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Abstract

Data-free quantization (DFQ) recovers the performance of
quantized network (Q) without accessing the real data, but
generates the fake sample via a generator (G) by learning
from full-precision network (P) instead. However, such sam-
ple generation process is totally independent of Q, specialized
as failing to consider the adaptability of the generated sam-
ples, i.e., beneficial or adversarial, over the learning process
of Q, resulting into non-ignorable performance loss. Build-
ing on this, several crucial questions — how to measure and
exploit the sample adaptability to Q under varied bit-width
scenarios? how to generate the samples with desirable adapt-
ability to benefit the quantized network? — impel us to re-
visit DFQ. In this paper, we answer the above questions from
a game-theory perspective to specialize DFQ as a zero-sum
game between two players — a generator and a quantized
network, and further propose an Adaptability-aware Sample
Generation (AdaSG) method. Technically, AdaSG reformu-
lates DFQ as a dynamic maximization-vs-minimization game
process anchored on the sample adaptability. The maximiza-
tion process aims to generate the sample with desirable adapt-
ability, such sample adaptability is further reduced by the
minimization process after calibrating Q for performance re-
covery. The Balance Gap is defined to guide the stationar-
ity of the game process to maximally benefit Q. The theo-
retical analysis and empirical studies verify the superiority
of AdaSG over the state-of-the-arts. Our code is available at
https://github.com/hfutqian/AdaSG.

Introduction
Deep Neural Networks (DNNs) have encountered great
challenges when involving the applications (Krizhevsky,
Sutskever, and Hinton 2017; Wang 2021) on resource-
constrained devices, owing to the increasing demands for
computing and storage resources. Network quantization
(Lin, Talathi, and Annapureddy 2016; Jacob et al. 2018),
which reduces the model size and energy consumption by
mapping the floating-point weighs and activations to low-bit
ones, is a promising approach to improve the efficiency of
DNNs for model compression (Han, Mao, and Dally 2015;
Qian et al. 2021). Quantization methods generally dedicate
themselves to recovering the performance drop originating
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Figure 1: Existing work, e.g., GDFQ (Xu et al. 2020) (the
blue) and Qimera (Choi et al. 2021) (the orange), suffers
from a non-ignorable accuracy loss, as they fail to consider
the sample adaptability. Our AdaSG (the green) generates
the sample with desirable adaptability to maximally recover
Q with varied bit widths, such as (a) 3-bit and (b) 5-bit pre-
cision. The observations are from ResNet-18 on ImageNet.

with the quantization errors, which involves fine-tuning or
calibration operations with the original training data.

However, in many real-world scenes, such as medical and
military fields, the original data may not be accessible due to
privacy and security issues. Fortunately, recently proposed
data-free quantization (DFQ), a potential method to quan-
tize models without accessing the original data, aims to syn-
thesize meaningful fake samples instead, which improves
quantized network (Q) by knowledge distillation (Hinton,
Vinyals, and Dean 2015; Qian et al. 2022) against the pre-
trained full-precision model (P). Among the prior researches
(Cai et al. 2020; Zhang et al. 2021), the generative fashions
(Xu et al. 2020; Choi et al. 2021; Zhu et al. 2021) have re-
cently attracted increasing attention, owing to their superior
performance. The generative model is introduced as a gener-
ator (G) to capture the distribution of the original data from P
for better fake samples, where P is regarded as the discrimi-
nator to guide the generation process . For example, Qimera
(Choi et al. 2021) generated boundary supporting samples
to reduce the gap between the synthetic and real data. Nev-
ertheless, there still remains a non-ignorable performance
loss when encountering various bit-width settings. The rea-
sons may lie in several aspects:

(1) Due to the limited capacity of the generator, the gener-
ated sample with incomplete distribution is impossible to
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Figure 2: Unlike the existing arts (a), our AdaSG (b) aims
to generate the sample with desirable adaptability from G,
i.e., the dependence of generated sample on Q, to maximally
benefit Q with varied bit widths.

fully recover the original dataset, so that it is a crucial
criterion: is the sample beneficial or adversarial over the
learning process of Q? However, in the existing arts, the
generated sample customized for P, can’t always bene-
fit Q in varied bit-width settings (e.g., 3-bit or 5-bit pre-
cision, refer to (2)(3)), where only limited information
from P can be utilized to recover Q.

(2) In 3-bit precision, Q often suffers from a sharp accuracy
drop compared to P due to large quantization error, lead-
ing to its poor learning ability. Under such case, the gen-
erated sample by G may bring an unexpected large dis-
agreement between the predictions of P and Q, which
makes the optimization loss too large to converge, re-
sulting in no improvement; see the orange flat curve in
Fig.1(a).

(3) In 5-bit precision, Q still possesses comparable recog-
nition ability with P due to a small accuracy drop. Un-
der such case, most of the generated samples by G, for
which Q and P give similar predictions (i.e., reach an
agreement), may not benefit Q. However, under the con-
straint of the optimization loss, Q receives no improve-
ment, even impairment; see the blue curve (Epoch 0-50)
in Fig.1(b).

