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Abstract

Perpetual voting is a framework for long-term collective de-
cision making. In this framework, we consider a sequence
of subsequent approval-based elections and try to achieve a
fair overall outcome. To achieve fairness over time, perpet-
ual voting rules take the history of previous decisions into
account and identify voters that were dissatisfied with previ-
ous decisions. In this paper, we look at perpetual voting rules
from an axiomatic perspective. First, we define two classes
of perpetual voting rules that are particularly easy to explain
to voters and we explore the bounds imposed by this simplic-
ity. Second, we study proportionality in the perpetual setting
and identify two rules with strong proportionality guarantees.
However, both rules yield different guarantees and we prove
them to be incompatible with each other.

Introduction

In many voting scenarios, a group of voters, for example a
committee or working group, has to make several decisions
at different points in time. If standard voting rules are used
(such as approval, Borda, plurality, etc.), it may happen that
a majority dictates all decisions while some voters disagree
with every outcome. This can lead to unrepresentative re-
sults and, eventually, to dissatisfied voters dropping out of
the decision process. Such situations are particularly unde-
sirable if participation in the process is valued highly and
if no extreme views are present in the electorate. If a group
of colleagues has to regularly agree on a meeting time, it
is not acceptable if always the same colleague has to com-
promise. Similarly, if a committee of volunteers in a sports
club is tasked with the organization of a party, no committee
member’s opinion should be completely ignored.

Perpetual voting, recently introduced by Lackner (2020),
is a formalism for tackling these types of long-term deci-
sion making processes. From a formal point of view, a per-
petual voting instance is a sequence of approval-based elec-
tions where each decision has to be made ‘online’, i.e., in
the knowledge of past decisions but without information
about future elections. Perpetual voting rules are determin-
istic, resolute functions that take perpetual voting instances
as input and that output a winning alternative for the cur-
rent decision to be made. Lackner (2020) introduced several
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perpetual voting rules that aim to achieve a fairer outcome
over time as well as basic axioms that formalize desirable
properties in the perpetual setting. However, as of now, it
was unclear which perpetual rules provide proportional out-
comes, i.e., outcomes that reflect the opinions of both large
and small groups in a proportional fashion.

Our main goal in this paper is to close this gap and study
proportionality in the setting of perpetual voting. This is
more difficult than, e.g., proportionality in multi-winner vot-
ing (Aziz et al. 2017; Sdnchez-Ferndndez et al. 2017) due to
the sequential and dynamic nature of perpetual voting. The
main technical difficulty is that voters’ preferences (and the
set of alternatives) are different each round. Additionally,
the online character of perpetual voting prohibits standard
methods of (offline) optimization. Despite these obstacles,
proportionality is clearly desirable in perpetual voting as it
strikes a balance between majoritarian decisions (ignoring
minorities) and consensus-based decision (which may result
in disproportional power for individuals).

Our starting point, however, is a much more modest
desideratum of voting rules: ideally, they should be simple
to explain and understand. Thus, we consider two classes
of particularly simple perpetual voting rules: win-based
and loss-based weighted approval methods (WAMs). Both
classes have the advantage of a rather simple definition
based on voter weights, which are modified depending on
whether a decision was in favour of the voter. Importantly,
we require that the magnitude of a change in voter weights
is not depending on other voters, i.e., it is always apparent to
voters how an outcome influences their weight. We start our
analysis by considering two axioms from Lackner (2020):
(i) bounded dry spells guarantee each voter a satisfying out-
come on a regular basis, and (ii) simple proportionality is
a weak proportionality requirement. Our results show that
no voting rule in these two classes can satisfy bounded dry
spells. In addition, we characterize all voting rules that sat-
isfy simple proportionality.

This sets the stage for our analysis of proportionality. We
introduce two proportionality axioms in the perpetual set-
ting: lower and upper quota for closed groups. In contrast
to simple proportionality, these axioms are applicable in dy-
namic settings with changing preferences. Our first result is
a negative one: while some win-based WAMs satisfy simple
proportionality, none of them satisfies one of the stronger



properties. Thus, we turn to two more complex perpetual
voting rules: Perpetual Consensus (introduced by Lackner
2020) and Perpetual Phragmén (new to the perpetual setting,
based on Phragmén 1895). We prove that Perpetual Consen-
sus satisfies the upper quota axiom and Perpetual Phragmén
the lower quota axiom. In addition, both rules have bounded
dry spells. Finally, we show that Perpetual Phragmén sat-
isfies perpetual priceability, an axiom based on work in
the multi-winner setting by Peters and Skowron (2020). We
prove that this axiom implies the lower quota axiom, but it is
incompatible with the upper quota axiom. Thus, we see that
Perpetual Phragmén and Perpetual Consensus adhere to two
fundamentally incompatible proportionality requirements.

