Algorithm 1).

e No Invent. An ablation of Ours that uses ¥ = WU, i.e.,
only goal predicates are used for the state abstraction.

Results and Discussion We provide real examples of
learned predicates and operators for all environments in Ap-
pendix A.7. Figure 4 shows that our method solves many
more held-out tasks within the timeout than the baselines. A
major reason for this performance gap is that our surrogate
objective Jg,r explicitly approximates the efficiency of plan-
ning. The lackluster performance of the bisimulation base-
line is especially notable because of its prevalence in the lit-
erature (Pasula, Zettlemoyer, and Kaelbling 2007; Jetchev,
Lang, and Toussaint 2013; Bonet and Geffner 2019; Curtis
et al. 2021). We examined its failure modes more closely
and found that it consistently selects good predicates, but
not enough of them. This is because requiring the opera-
tors to be a perfect predictive model in the abstract spaces
is often not enough to ensure good planning performance.
For example, in the Blocks environment, the goal predi-
cates together with the predicate Holding (?block) are
enough to satisfy bisimulation on our data, while other pred-
icates like Clear (?block) and HandEmpty () are use-
ful from a planning perspective. Examining the GNN base-
lines, we see that while shooting is beneficial versus using
the GNN model-free, the performance is generally far worse
than Ours. Additional experimentation we conducted sug-
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gests that the GNN gets better with around an order of mag-
nitude more data.

Figure 5 illustrates the data efficiency of Ours. Each point
shows a mean over 10 seeds, with standard deviations shown
as vertical bars. We often obtain very good evaluation per-
formance within just 50 demonstrations.

In Table 1, the results for No Invent show that, as ex-
pected, the goal predicates alone are completely insuf-
ficient for most tasks. Comparing Ours to Down Eval
shows that assuming downward refinability at evaluation
time works for PickPlacelD, Blocks, and Painting, but
not for Tools. We also find that the learned predicates
(Ours) are on par with, and sometimes better than, hand-
designed predicates (Manual). For instance, consider Pick-
PlacelD, where the learned predicates are 7.5x better.
The manually designed predicates were Held (?block)
and HandEmpty (), and the always-given goal predi-
cate Covers (?block, ?target). In addition to in-
venting two predicates that are equivalent to Held and
HandEmpty, Ours invented two more: P3 (?block) 2
V2t . “Covers (?block, ?t),and P4 (?target)
V?b . ~Covers (?b, ?target). Intuitively, P3 means
“the given block is not on any target,” while P4 means “the
given target is clear.”” P3 gets used in an operator precondi-
tion for picking, which reduces the branching factor of ab-
stract search. This precondition is sensible because there is
no use in moving a block once it is already on its target. P4
prevents considering non-refinable abstract plans that “park”
objects on targets that must be covered by other objects.

In Appendix A.8, we describe an additional experiment
where we vary the Al planning heuristic used in abstract
search. We analyze a case in Blocks where variation in the
invented predicates appears inconsequential upon initial in-
spection, but actually has substantial impact on planning ef-
ficiency. This result underscores the benefit of using a sur-
rogate objective for predicate invention that is sensitive to
downstream planning efficiency.

7 Related Work

Our work continues a long line of research on learning state
abstractions for decision-making (Bertsekas, Castanon et al.
1988; Andre and Russell 2002; Jong and Stone 2005; Li,
Walsh, and Littman 2006; Abel, Hershkowitz, and Littman
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2017; Zhang et al. 2020). Most relevant are works that learn
symbolic abstractions compatible with AI planners (Lang,
Toussaint, and Kersting 2012; Jetchev, Lang, and Toussaint
2013; Ugur and Piater 2015; Asai and Fukunaga 2018;
Bonet and Geffner 2019; Asai and Muise 2020; Ahmetoglu
et al. 2020; Umili et al. 2021). Our work is particularly
influenced by Pasula, Zettlemoyer, and Kaelbling (2007),
who use search through a concept language to invent sym-
bolic state and action abstractions, and Konidaris, Kaelbling,
and Lozano-Perez (2018), who discover symbolic abstrac-
tions by leveraging the initiation and termination sets of op-
tions that satisfy an abstract subgoal property. The objectives
used in these prior works are based on variations of auto-
encoding, prediction error, or bisimulation, which stem from
the perspective that the abstractions should replace planning
in the original transition space, rather than guide it.

Recent works have also considered learning abstractions
for multi-level planning, like those in the task and motion
planning (TAMP) (Gravot, Cambon, and Alami 2005; Gar-
rett et al. 2021) and hierarchical planning (Bercher, Alford,
and Holler 2019) literature. Some of these efforts consider
learning symbolic action abstractions (Zhuo et al. 2009;
Nguyen et al. 2017; Silver et al. 2021; Aineto, Jiménez, and
Onaindia 2022) or refinement strategies (Chitnis et al. 2016;
Mandalika et al. 2019; Chitnis, Kaelbling, and Lozano-Pérez
2019; Wang et al. 2021; Chitnis et al. 2022; Ortiz-Haro
et al. 2022); our operator and sampler learning methods
take inspiration from these prior works. Recent efforts by
Loula et al. (2019) and Curtis et al. (2021) consider learn-
ing both state and action abstractions for TAMP, like we do
(Loula et al. 2019, 2020; Curtis et al. 2021). The main distin-
guishing feature of our work is that our abstraction learning
framework explicitly optimizes an objective that considers
downstream planning efficiency.

8 Conclusion and Future Work

In this paper, we have described a method for learning pred-
icates that are explicitly optimized for efficient bilevel plan-
ning. Key areas for future work include (1) learning better
abstractions from even fewer demonstrations by perform-
ing active learning to gather more data online; (2) expand-
ing the expressivity of the grammar to learn more sophis-
ticated predicates; (3) applying these ideas to partially ob-
served planning problems; and (4) learning the controllers
that we assumed given in this work.

For (1), we hope to investigate how relational exploration
algorithms (Chitnis et al. 2020) might be useful as a mecha-
nism for an agent to decide what actions to execute, toward
the goal of building better state and action abstractions. For
(2), we can take inspiration from program synthesis, espe-
cially methods that can learn programs with continuous pa-
rameters (Ellis et al. 2020). For (3) we could draw insights
from recent advances in task and motion planning in the par-
tially observed setting (Garrett et al. 2020). Finally, for (4),
we recently proposed a method for learning controllers from
demonstrations assuming known predicates (Silver et al.
2022). If we can remove the latter assumption, we will have
a complete pipeline for learning predicates, operators, sam-
plers, and controllers for bilevel planning.
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