Based on the above, the existing approaches fail to consider
the sample adaptability, i.e., beneficial or adversarial over
the calibration process of Q, to Q with varied bit widths dur-
ing the sample generation process from G, where Q is inde-
pendent of the generation process; see Fig.2(a). For exam-
ple, for (2), the sample with large adaptability may be one
with small disagreement between P and Q; while for (3), it
may be one with large disagreement. The above naturally
elicits the following basic questions: how to measure and
exploit the sample adaptability to quantized network under
varied bit-width scenarios? how to generate the sample with
desirable adaptability to benefit the quantized network?

To answer the above questions, we consider to generate
the sample with large adaptability to Q by taking Q into ac-
count during the generation process; see Fig.2(b). Specifi-
cally, G aims to generate the sample with large adaptability,
which essentially maximizes the reward for G, by enlarging
the disagreement between P and Q, to benefit Q; while Q
is calibrated to improve itself by exploiting the sample with
large adaptability. It is apparent that such sample adaptabil-
ity will not be large to Q after Q is refined; in other words,

such process of benefiting Q leads to decreasing the sample
adaptability, which essentially minimizes the loss for Q, and
is adversarial to maximizing the reward goal for G. Based
on the above, we rethink date-free quantization process and
formulate it as a zero-sum game (Li et al. 2022; Zhang et al.
2022) between two players (an adversarial game process
where one player’s reward is the other’s loss while their sum
is zero) — a generator and a quantized network; and we
further propose an Adaptability-aware Sample Generation
(AdaSG) method. Technically, we specify it via a dynamic
maximization-vs-minimization game process anchored on
sample adaptability, and defined as:

min
θq∈Θq

max
θg∈Θg

R(θg, θq), (1)

where G and Q are parametrized by θg ∈ Θg and θq ∈
Θq , respectively. The optimization of Eq.(1) consists of fix-
ing θq , and updating θg to the optimal θ

′

g for maximizing
R(θg, θq); while alternatively fixing θ

′

g , and updating θq to
the optimal θ

′

q for minimizing R(θ
′

g, θq). Specifically, the
maximization process exploits the sample adaptability to Q
upon P to generate two types of samples: disagreement (i.e.,
P can predict correctly but Q not) and agreement samples
(i.e., P and Q have the same prediction), such sample adapt-
ability is further reduced by the minimization process after
calibrating Q for performance recovery. To achieve the sta-
tionarity to maximally benefit Q, the Balance Gap (BG) for
the adaptability of the generated samples within the game
process is defined to set up such a stationary objective to
balance the maximization versus minimization process. We
remark that AdaSG is essentially an adversarial game gov-
erned by the sample adaptability, which is fundamentally
orthogonal to the existing arts that improve Q by transfer-
ring knowledge from P to Q. One recent study (Liu, Zhang,
and Wang 2021) generates adversarial samples via G, by
maximizing the gap between P and Q, and minimizing their
gap to benefit Q for calibration. However, it fails to con-
sider the sample adaptability to Q, hence suffers from the
non-ideal generated samples. Besides, they focus primarily
on the adversarial sample generation rather than adversarial
game process perspective for AdaSG to generate the sam-
ples with desirable adaptability. The theoretical analysis and
empirical studies validate the superiority of AdaSG to the
state-of-the-arts.

Adaptability-aware Sample Generation
Recent generative data-free quantization (DFQ) methods
(Xu et al. 2020; Choi et al. 2021; Zhu et al. 2021) aim
to reconstruct the original training dataset with a generator
(G) by exploiting the distribution from a pre-trained full-
precision network (P), which is further exploited to recover
the performance of quantized network (Q) via the calibra-
tion operation. However, we observe that Q is independent
of the generation process by the existing arts and whether the
generated sample is beneficial or adversarial, namely sample
adaptability, over the calibration process of Q, is crucial to
the DFQ process. Motivated by the above, we focus primar-
ily on the sample adaptability to Q. Building on this, the
DFQ process is formulated as a dynamic maximization-vs-
minimization game process governed by the sample adapt-
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Figure 3: Given the 6000 real images from ImageNet as the
input to both P and Q upon ResNet-18, the disagreement
between P and Q varies greatly for varied Q with (a) 3-bit
and (b) 5-bit precision.

ability, as illustrated in Fig.4. Naturally, one crucial question
is how to measure the sample adaptability to Q, which will
be discussed in the next section.