Related work In the last few years, the study of long-
term (or repeated) collective decision making has received
growing attention. This includes the work of Freeman, Za-
hedi, and Conitzer (2017), who proposed a sequential mech-
anism for the aggregation of utility functions over time with
the goal to maximize long-term Nash welfare. Variants of
this formalism have been studied by Conitzer, Freeman, and
Shah (2017) and Freeman et al. (2018). Additionally, Bul-
teau et al. (2021) studied an offline variant of perpetual
voting, focussing on proportionality guarantees achievable
in this setting. Notably, this work contains an experimen-
tal evaluation of perpetual voting with human participants.
Lackner, Maly, and Rey (2021) studied a perpetual version
of participatory budgeting. Other approaches that consider
either temporal aspects of voting or sequences of decisions
include storable votes (Casella 2005, 2012), sequential vot-
ing rules (Lang and Xia 2009), online approval elections (Do
et al. 2022), Frege’s method (Frege 2000; Harrenstein, Lack-
ner, and Lackner 2020), and dynamic fair division (Kash,
Procaccia, and Shah 2014; Benade et al. 2018; Zeng and
Psomas 2020).

The Perpetual Voting Framework

We will now introduce the perpetual voting formalism, as
defined by Lackner (2020), alongside necessary basic defini-
tions. Let N = {1,...,n} be a set of voters (agents). Given
a set of alternatives C, we assume that each voter v € N
approves some non-empty subset of C. An approval profile
A = (A(1),...,A(n)) for C is an n-tuple of subsets of C,
ie., A(v) € C forv € N. We call the triple (N, A,C) a
decision instance. o

A k-decision sequence D = (N, A,C) is a triple con-
sisting of a set of voters N, a k-tuple of sets of alterna-
tives C' = (C1,...,C)) and a k-tuple of approval profiles
A = (Ay, Ag, ..., Ag) such that A; is an approval profile
for C;. Thus, for 1 < i < k, the triple (N, A;, C;) is a deci-
sion instance and can be seen as an individual decision to be
made; we refer to it as the decision instance in round i.

We write @ € C as a short hand for @ € szl C;, ie.,
w = (wy,...,wy) satisfies w; € C; fori € {1,...,k}; we
refer to w as a k-outcome. This tuple represents the chosen
alternatives in rounds 1 to k. If we combine a k-decision
sequence (N, A,C') and a k-outcome w € C, we speak of
a k-decision history H = (N, A, C,w), which can be seen
as the history of past decision instances alongside the made
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choices. We thus know, for any ¢ < k, that in case of decision
instance (N, A;, C;) alternative w; was chosen.

An important statistic of k-decision histories is the sat-
isfaction of each voter: Given a decision history H
(N, A, C,w), the satisfaction of voter v € N with @ in
round k is satg(v,w) = [{1 < i < k: w; € A;(v)}|. Thus,
the satisfaction of a voter is the number of past decisions
that have satisfied this voter. Note that although satisfaction
clearly depends on H, we do not explicitly mention that in
the notation as H will always be clear from the context. The
same holds for other definitions throughout the paper.

Example 1. As an example, consider the following 4-
decision sequence with four voters N = {1, ... 4} and four
alternatives a, b, c, d (the same in all rounds):

; ) voters 3 p

- A |{a}  {g} oy {c.d}
N§ A2 {a} {a7 bv C} {d} {C}
S 4 {a} {b, c} {a, c} {b}
Aq | {a} {0} {ct {4

If we assume that we always select the alternative with
the highest number of approvals and use alphabetic tie-
breaking, then a wins in all rounds. The corresponding 4-
outcome is W = (a,a,a,a). This means voter 1 is satisfied
with every decision (sat4(1,w) = 4) while 4 does not agree
with any decision (sat4(4,w) = 0).

Assume that a group of voters N wants to take a deci-
sion and looks back at k decisions already taken. That is, we
are presented with a k-decision history H = (N, A, C, )
and a decision instance (N, Ax1, Ck+1). The question now
is which alternative in C,; should be chosen, subject to
the preferences in Ay, and under consideration of H. An
(approval-based) perpetual voting rule R is a function that
maps a pair of a decision instance (N, Ag41,Ck+1) and a
k-decision history H to an alternative in Cy1.

Given a k-decision sequence D = (N, A, C), we write
R(D) to denote the k-outcome w € C which is se-
lected by applying the perpetual voting rule R in every
round, that is, R(D) = @ is inductively defined by w;
R(N, (Al, [N ,Ai), (Cl, ey Cl), (wl, NN 7wi—1)) for i <
k. We expect perpetual voting rules to be resolute, i.e., re-
turn exactly one winning alternative, therefore we require a
tie-breaking order to resolve ties. Throughout the paper, we
assume that there exists some arbitrary and fixed order for
each set of alternatives that settles ties.