How to Measure the Sample Adaptability to Q?
To measure the sample adaptability to Q, we primarily focus
on two crucial issues: 1) the dependence of generated sample
on Q, and 2) the disagreement between the predictions of
P and Q, in that for Q with different bit widths (e.g., 3 or
5 bit), the disagreement varies greatly when delivering the
same sample (take real data as an example) to both P and Q;
see Fig.3. We define the generated sample that depends on
Q, namely disagreement sample, below:
Definition 1 (Disagreement Sample). Given a random noise
vector z ∼ N(0, 1) and an arbitrary one-hot label y, a gen-
erator G generates a sample x = G(z|y). Then the logit
outputs of pre-trained full-precision model P and quantized
model Q are given as zp = P (x) and zq = Q(x), respec-
tively. Suppose that the generated sample x can be correctly
predicted by P, i.e., argmax(zp) = argmax(y). We say x
is the disagreement sample if argmax(zp) 6= argmax(zq).
Thus the probability vector encoding the disagreement be-
tween P and Q, is formulated as

pds = softmax(zp − zq) ∈ RC , (2)

where pds(c) =
exp(zp(c)−zq(c))∑C

j=1 exp(zp(j)−zq(j))
(c ∈ {1, 2, ..., C})

represents the c-th entry of the vector pds as the probability
that x is labeled as the disagreement sample of the c-th class;
C denotes the number of class. Together with the sample
dependence to Q, the disagreement sample can viewed as
the one with large adaptability to Q.

Another key problem is how to model the disagreement
between P and Q, which can be exploited to measure the
sample adaptability. Eq.(2) shows that the disagreement
reaches the maximum provided pds(c) approaches to 1 while
with other elements to be 0, which corresponds to the min-
imum entropy of pds; while the disagreement reaches the
minimum if each element in pds is equal, indicating the max-
imum entropy of pds. Hence, the disagreement can be com-
puted via the information entropy function Hinfo(·), and
formulated as

Hinfo(pds) =

C∑
c=1

pds(c)log
1

pds(c)
. (3)

For different datasets,C varies greatly, we further normalize

Hinfo(pds) as

H = 1−H
′
info(pds) ∈ [0, 1), (4)

where H′

info(pds) =
Hinfo(pds)−min(Hinfo(pds))

max(Hinfo(pds))−min(Hinfo(pds)) .

The constant max(Hinfo(pds)) = −
∑C
c=1

1
C log

1
C repre-

sents the maximum value of Hinfo(pds), in the case that
each element in pds has the same class probability 1

C , where
Q perfectly aligns with P (i.e., zp = zq); whilemin(·) is uti-
lized to obtain the minimum of Hinfo(pds) within a batch.
Thus, the sample adaptability is closely related to H— the
moreH, the larger the disagreement over the sample to both
P and Q, to yield the samples with large adaptability.

As per Eq.(2)(4), pds distributes in a C-dimensional vec-
tor space, while H is a real value. We hence map that to a
C-dimensional space RC while characterizing H, which is
achieved via the unit vector pds

||pds|| (|| · || denotes `2 norm),
thenH is reformulated as

HC =
pds
||pds||

H =
pds
||pds||

(1−H
′
info(pds)) ∈ RC , (5)

where the category information (i.e., pds
||pds|| ) of the gen-

erated sample apart from the disagreement (i.e., H) is ex-
ploited to well measure the sample adaptability.

The measurement of sample adaptability inspires us to re-
visit the DFQ process based onH: the goal of G is to gener-
ate the sample with large adaptability to Q, i.e., increasing
the sample adaptability, by maximizing H (the gain of H is
positive, serving as the reward for G), to benefit Q; while for
the calibration process, Q is optimized to recover itself with
the generated sample. It infers that such sample adaptabil-
ity will not be large to Q, while the sample can no longer
benefit Q after Q is refined; in other words, such process
of benefiting Q by learning from P results in decreasing the
sample adaptability, which is achieved by minimizingH (the
gain ofH is negative, serving as the loss for Q), adversarial
to maximizing H, which encourages the loss for Q to can-
cel out the reward for G, such that the sum of reward and
loss tends to be zero. Such fact makes the overall changing
(summation) of the disagreement (H) close to 0 (see Fig.4
for the intuition), which is in line with the principle of zero-
sum game (Shoham and Leyton-Brown 2008; v. Neumann
1928), as discussed in the next section.

Zero-Sum Game: Adversarial Game for Data-Free
Quantization
We formally revisit the DFQ process from a game-theory
perspective (Li et al. 2022; Zhang et al. 2022), and formu-
late the DFQ as a zero-sum game between two players — a
generator and a quantized network, which is an expansion of
Eq.(1), as follows:

min
θq∈Θq

max
θg∈Θg

R(θg, θq) = min
θq∈Θq

max
θg∈Θg

Ez,y[1−H
′
info(pds)],

(6)
where G and Q are parameterized by θg ∈ Θg and θq ∈ Θq ,
respectively. In particular, Eq.(6) is iteratively optimized via
gradient descent during the training process, where each
iteration consists of two steps: on one hand, θq is fixed,
R(θg, θq) in Eq.(6) is maximized to update θg , which is
equivalent to generating the sample with large adaptability,
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Figure 4: Illustration of data-free quantization process as a
zero-sum game between G (player 1) and Q (player 2). G
generates the sample with large adaptability by maximizing
R(·, ·) during the maximization process, such sample adapt-
ability is further reduced by minimizing R(·, ·) during the
minimization process when calibrating Q.

i.e., increasing the sample adaptability; on the other hand,
θg is fixed, R(θg, θq) in Eq.(6) is minimized to update θq ,
which is equivalent to calibrating Q with the generated sam-
ple, benefiting from decreasing the sample adaptability. Dur-
ing the zero-sum game, the overall changing (summation)
of the sample adaptability to Q incurred by maximum and
minimum optimization is close to zero. One critical ques-
tion is how to converge Eq.(6) to achieve the equilibrium
(i.e., the sample adaptability no longer changes) for the zero-
sum game. Thanks to the classical Nash equilibrium (Car-
doso et al. 2019) defined as a state, where no player can im-
prove its individual gain during the zero-sum game, the op-
timization process will reach an equilibrium (θ∗g , θ

∗
q ) when

(1) for the fixed θ∗q , G fails to maximizeR(θg, θ
∗
q ) to obtain

a θg ∈ Θg , yieldingR(θg, θ
∗
q ) > R(θ∗g , θ

∗
q ); (2) for the fixed

θ∗g , Q can no longer improve itself by minimizingR(θ∗g , θq)
to obtain a θq ∈ Θq , yieldingR(θ∗g , θq) < R(θ∗g , θ

∗
q ). Based

on that, for all θg ∈ Θg and θq ∈ Θq , (θ∗g , θ
∗
q ) satisfies the

following inequality:
R(θg, θ

∗
q ) ≤ R(θ∗g , θ

∗
q ) ≤ R(θ∗g , θq), (7)

where θ∗g and θ∗q are the parameters of G and Q under an
equilibrium state, respectively.

We remark that maximizing R(·, ·) in Eq.(6) is equiv-
alent to generating the sample with the largest adaptabil-
ity, which may incur too large disagreement (i.e., too small
H′

info(pds)) between P and Q, while Q (especially for Q
with low bit width) has no sufficient ability to learn infor-
mative knowledge from P, which, in turn, encourages G to
generate the sample with the lowest adaptability by alter-
natively maximizing R(·, ·) in Eq.(6). However, encourag-
ing the sample with the lowest adaptability may incur too

large agreement (i.e., too large H′

info(pds)) between P and
Q, where the generated sample may not be informative to
calibrate Q (especially for Q with high bit width). The above
facts indicate that the sample with either largest or lowest
adaptability generated by maximizing R(·, ·) in Eq.(6) is
not necessarily the best. To address the issues, we further
refine the maximization objective of Eq.(6) during the zero-
sum game by the cooperation between the disagreement and
agreement sample along with the bound constraints on sam-
ple adaptability, which will be elaborated in the next.

Maximization Process: Generating Samples with
Desirable Adaptability
According to Definition 1, the category (label) information
is crucial to establish the dependence of generated sample
on Q. Hence, to generate the disagreement sample with large
adaptability and further maximize R(·, ·) in Eq.(6), we ex-
ploit the category (label) information to generate the sam-
ple. To achieve it, given the label y, the generated sample
should be classified as disagreement sample with the same
label y. Thereby, we present the following Cross-Entropy
lossHCE(., .) to match pds and y, formulated as

Lds = Ez,y[HCE(pds, y)]. (8)
We aim to minimize Eq.(8) to encourage G to generate the
disagreement sample that P can predict correctly but Q fails,
which, however, may incur too large disagreement (i.e., too
small H′

info(pds)) between P and Q, thus fail to yield the
desirable sample adaptability. To remedy such issue, com-
plementary to the disagreement sample, we further define
the agreement sample below:
Definition 2 (Agreement Sample). Based on Definition 1,
we say the generated sample x is the agreement sample if
argmax(zp) = argmax(zq).
Thus, similar in spirit to pds, the probability vector that de-
scribes the agreement between P and Q, is formulated as

pas = softmax(zp + zq) ∈ RC , (9)

where pas(c) =
exp(zp(c)+zq(c))∑C

j=1 exp(zp(j)+zq(j))
is the c-th entry of the

vector pas as the probability that x is the agreement sam-
ple of the c-th class. Following Eq.(8), the loss function for
generating agreement sample is given as

Las = Ez,y[HCE(pas, y)], (10)
which is minimized to encourage to generate the agreement
sample that both P and Q can correctly predict to possess
largerH′

info(pds).

Cooperation for desirable sample adaptability Upon
the above, letLds andLas cooperate with each other to max-
imize R(·, ·) in Eq.(6), the sample with desirable adaptabil-
ity can be generated. Hence, the generation loss is given as

Ls = Lds + Las. (11)
With Ls, when a large disagreement incurs, Las dominates
to generate agreement sample, to reduce the gap between P
and Q, so as to enlargeH′

info(pds) for disagreement sample;
to be analogous, Lds dominates to reduce H′

info(pds) for
agreement sample; see Fig.5. Nevertheless, in some cases,
there still exist the samples with either too small or large
H′

info(pds) beyond the cooperation ability.
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Figure 5: Illustration of AdaSG on achieving the stationarity of the zero-sum game via the balance gap (BG). When BG > 0
(BG < 0), the generated sample leads to a large disagreement (agreement) between P and Q, owing to the weak (strong)
learning ability of Q, e.g., Q with low-bit (high-bit) precision, resulting into too large (small) sample adaptability. When BG
= 0, the DFQ game process is stationary, revealing that the sample adaptability increased by the maximization process can be
fully exploited by the minimization process to maximally benefit Q with varied bit widths.