Perpetual Voting Rules

Let us now introduce the perpetual voting rules that we
will study in this paper. All of these rules except Perpetual
Phragmén have been introduced by Lackner (2020).

First, we consider a natural approach to define perpet-
ual voting rules via weights: voters that have been previ-
ously neglected receive a higher weight, voters that are sat-
isfied with previous outcomes receive a lower weight. In
each round, the alternative that receives the highest sum
of weighted approvals is selected. This idea is captured



in a broad sense by the class of perpetual weighted ap-
proval methods' (WAMs), which contains most rules pro-
posed in (Lackner 2020). These approval-based perpetual
voting rules are defined as follows: Each voter has an as-
signed positive weight, which may change each round; a
larger weight corresponds to being assigned a higher im-
portance. Let ay(v) denote voter v’s weight in round k.
Weights are initialized with a; (v) = 1 for all v € N. The
weights of voters in the following rounds are a consequence
of the previous history. Formally, there exists a weight func-
tion h such that for all v € N, agp1(v) = h(v,H).
Given a k-decision history H = (N, A,C,w) and a deci-
sion instance (N, Agy1, Cr41), the rule selects an alterna-
tive wiy1 € Cko1 With maximum weighted approval score.
That is, the score of an alternative c is defined as

2

vEN with c€ Ay 11 (v)

sce+1(c) = 41(v).

Observe that WAMs can be computed in polynomial time
as long as the function h is computable in polynomial time.
This holds for all WAMSs considered in this paper.

In this paper, we consider two subclasses subclasses of
WAMs: win-based and loss-based WAMs. These have the
benefit of a particularly straight-forward way of calculating
weights and thus can be easily explained to voters. For both
types, a voter’s weight depends only on the voter’s weight in
the previous round and whether the voter was satisfied with
the previous decision. For win-based (loss-based) WAMs,
the weights only change for voters who approved (did not
approve) a winning alternative. Win-based WAMs can be
seen as the perpetual equivalent of the well-known class
of the (sequential) Thiele methods used in multi-winner
voting (Lackner and Skowron 2023). Similarly, loss-based
WAMs are related to dissatisfaction counting rules (Lackner
and Skowron 2018).

Definition 1. We call a WAM loss-based if the weights of
voters v € N can be computed as follows:

{ak(v) ifwy € Ag(v),
flow(v)) ifwy ¢ Ag(v),
where f: R — R is a function satisfying f(x) > z.

We call a WAM win-based if the weights of voters v € N
can be computed as follows:

{g(ak(v))

ag(v)

agt1(v)

ifwk € Ak(v),
l..fwk ¢ Ak(v)7

where g: R — R is a function satisfying 0 < g(z) < .

ag+1(v)

We require g(x) > 0 for win-based WAMSs as other-
wise the voter’s weight would remain at 0 since it never
increases (g(z) < z and f(z) = z). Observe that, while
the function f resp. g can be arbitrarily complex, by defi-
nition, the weight of a voter in a win-based WAM only de-
pends on how many rounds she has already won (i.e., how
many rounds she was satisfied with). Similarly, the weight

'We note that WAMs in this paper are defined slightly more
general than in (Lackner 2020).
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of a voter in a loss-based WAM only depends on how many
rounds she already lost. In particular, this means that a win-
or loss-based WAM is fully defined by an infinite sequence
(G(0),G(1),G(2),...) such that G(7) is the weight of a
voter that has won resp. lost ¢ rounds. In this sense, we be-
lieve that win- and loss-based WAMs are simple to explain
and understand. The simplest example of a WAM is approval
voting (AV), which completely ignores the history of past
decisions.

AV. AV is the win-based WAM with g(z) = .

Observe that AV is also a loss-based WAM with f(x) = x
and thus the unique rule that is win-based and loss-based.
The next method is inspired by Proportional Approval Vot-
ing and is thus based on the harmonic series.

Perpetual PAV. Perpetual PAV is a WAM defined by the
following weight function:

a(v)
ap(v)+1

1 J—
satp(v,w) +1 ag(v)

The last equality shows that Perpetual PAV is indeed a win-
based WAM.

An example of a loss-based WAM is Perpetual Unit Cost
(Lackner 2020), where the weight of dissatisfied voters is
increased by 1.

if Wy € Ak(’U),

ak+1(v) - if Wi ¢ Ak(’U)

Perpetual Unit-Cost. Perpetual Unit-Cost is a loss-based
WAM defined by f(z) = = + 1.

Next, we define two more complicated rules, Perpetual
Consensus, introduced by Lackner (2020), and Perpetual
Phragmén, a new rule based on Phragmén’s sequential rule.
As we will see later in Section , both of them can be viewed
as proportional—but each in a different sense.