Bound constraint on sample adaptability To address the
above problem, we further impose the bound constraints for
H′

info(pds) via the hinge loss (Lim and Ye 2017) below:

Lb =Ez,y[max
(
λl −H

′
info(pds), 0

)
]

+ Ez,y[max
(
H

′
info(pds)− λu, 0

)
],

(12)

where λl and λu denote the lower and upper bound of
H′

info(pds), such that 0 ≤ λl < λu ≤ 1. Specifically, λl
serves to prevent G from generating the sample with too
large adaptability (i.e., too small H′

info(pds)) via maximiz-
ing Eq.(6), while λu aims to avoid the sample with too small
adaptability (i.e., too largeH′

info(pds)), which, in turn, offer
the guarantee for the cooperation between Lds and Las.
BNS information The above fact discusses the adaptabil-
ity of single sample to Q, while calibrating Q requires the
generated samples within a batch, motivating us to exploit
the distribution information of the training data. We con-
sider the batch normalization statistics (BNS) information
(Xu et al. 2020; Choi et al. 2021) about the training data
contained in P, which is learned by

LBNS =

M∑
m=1

(||µgm − µm||22 + ||σgm − σm||22), (13)

where µgm/σ
g
m are the mean/variance of the generated sam-

ple’s distribution at the m-th BN layer of the total M layers;
and µm/σm are the corresponding mean/variance parame-
ters stored in the m-th BN layer of P.

Overall loss To this end, we finalize the loss function for
the maximization (sample generation) process as

LG = α(Lds + Las) + βLb + γLBNS , (14)
where α, β and γ are the balance hyperparameters. Through-
out minimizing LG, which is equivalent to maximizing
R(·, ·) in Eq.(6), the sample with desirable adaptability can
be generated, such sample is exploited by calibrating Q dur-
ing the minimization process according to Eq.(6).

Minimization Process: Calibrating Q by Reducing
Sample Adaptability
With the above generated sample, the goal of the minimiza-
tion process is to calibrate Q for the performance recovery
by minimizingR(·, ·) in Eq.(6), which indicates that the dis-
agreement between P and Q is decreased to reach the agree-
ment. In particular, we further introduce a temperature pa-
rameter τ to soften the output, thus the loss function for the
minimization (calibration) process is formulated as

LQ = Ez,y[1−H
′
info(p

τ
ds)], (15)

where pτds = softmax((zp − zq)/τ). By alternatively op-
timizing Eq.(14) and Eq.(15) during a zero-sum game, the
samples with desirable adaptability can be generated by G
to maximally recover Q until reaching a Nash equilibrium.

Theoretical Analysis: a Balance Gap for Sample
Adaptability
One may wonder whether the above maximization-vs-
minimization process can keep stationary during the opti-
mization process over Eq.(6), which is critical for sample
generation with desirable adaptability and Q’s recovery. We
confirm that by our theoretical analysis based on the balance
gap (BG) over sample adaptability, which is defined as:
Definition 3 (Balance Gap). Considering the objective
R(·, ·) for the DFQ game process. Assume that, after one
iteration, the parameters (θ1

g , θ
1
q) of the game are updated

to (θ2
g , θ

2
q) via the gradient descent. Then, the balance gap

(BG) is defined as

BG = R(θ2
g , θ

2
q)−R(θ1

g , θ
1
q), (16)

which encodes the deviation for the value of R(·, ·) before
and after each iteration. When BG > 0 or BG < 0, the gen-
erated sample leads to a large disagreement or agreement be-
tween P and Q, owing to the weak or strong learning ability
of Q, where the sample with too large or small adaptability
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fails to benefit Q during the calibration process. We remark
that BG is well bounded to avoid the large deviation, which
facilitates generating the samples with desirable adaptabil-
ity. Such fact is validated via the following proposition:
Proposition 1. Considering the stationarity of DFQ game
process. Then, the balance gap (BG) is bounded below:

|BG| = |R(θ2
g , θ

2
q)−R(θ1

g , θ
1
q)| ≤ L||[θ2

g ; θ
2
q ]− [θ1

g ; θ
1
q ]|| (17)

where L is the Lipschitz constant.
Proof. Considering the Lipschitz continuity of the objective
functionR(·, ·), we divide the proof into two parts:
Part 1. Lipschitz Continuity. We say a function f(x,y) is L-
Lipschitz continuous with respect to a norm ||.|| if

|f(x2, y2)− f(x1, y1)| ≤ L||[x2; y2]− [x1; y1]|| (18)

for any x1, x2 ∈ X and any y1, y2 ∈ Y . The previous
inequality holds if and only if

||[∇xf(x, y);∇yf(x, y)]|| ≤ L (19)

for any x ∈ X and any y ∈ Y . L is the Lipschitz constant.
Part 2. According to the first-order Taylor expansion and
Cauchy inequality, we have:

|BG| = |R(θ2
g , θ

2
q)−R(θ1

g , θ
1
q)|

= ||[∇θgR(θg, θq);∇θqR(θg, θq)]
T [θ2

g − θ1
g ; θ

2
q − θ1

q ]||

≤ ||[∇θgR(θg, θq);∇θqR(θg, θq)]
T || ||[θ2

g ; θ
2
q ]− [θ1

g ; θ
1
q ]||,

then Eq.(17) holds if and only if ∇θgR(θg, θq) and
∇θqR(θg, θq) are upper bounded. First, we note that