Perpetual Consensus. Let wy(v) be the weight of voter
v € N in round k. Each voter starts with a weight of
wo(v) I/n. This WAM is based on the idea that the
weight of voters that are satisfied with a decision is re-
duced in total by 1 and this number is divided equally among
them. Consequently, voters can have negative weights?; vot-
ers with negative weights are not taken into account when
determining the winning alternative. After each decision, the
weight of all voters is increased by 1/n. Formally, N, (c)
{ve N:ce Ai(v) and ay(v) > 0}, forallv € N, oy (v)
1/n and

Ozk(?))-i-%—; if’LUkEAk(’U),
apr1(v) = ! INF (we)] '
ag(v) + - if wy ¢ Ag(v),

Thus, the score of an alternative c is defined as

2

UGNk+1(C)

scp1(c) = max(0, ag4+1(v)).

Finally, Perpetual Phragmén is a new perpetual rule and
is not a WAM. It is inspired by Phragmén’s Sequential Rule
(Phragmén 1894; Brill et al. 2017).

2 Although negative weights are not allowed in the definition of



Perpetual Phragmén. This rule can be described as a load
distribution procedure. We assume that winning a round in-
curs a load of 1, which is distributed to a set of voters that
jointly approve the winning alternative. Let £ (v) denote the
load assigned to voter v in rounds 1 to k (¢1(v) = 0). In
round k + 1, for each set of voters N’ that jointly approves
at least one alternative ([, s Ak+1(v) # &), we calculate

|N'| ’

this is the load that each of voter in N’ would bear if
they were selected to choose the winning alternative. We
then select a group N’ for which ;.1 (N’) is minimal. If
more than one set of voters exists with minimal £ 1 (N'),
then one of these sets is chosen according to an arbitrary
tie-breaking order. Finally, a winning alternative is chosen
from (), nv Ak+1(v), which is non-empty by the definition
of N’, according to another arbitrary tie-breaking order. Let
N’ be the set of voters selected to choose an alternative.
Then the loads in the next round are defined as

Uy 1 (N') =

lesr (v) = L (v) ifveg N,
M T Vst (N ifve N
Conceptually, Perpetual Consensus and Perpetual

Phragmén have an important similarity: both are based on
distributing a cost (load) of 1 to all voters approving the
winning alternative. They differ, however, in the way they
distribute this cost. Perpetual Consensus strictly enforces an
equal distribution; Perpetual Phragmén assigns a lower load
to voters that already have a high load.

Example 2. Consider the instance from Example 1. In the
first round we can distribute the load of a between both of its
supporters 1 and 2. This leads to a load distribution where
1 and 2 have load 0.5 while 3 and 4 have load 0. This is
clearly better than placing all the load of an alternative on
one voter. Hence a wins in round 1. In round 2, both a and
¢ have two supporters. However, due to the higher previ-
ous load of the supporters of a, selecting c leads to a more
favourable load distribution, where the load of 1 and 3 re-
mains the same at 0.5 and O respectively. Moreover, the load
of 2 and 4 is set to 1*—20'5 = 0.75. In round 3, all alternatives
have two supporters, but the supporters of a have the lowest
previous load, hence it is selected. This leads to a load distri-
bution where all voters have the same load of 0.75. Finally,
in round 4 all voters have the same load and all alternatives
are supported by exactly one voter. Hence all alternatives
would lead to a equally good load distribution. We select
some alternative according to a fixed tie-breaking order.

Proposition 1. Perpetual Phragmén is not equivalent to any
WAM and is computable in polynomial time.

We note that the Method of Equal Shares (Peters and
Skowron 2020), a multi-winner voting rule closely related to

WAMs, the definition can easily be adapted to that framework by
defining a voting rule that assigns the same weights as Perpetual
Consensus if o (v) is positive and 0 otherwise. Moreover, observe
that compared to Lackner (2020), we divided all weights by n to
highlight the similarity to Perpetual Phragmén.
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Phragmén’s Sequential Rule with even stronger proportion-
ality guarantees, has no obvious counter-part in perpetual
voting. This is because it requires a priori knowledge about
the number of rounds and it is not committee monotone.

Win- and Loss-Based Voting Rules

First, we want to investigate under which conditions win-
and loss-based perpetual voting rules can be proportional.
To do so, we first consider simple proportionality, a basic
axiom proportionality axiom introduced by Lackner (2020).

Simple proportionality considers groups of voters that
have identical preferences and guarantees them a propor-
tional representation, at least in very simple perpetual voting
instances.