R(θg, θq) = Ez,y[1−H
′
info(pds)], (20)

whereH′

info(pds) is obtained by normalizingHinfo(pds) =∑C
c=1 pds(c)log

1
pds(c) , and pds = softmax(zp − zq); and

the corresponding gradients are computed by

∇θgR(θg, θq) =
∂R(θg, θq)

∂pds

∂pds
∂x

∂x

∂θg
,

∇θqR(θg, θq) =
∂R(θg, θq)

∂pds

∂pds
∂zq

∂zq
∂θq

,

(21)

where ∂x
∂θg

and ∂zq
∂θq

are the gradients produced by G and
Q, respectively. It is apparent that the gradients of the in-
formation entropy function Hinfo(·), the softmax function
and the activation function (e.g., Sigmod, Relu) in deep neu-
ral network are all bounded. Therefore, ∀L ∈ R, make
||[∇θgR(θg, θq);∇θqR(θg, θq)]

T || be upper bounded. To
sum up, the balance gap (BG) is bounded by Eq.(17).

�
The proposition provides an upper and lower bound for

BG, to well avoid the sample generation encoding too large
or small adaptability, in line with the intuition of Lb, which
offers a guarantee for the stationarity of DFQ game, we fur-
ther achieve the stationarity via the following proposition:
Proposition 2. During each iteration, the DFQ game is sta-
tionary, that is, the sample adaptability increased by the
maximization process can be fully exploited by the minimiza-
tion process to maximally benefit Q, when BG = 0.

Proof. As aforementioned, each iteration contains the max-
imization and minimization process, then we have:

BG = R(θ2
g , θ

2
q)−R(θ1

g , θ
1
q)

=
(
R(θ2

g , θ
1
q)−R(θ1

g , θ
1
q)
)
−
(
R(θ2

g , θ
1
q)−R(θ2

g , θ
2
q)
)

= ∆g −∆q,

where ∆g and ∆q denote the deviation for the value of
R(., .) during the maximization and minimization process,
respectively. Thus, if ∆g > ∆q (i.e., BG > 0), the gener-
ated sample leads to a large disagreement between P and Q,
owing to the weak learning ability of Q; if ∆g < ∆q (i.e.,
BG < 0), the generated sample leads to a large agreement
between P and Q, owing to the strong learning ability of Q.
Under such cases, the sample with too large or small adapt-
ability fails to benefit Q during the calibration process. To
sum up, if and only if ∆g = ∆q (i.e., BG = 0), the DFQ
game is stationary, that is, the sample adaptability increased
by the maximization process can be fully exploited by the
minimization process to maximally benefit Q by minimizing
LQ, which is equivalent to minimizingR(·, ·) in Eq.(6).

�
The proposition discloses the effectiveness of the coordi-

nation between Lds and Las during the maximization pro-
cess. Specifically, when BG > 0 (< 0), the sample adapt-
ability is too large or small; therefore, for next iteration, Las
(Lds) will dominate to generate the sample with desirable
adaptability by minimizing LG (equivalent to maximizing
R(·, ·) in Eq.(6)), to achieve the stationarity of the DFQ
game, i.e., BG = 0; see Fig.5.

Experiment
Experimental Settings and Implementation Details
We validate AdaSG over three typical image classification
datasets, including CIFAR-10, CIFAR-100 (Krizhevsky
2009) and ImageNet (ILSVRC2012) (Russakovsky et al.
2015). CIFAR-10 and CIFAR-100 contain 10 and 100
classes of images, respectively. Both of them are split into
50K training images and 10K testing images. ImageNet con-
sists of 1.2M samples for training and 50k samples for vali-
dation with 1000 categories. For data-free setting, only val-
idation sets are adopted to evaluate the performance of the
quantized models (Q). In the experiments, we quantize pre-
trained full-precision networks (P) including ResNet-20 for
CIFAR, and ResNet-18, ResNet-50, and MobileNetV2 for
ImageNet, via the following quantizer to yield Q:
Quantizer. Following (Xu et al. 2020; Choi et al. 2021),
we quantize both full-precision (float32) weights and activa-
tions into n-bit precision via a symmetric linear quantization
method based on (Jacob et al. 2018) below:

θq = round
(

(2n − 1) ∗ θ − θmin
θmax − θmin

− 2n−1
)
, (22)

where θ and θq are the full-precision and quantized value.
round(·) returns the nearest integer value to the input. θmin
and θmax are the minimum and maximum of θ. Regarding
the bit width n, we select n = {3, 4, 5}, which are rep-
resentative for low-bit and high-bit cases, particularly: 3-bit
quantization actually leads to a huge accuracy loss, which is
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a major challenge for the existing DFQ methods; while 5-
bit or higher-bit quantization produces a small performance
loss, which is selected to validate the generalization ability.