Definition 2 (Simple proportionality). We say that a k-
decision sequence D = (N, A, C) is simple if A; .
A, Cq - = Cy, and |A1( )| 1 forallv € N
Given a simple decision sequence D and a voter v € N,
let #v denote the number of voters with identical prefer-
ences, i.e, #v = [{v/ € N : A(v') = A(v)}|. A perpet-
ual voting rule 'R satisfies simple proportionality if for any
simple n-decision sequence D with |N| = n it holds that
saty (v, R(D)) = #v for every voter v € N.

Although this is a quite weak proportionality require-
ment, similar to weak proportionality in the apportionment
setting (Balinski and Young 1982), it is sufficiently strong
to reveal that some perpetual voting rules are not propor-
tional. For example, AV fails simple proportionality. On the
other hand, Perpetual PAV satisfies simple proportionality
(Lackner 2020), witnessing that win-based WAMs can sat-
isfy simple proportionality. Surprisingly, loss-based WAMs
are never proportional:

Theorem 2. There is no loss-based WAM that satisfies sim-
ple proportionality.

Proof. Assume for the sake of a contradiction that R is a
loss-based WAM that satisfies simple proportionality. Now,
consider for an arbitrary £ > 1 a simple k + 1-decision
sequence (N,A,C) such that N = {vy,...,v541}, C1

= Ciy1 = {a b} and v; always votes {a} and v; votes
{b} forall i € {2,...,k + 1}. Because R satisfies simple
proportionality there are two possible cases in round £ + 1:
either a has won one or zero times. In the first case, the score
of ainround k + 1is f*~1(1) and the score of b is k - (1)
and b must win round k£ + 1. Hence,

) < k- f(1) (1)
must hold. In the second case,
f71(1) < kforalli < k. (2)

Now consider a second simple k + 1-decision sequence
(N, A", C) where A’ is defined by vy, vy always voting {a}
and vs, ..., vg41 always voting {b}. Then, there must be a
round ¢ where a wins the second time. In this round, the
score of b is (k — 1)f(1) and the score of a is at most
2. f*=1(1). As we know that a wins in round i we have

Yok — 1) f(1) < f571(1). 3)



In summary, we know that for all £ > 1 that either
Yok f(1) < fH(1) < (k+ 1) f(1) or Y2k f(1) < f5(1) <

k + 1 holds. Consider a simple 2k-decision sequence

(N", A" C") such that N = {vy,..., 0%, w1,..., Wk},
Cy = -+ = Cn| = {a,b1,...,b}, v; always votes {a}
and w; votes {b;} for all i € {1,...,k}. Furthermore, as-

sume w.l.o.g. that a tie-breaking is applied that always picks
b; over b; if ¢ < j. We claim that b;, does not win any of
the 2k first rounds. By assumption, for all ¢ < k — 1, b;
must win before by. Then, the score of a is k - f¥71(1)
which is larger than t2k(k — 1)f(1) by (3) while the
score of by, is at most f2*~1(1). In the first case we have
F2E=1(1) < 2k f(1) by (1). Clearly, for any k large enough,
2kf(1) < Y2(k*>—k)f(1). Hence, R does not satisfy simple
proportionality. In the second case, we have f2~1(1) < 2k
by (2). Furthermore, we know f(1) = 1. Now, for any &
large enough, 2k < 1/2(k? — k) < 1/2(k* — k) f(1). Hence,
R does not satisfy simple proportionality. O

For win-based WAMs, we can precisely characterize
which rules satisfy simple proportionality.

Theorem 3. Let R be a win-based WAM. Furthermore, de-
fine the sequence G as G(0) = 1, G(1) = ¢(1), G(2)
g(g(1)), etc. Then, R satisfies simple proportionality if and
only if tG(x) < (y + 1)G(y) for all integers x,y = 0.

Examples of such rules include Perpetual PAV, i.e.,
G (1,%Y2,1/3,...), but also, for example, G
(1, Y1, /2¢+1,...) for all ¢ > 1. We see that simple pro-
portionality is satisfied by many win-based WAMs. As we
will see in Section , this changes drastically with stronger
proportionality axioms.

Moreover, as it turns out, all win- and loss-based
WAMs fail another central desideratum of perpetual voting:
bounded dry spells. The bounded dry spells property guaran-
tees that every voter is satisfied with at least one decision in
a bounded number of rounds. This property is very impor-
tant for creating an incentive to participate in the decision
making process.

Definition 3 (Dry spells). Given a k-decision history H =
(N, A, C,w), we say that a voter v € N has a dry spell of
length ¢ if there exists t < k — £ such that sati(v, W) =
satyye(v, ), i.e., voter v is not satisfied with any outcome
inroundst+1,...,t+¢.

Let d be a function from N to N. A perpetual voting rule
‘R has a dry spell guarantee of d if for any decision sequence
D = (N,A,C) and w = R(D), no voter has a dry spell of
length d(|N|). A perpetual voting rule R has bounded dry
spells if R has a dry spell guarantee of some d.

As win- and loss-based WAMs only consider the number
of wins—respectively losses—but not the round in which
they occur, a long winning streak can be followed by an ar-
bitrarily long dry spell.

Proposition 4. Every win-based and loss-based WAM has
unbounded dry spells.

In contrast, if we move beyond win- and loss-based
WAMs, we find perpetual rules that satisfy both simple pro-
portionality and bounded dry spells. Perpetual Consensus
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has a dry spell guarantee of at most 1/4 - (n? + 3n) (Lackner
2020). Here, we show a tight bound for Perpetual Phragmén:

Proposition 5. Perpetual Phragmén satisfies simple propor-
tionality, and has a dry spell guarantee of 2n — 1 (this bound
is tight).

Proportionality in Perpetual Voting

Simple proportionality, as the name implies, is a very rudi-
mentary notion of proportionality. In particular, it requires
identical preferences in all rounds. We will now significantly
weaken this assumption and introduce proportionality ax-
ioms that are applicable in more dynamic settings.

Let us first define closed groups, which are groups with
identical preferences that have no overlapping interests with
other voters.

Definition 4. Given a k-decision sequence D = (N, A, C),
we say that a group N' < N is closed if for every v € N’,
w e N, andi € {1,... k} it holds that (i) A;(v) = A;(w)
ifwe N’ and (ii) A;(v) N A;(w) = O otherwise.

The following axioms establish the minimum and maxi-
mum influence of a closed group on a decision sequence.

Definition 5 (Perpetual lower/upper quota for closed
groups). A perpetual voting rule ‘R satisfies perpetual lower
quota for closed groups (LQC) if, for every k-decision se-
quence D, it holds for every voter v € N who is part of a

closed group N’ that saty (v, R(D)) = {k . %J

A perpetual voting rule R satisfies perpetual upper quota
for closed groups (UQC) if, for every k-decision sequence
D, it holds for every voter v € N who is part of a closed

group N' that saty (v, R(D)) < [k ' ‘an

LQC and UQC identify groups that deserve representation
(due to their size and uniformity). These groups should have
a roughly proportional influence on the outcome. LQC sets
a lower bar for their influence, UQC an upper bar.?

Remark 1. When applying the definitions of LOC and UQC
to simple k-decision sequences with k = n (Definition 2),

we observe that [k . %] = lk . IJZ—I‘J = |N'|. Thus, both
LQOC and UQC imply simple proportionality.

As it turns out, these stronger notions of proportionality
cannot be satisfied with a win-based WAM.

Theorem 6. Every win-based WAM fails both LQC and
UQC.

Proof. Let us first show that every win-based WAM fails
UQC. Consider an arbitrary win-based WAM defined by
the function g. Now, we construct a simple 2-decision se-
quence with 2N voters. In both rounds, for ¢ € {1,..., N}
voter ¢ approves c;, and the voters N + 1,..., 2N approve
alternative cy 1. In round 1, alternative cy 41 wins with

3We remark that LQC is strictly weaker than perpetual lower
quota as introduced by Lackner (2020) (which is too strong to be
satisfiable in general). The same holds for UQC and perpetual up-
per quota (defined analogously).



sci1(ey+1) = N. In the second round, the winning alterna-
tive ¢ must be chosen so that sats (v, (cy41,¢)) < [2 . 2#—]\1;]
forall v € N.If v € {N + 1,...,2N} it holds that
[k‘ . %] = 1, hence cx 41 must not win a second time. Con-
sequently NV - g(1) = sca(cn+1) < sca(c1) = 1. As N can
be chosen arbitrarily large, we conclude that g(1) = 0. This,
however, contradicts the definition of win-based WAMs,
where g(x) > 0 is required.*

Now, we show that every win-based WAM fails LQC. Fix
a function g defining a win-based WAM. By Theorem 3, we

know that g(1) < g(0) = 1. Letk = [ﬁ

k + 1-decision sequence as follows. There are k + 1 voters.

]. We construct a

In each round, the set of alternatives is C' = {c1, ..., cx+1}-
The approval profiles are defined as follows:
voters
1 2 k k+1
Av = =A | {a}  {c2} {ee}  {ekt1}
Akt {1} {c} {a} {ersa}

We assume that ties are broken in favour of alternatives with
smaller index. Thus, in the first round alternative c; is win-
ning, in the second round ¢, is winning, etc., until c;, wins in
round k. In round £+1, alternative c; is approved by voters 1
to k and thus scp41(c1) = k- g(1). Further, scgy1(cks1) =
g(0) = 1. Since scg1(c1) = k- g(1) = [ﬁ] -g(1) > 1,
alternative ¢, is winning. This violates LQC since voter k+ 1
is a closed group with satisfaction 0 but deserving a satisfac-

tion of at least [(k +1)- %_H] =1 O

Next, we will show that Perpetual Consensus and Perpet-
ual Phragmén are proportional in a different sense, as the
former satisfies UQC while the later satisfies LQC. We be-
gin with Perpetual Consensus.