For the maximization process, we construct the architec-
ture of the generator (G) following ACGAN (Odena, Olah,
and Shlens 2017), while P and Q play the role of discrimi-
nator, where G is trained with the loss function Eq.(14) us-
ing Adam (Kingma and Ba 2014) as an optimizer with a
momentum of 0.9 and a learning rate of 1e-3. For the mini-
mization process, Q is optimized with the loss function Eq.
(15), where SGD with Nesterov (Nesterov 1983) is adopted
as an optimizer with a momentum of 0.9 and weight decay
of 1e-4. For CIFAR, the learning rate is initialized to 1e-4
and decayed by 0.1 for every 100 epochs, while it is 1e-5
(1e-4 for ResNet-50) and divided by 10 at epoch 350 (at
epoch 200 and 300 for ResNet-50) on ImageNet. The gener-
ator and quantized model are totally trained for 400 epochs.
The batch size is set to 16. For the hyperparameters, α, β and
γ in Eq.(14); λl and λu in Eq.(12) are empirically set to be
0.1, 1, 1, 0.3 and 0.8. All experiments are implemented with
pytorch (Paszke et al. 2019) based on the code of GDFQ (Xu
et al. 2020) and run on an NVIDIA GeForce GTX 1080 Ti
GPU and an Intel(R) Core(TM) i7-6950X CPU @ 3.00GHz.

To validate how AdaSG generates the sample with desir-
able adaptability to maximally benefit Q, we empirically val-
idate why AdaSG works, including the comparisons with the
state-of-the-arts, ablation study as well as visual analysis.

Why does AdaSG Work?
We experimentally verify the core idea of AdaSG — gen-
erating the sample with desirable adaptability to recover the
performance of Q with varied bit widths. We perform the
data-free quantization experiments with ResNet-18 (3-bit
and 5-bit precision) serving as both P and Q on ImageNet.
Fig.6(a1)(b1) illustrates that the disagreement (Hinfo(pds)
in Eq.(3)) between P and Q for AdaSG fluctuates stably
within a small range compared to GDFQ (Xu et al. 2020)
and Qimera (Choi et al. 2021), confirming that the generated
sample with desirable adaptability by AdaSG is fully ex-
ploited to benefit Q, and the bound constraint loss (Eq.(12))
can avoid generating the sample with too large or small
adaptability, which leads to ridiculously large disagreement
or agreement. Fig.6(a2)(b2) reveals that the balance gap
(Definition 3) keeps on par with zero (either BG > 0 or BG
< 0) during the iteration process unlike GDFQ and Qimera,
which confirm the principle that AdaSG achieves the station-
arity of the DFQ game and the coordination between Lds
(Eq.(8)) and Las (Eq.(10)) can generate the sample with de-
sirable adaptability to maximally benefit Q.

Comparison with State-of-the-arts
To verify the superiority of AdaSG, we compare it with typ-
ical DFQ fashions, including: GDFQ (Xu et al. 2020), ARC
(Zhu et al. 2021) and Qimera (Choi et al. 2021): reconstruct-
ing the original data from P; ZAQ (Liu, Zhang, and Wang
2021) focuses primarily on the adversarial sample genera-
tion rather than adversarial game process for AdaSG; IntraQ
(Zhong et al. 2022) optimizes the noise to obtain fake sam-
ple without a generator; AIT (Choi et al. 2022) focuses on

Figure 6: Illustration of AdaSG on generating the samples
with desirable adaptability to Q under (a) 3-bit and (b) 5-
bit precision. (a1)(b1) Disagreement (i.e., Hinfo(pds)) be-
tween P and Q during the generation and calibration process.
(a2)(b2) Balance gap (BG).

improving the loss function and manipulating the gradients
for ARC to generate better sample, denoted as ARC+AIT.

Table 1 summarizes our following observations: 1)
AdaSG offers a significant and consistent performance gain
over the state-of-the-arts, in line with our purpose of generat-
ing the sample with desirable adaptability to maximally ben-
efit Q. Impressively, AdaSG achieves at most 9.71%, 6.63%
and 35.87% accuracy gains on CIFAR-10, CIFAR-100 and
ImageNet, respectively. Especially, compared with GDFQ,
ARC and Qimera where Q is independent of the genera-
tion process, AdaSG obtains accuracy improvement with a
large margin, e.g., at least 0.3% gain (ResNet-20 with 5w5a
on CIFAR-10), confirming the necessity of AdaSG focusing
on the sample adaptability to Q. Specifically, ZAQ suffers
from a large performance gap compared to AdaSG, since
many unexpected samples are generated without consider-
ing the sample adaptability, which are harmful to calibrating
Q. AdaSG shows obvious advantages over AIT despite of
the combination with ARC. 2) AdaSG achieves the substan-
tial gains for Q with varied bit-widths, confirming the desir-
able adaptability of our generated sample to varied Q. Note
that, for 3-bit case, most of the existing methods suffer from
a poor accuracy, even fail to converge, while AdaSG obtains
at most 35.87% (ResNet-18 with 3w3a) and at least 4.21%
(ResNet-20 with 3w3a on CIFAR-100) performance gains.