Theorem 7. Perpetual Consensus satisfies UQC but fails
LOC.

Before looking at Perpetual Phragmén, we will strengthen
LQC by introducing the concept of perpetual priceability.
This is motivated by the priceability property from the multi-
winner voting setting which was introduced by Peters and
Skowron (2020).° We first define price systems.

Definition 6. Given a k-decision sequence D and an out-
come W = (wi,...,wy), we say W is supported by the
price system (B, {p;}i<r) where the real number B > 0
is the budget that each voter starts with and for each i €
{1,...,k}, pi is a function from N x C; to [0, 1] such that
the following properties hold:

“Observe that even if we would change the definition of win-
based WAMs to allow g-functions with 0-values, such rules would
never satisfy simple proportionality, as follows immediately from
Theorem 3 withx = 1 and y = 2.

SPriceability is a rather strong proportionality axiom in the
multi-winner setting. It implies Proportional Justified Representa-
tion (Sdnchez-Ferndndez et al. 2017) and is incomparable to Ex-
tended Justified Representation (Aziz et al. 2017).
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(P1) p;(v,c) = 0ifc ¢ A;(v), i.e, no voter pays for an
alternative that she does not approve.

(P2) Zle Zcecj pj(v,¢) < B, i.e., voters cannot spend
more than their budget.

(P3) Y cnpi(v,w;) = 1 fori e {1,...,k}, ie, each al-
ternative included in w gathers a total payment of 1.°
(P4) > enpi(v,w) = 0 forie {1,....k} and w # wj,
i.e., alternatives not in w do not receive any payments.

These four conditions are essentially the same as for
priceability in multi-winner voting. In this setting, a fifth
condition is present which states that there is no group of
voters that supports a common alternative and has a remain-
ing budget of more than 1. Unfortunately, translating this
requirement directly into perpetual voting does not work, as
the following example shows:

Example 3. Consider the following 2-decision sequence:

‘ , 2v0ters3 ) s )
R T T R TR T
Ag | {a} {a} {a} {a} {b} {b}

Furthermore, let w be an arbitrary outcome for this de-
cision sequence. Assume that there exists a price system
(B, {p: }i<k) supporting w. By construction, the winning al-
ternative in the first round has only one supporter. Therefore,
the budget of each voter (B) must be at least 1. However,
then after the second round, at least two supporters of the
non-winning alternative still have a budget of 1, together
strictly more than the price to pay for an alternative (1).

This shows that we need a different minimality condition
to use priceability in perpetual voting. Due to the sequen-
tial nature of perpetual voting, it turns out that an inductive
minimality condition works well.

Definition 7. Given a k-decision sequence D and an out-
come © = (wy,...,wy), we say W is supported by a mini-
mal price system (B, {p; };<x ) if there exists a B* < B such
that the following two conditions hold:

(P5) there exists a minimal price system (B*, {p¥}i<k—1)
that supports (wy, ..., wi_1)"

(P6) there are no B', w, and pj, such that B* < B’ < B
and (B',{pi}i<k—1 U {p},}) is a price system supporting
(w1, ..., Wg_1, W}).

A perpetual voting rule R satisfies perpetual priceability if

Sor any k-decision sequence D with R(D) = w there exists

a minimal price system (B, {py}ven) that supports .

Using this definition, we can show that perpetual price-
ability implies LQC.

Proposition 8. Perpetual priceability implies LQC.

SPriceability in multi-winner voting is defined slightly differ-
ently by fixing the budget of each voter at 1 and varying the price of
an alternative. Both definitions are equivalent in the multi-winner
setting. The definition with variable budget is better suited for per-
petual voting as it allows to extend price-systems to future rounds.

"We assume that (0, ) is a minimal price system supporting
the empty sequence.



Proof. Let R be a perpetual voting rule that satisfies perpet-
ual priceability. We proceed by contradiction. To this end, let
D be a k-decision sequence, such that R(D) violates LQC
and let N’ be a closed group that witnesses this violation.
Furthermore, let R(D) = (w1, ..., wy) and let (B, {p; }i<k)
be a minimal price system that supports (w1, ..., wy). We
first observe that we must have B > #/n, as otherwise it
would not be possible to pay for k alternatives. Furthermore,
if B = k/n, then no budget is left after round k, formally

Z§=1 2icec; Pj(v,¢) = Bforallv € N. As N'is a closed
group, we know A;(v) = A;(w) for all v,w € N’ and
i < k. Furthermore, we know that if ¢ ¢ A;(v), then also
pi(v,¢) = 0. Therefore, for every voter in v € N’ we have
25:1 Dicea, () Pi(v,¢) = [N - k/n. As money can only be
spent on alternatives that are elected and every alternative
costs 1, this means every voter in N’ approves of at least
|N'| - k/n alternatives in R (D) and hence LQC is is satisfied.

Let us now assume B > ¥/n. As we assume that LQC is
violated, there is a voter v € N’ such that saty (v, R(D)) <
MJ .
1 alternatives supported by the closed group have been

elected. Then we know the following for the budget that the
voters in N’ have left after round k:

> (B— > pi(v,c)> >

veEN’ i<k ceC;

N/
- (|6 5| 1) -
n
IN’J
A 11
n

lk . ‘LH,‘J In particular, that means that only {k .

(N[ — {k )
Hence there is an e such that the budget of the voters in N’
is 1 + €. By the definition of minimal price systems, for ev-
ery | < k, there is a price system (B;_1, {pé_l}igl_l) that
witnesses the minimality of the price system (Bj, {p.}i<i),
where (By, {p} }i<k) = (B, {pi}i<k)-

We claim that By < B. Observe that in the first round
B; < Y|n’| must hold, as with a budget of 1/|n’| the voters
in N’ can already afford one of the alternatives that they
jointly approve; this would contradict minimality in round 1.
Moreover, we can assume that k - [V 'I/n > 1 as otherwise
LQC is vacously satisfied. It follows that & > »/|n’|. Finally,
by assumption B > %/n. Put together, we have
k

< —<B.
n|N'| " n

1 n

[V']

B, <

Now let I* be the largest index [ for which B; < B.
We claim that there is a B’ with Bjx < B’ < B,y =
B such that there are w’ € Cpx,; and pjy ., such that

(B, {p\" Vi<t U {plx.,) is a price system supportin
y i SiI¥® pl* +1 p Yy pp g
(w1, ..., wp,w"). This would be a contradiction to the min-
. . I*41
imality of (Bys 11, {p; icir)

Let w’ be an alternative supported by the voters in the

closed group in round [* + 1. Furthermore, let B’ =
max(B — ¢|N’'|, Bjx). Observe that Bjx < B’ < B.
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SP BD LQC UQC
AV x* o0* X X
Per. Unit-Cost x* oo* X X
Per. PAV Ve o X X
Per. Consensus v* < @ * X v
Per. Phragmén v/ 2n —1 v X

Table 1: Axiomatic results for selected perpetual voting
rules: bounded dry spells (BD), simple proportionality (SP),
and lower/upper quota for closed groups (LQC/UQC). En-
tries marked with * are due to Lackner (2020).

Now, define pj4_ ; such that >} prs (v,w’) = 1 and
Prxq1(V';¢) = 0 whenever v ¢ N’ or ¢ # w'. This is
possible, because the voters in N/ have at least a budget of
1 in round [* + 1. Hence this is a price system that sup-
ports (w1, ..., wk—1,w’). Contradiction to the minimality

of (B, {pi}i<k)- =

It can be shown that one can always turn the load balanc-
ing procedure of Perpetual Phragmén into a minimal price
system. Therefore it satisfies perpetual priceability.

Proposition 9. Perpetual Phragmén satisfies perpetual
priceability.

Finally, we observe that perpetual priceability is incom-
patible with UQC.

Proposition 10. A perpetual voting rule cannot satisfy both
perpetual priceability and UQC.

Corollary 11. Perpetual Phragmén satisfies LQC but fails
UQcC.

Discussion and Research Directions

We provide a summary of our axiomatic results in Table 1.
Two rules appear to be most promising: Perpetual Consen-
sus and Perpetual Phragmén. Their most notable difference
is in which sense they are proportional: Perpetual Phragmén
satisfies a lower quota axiom (guaranteeing groups a cer-
tain satisfaction), whereas Perpetual Consensus satisfies an
upper quota axiom (limiting excessive influence of groups
on the decision process). Moreover, we have seen that the
simplicity of win- and loss-based WAMs is too restrictive
to achieve proportional outcomes. Perpetual Consensus or
Perpetual Phragmén are more proportional but also concep-
tually more difficult. Whether the conceptual complexity of
these rules is problematic can only be answered in the con-
text of a concrete application.

A natural open question is whether a voting rule exists
that satisfies both LQC and UQC. The Quota apportion-
ment method of Balinski and Young (1975) may be a useful
starting point. Note that such a rule cannot satisfy perpetual
priceability (Proposition 10). Currently, Perpetual Phragmén
is the only perpetual voting rule satisfying perpetual price-
ability. Another candidate for this property is an an adaption
of the minimax support method (Ferndndez et al. 2022) to
the perpetual setting.
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