Ablation Study
Validating adaptability with disagreement and agree-
ment samples As aforementioned, the disagreement and
agreement samples play a critical role on the sample adapt-

9495



Dataset Model
(FP.)

Bit width
(nwna)

ZAQ
(CVPR 2021)

IntraQ
(CVPR 2022)

ARC+AIT
(CVPR 2022)

GDFQ
(ECCV 2020)

ARC
(IJCAI 2021)

Qimera
(NeurIPS 2021)

AdaSG
(Ours)

CIFAR-10
3w3a - 77.07 - 75.11† - 74.43† 84.14

ResNet-20 4w4a 92.13 91.49 90.49 90.11 88.55 91.26 92.10
(93.89) 5w5a 93.36 - 92.98 93.38 92.88 93.46 93.76

CIFAR-100
3w3a - 48.25 - 47.61† - 46.13† 52.76

ResNet-20 4w4a 60.42 64.98 61.05 63.75 62.76 65.10 66.42
(70.33) 5w5a 68.70 - 68.40 67.52 68.40 69.02 69.42

3w3a - - - 20.23† 23.37 1.17† 37.04
ResNet-18 4w4a 52.64 66.47 65.73 60.60 61.32 63.84 66.50

(71.47) 5w5a 64.54 69.94 70.28 68.49 68.88 69.29 70.29

ImageNet
3w3a - - - 1.46† 14.30 - 26.90

MobileNetV2 4w4a 0.10 65.10 66.47 59.43 60.13 61.62 65.15
(73.03) 5w5a 62.35 71.28 71.96 68.11 68.40 70.45 71.61

3w3a - - - 0.31† 1.63 - 16.98
ResNet-50 4w4a 53.02 - 68.27 54.16 64.37 66.25 68.58

(77.73) 5w5a 73.38 - 76.00 71.63 74.13 75.32 76.03

Table 1: Accuracy (%) comparison with the state-of-the-arts on CIFAR-10, CIFAR-100 and ImageNet. †: the results imple-
mented by author-provided code. -: no results are reported. nwna indicates the weights and activations are quantized to n bit.
FP.: the accuracy of full-precision model. The best results are reported with boldface.

Model
(Full precision) Lds Las Lb LBNS Bit width

3w3a 5w5a

ResNet-18
(71.47)

3 3 3 14.86 69.15
3 3 3 26.41 69.81
3 3 3 32.75 70.13

3 3 15.01 70.06
3 3 3 20.98 67.35
3 3 3 3 37.04 70.29

Table 2: Ablation study about varied components of AdaSG.
nwna indicates the weights and activations are quantized to
n bit. The best results are reported with boldface.

ability to Q, which serve as a pivotal role between the max-
imization and minimization process during the zero-sum
game. We conduct the ablation study on Lds (Eq.(8)) and
Las (Eq.(10)) over ImageNet. Table 2 suggests the great
superiority (37.04% and 70.29%) of AdaSG (including the
both) to other cases. It is worth noting that, removing ei-
ther or both of Lds and Las obtains a large performance
degradation (at most 22.18% and 1.14%), implying the intu-
ition of the cooperation between Lds and Las. Interestingly,
the case without Lb (Eq.(12)) receives the minimal accuracy
loss (4.29% and 0.16%), confirming the importance of Lb
on the basis of Lds and Las.

Visualization of Generated Samples
To further show the desirable adaptability of the generated
samples by AdaSG to Q, we conduct the visual analysis over
MobileNetV2 serving as both P and Q on ImageNet by the
similarity matrix (each element is obtained by computing
the `1 norm between the probability distribution pds of ev-
ery two samples), along with the visualization of generated
samples in Fig.7. Fig.7(a) illustrates that the generated sam-
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Figure 7: (a) The similarity comparison between the gen-
erated samples. (b) Visualization of the generated samples,
where each row denotes one of 8 randomly chosen classes
from ImageNet.

ples by AdaSG possess a much larger similarity (the darker,
the larger) than those by GDFQ, implying that the gener-
ated sample by GDFQ varies greatly, where a lots of samples
with undesirable adaptability exist against AdaSG. Fig.7(b)
shows that the samples generated for 3-bit and 5-bit preci-
sion vary greatly, while the samples from varied categories
also differ greatly from each other, verifying that the sam-
ples possess desirable adaptability to varied Q, upon the fact
that the category (label) information is fully exploited.

Conclusion
In this paper, we rethink date-free quantization process as
a zero-sum game between two players — a generator and
a quantized network, then further develop an Adaptability-
aware Sample Generation (AdaSG) method, which features
a dynamic maximization-vs-minimization game process an-
chored on sample adaptability. The maximization process
generates the sample with desirable adaptability, which is
further reduced by the minimization process after recovering
Q. Balance Gap is defined to achieve the stationarity for the
zero-sum game. The theoretical analysis and empirical stud-
ies validate the advantages of AdaSG to the existing arts.
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