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Abstract

Retrosynthesis, which predicts the reactants of a given tar-
get molecule, is an essential task for drug discovery. In re-
cent years, the machine learing based retrosynthesis meth-
ods have achieved promising results. In this work, we intro-
duce RetroKNN, a local reaction template retrieval method
to further boost the performance of template-based systems
with non-parametric retrieval. We first build an atom-template
store and a bond-template store that contain the local tem-
plates in the training data, then retrieve from these templates
with a k-nearest-neighbor (KNN) search during inference.
The retrieved templates are combined with neural network
predictions as the final output. Furthermore, we propose a
lightweight adapter to adjust the weights when combing neu-
ral network and KNN predictions conditioned on the hidden
representation and the retrieved templates. We conduct com-
prehensive experiments on two widely used benchmarks, the
USPTO-50K and USPTO-MIT. Especially for the top-1 ac-
curacy, we improved 7.1% on the USPTO-50K dataset and
12.0% on the USPTO-MIT dataset. These results demonstrate
the effectiveness of our method.

1 Introduction
Retrosynthesis, which predicts the reactants for a given
product molecule, is a fundamental task for drug discov-
ery. The conventional methods heavily rely on the exper-
tise and heuristics of chemists (Corey 1991). Recently, ma-
chine learning based approaches have been proposed to as-
sist chemists and have shown promising results (Dong et al.
2021). The typical approaches includes the template-free
methods that predict the reactants directly and the template-
based methods that first predict reaction templates and then
obtain reactants based on templates. For these different ap-
proaches, a shared research challenge is effectively model-
ing this task’s particular property.

As shown in Figure 1, a key property of a chemical re-
action is that it is strongly related to modifying the local
structure of the target molecule, such as replacing a func-
tional group or breaking a bond. Therefore, much recent
research focuses on better modeling the local structure of
molecules (Chen and Jung 2021; Somnath et al. 2021). De-
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Figure 1: Illustration of retrosynthesis that takes the target
molecule on the left side and predicts two reactants on the
right side. Inside the callout is its reaction template that
breaks the carbon-nitrogen bond into two parts.

spite their promising results, we notice that it is still chal-
lenging to learn all reaction patterns only with neural net-
works, especially for the rare templates.

Therefore, we introduce a non-parametric retrieval-based
method to provide concrete guidance in prediction. Specif-
ically, we use a local template retrieval method, the k-
nearest-neighbor (KNN) method, to provide additional pre-
dictions to improve the prediction accuracy. Following Lo-
calRetro (Chen and Jung 2021), We first take a trained
graph-neural network (GNN) for the retrosynthesis task and
offline build an atom-template and a bond-template store
that contain reaction templates (Section 2.1). During this
store construction phase, we iterate all target molecules in
the training data and add the templates of each atom and
each bond to the corresponding store. The templates are in-
dexed by the hidden representations extracted by the GNN.
During inference, for a given new target molecule, we first
use the original GNN to extract the hidden representations as
well as the original GNN predicted templates. Then, we use
the hidden representations to search the two stores to retrieve
local templates similar to the query. The GNN predicted
templates and the KNN retrieved templates are merged with
different weights to build the final output.

Combining the GNN and KNN predictions is one key de-
sign factor in the above processes. The conventional way
is to use fixed parameters to aggregate these predictions
for all reactions, which may be sub-optimal and hurt the
model’s generalization (Zheng et al. 2021). Because each
prediction may have a different confidence level, it would
be beneficial to assign the weights adaptively for each reac-
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tion across different instances (Section 4.1). Therefore, we
employ a lightweight adapter to predict these values condi-
tioned on the GNN representations and the retrieved results.
The adapter network has a simple structure and is trained
with a few samples. Although the adapter has a little extra
cost, it can help improve the model performance effectively.

To sum up, our contribution is two fold:

• We propose RetroKNN, a novel method to improve the
retrosynthesis prediction performance with local tem-
plate retrieval by the non-parametric KNN method.

• We propose a lightweight meta-network to adaptively
control the weights when combining the GNN and KNN
predictions.

We conduct experiments on two widely used benchmarks:
the USPTO-50K and USPTO-MIT. These datasets contain
organic reactions extracted from the United States Patent
and Trademark Office (USPTO) literature. On the USPTO-
50K dataset, we improve the top-1 accuracy from 53.4 points
to 57.2 points (7.1% relative gain) and achieved new state-
of-the-art. Meanwhile, on USPTO-MIT, we improve the top-
1 accuracy from 54.1 points to 60.6 points (12.0% relative
gain). Moreover, our method shows promising results on the
zero-shot and few-shot datasets, which are challenging set-
tings for conventional template-based methods yet essential
for this research field. These results demonstrate the effec-
tiveness of our method.

2 Method
2.1 Preliminaries
We denote a molecule as a graph G(V, E) where the V is the
node set and the E is the bond set. Given a target molecule
M as input, the retrosynthesis prediction task is to generate
molecules set R that are reactants of M . Instead of directly
predicting R, we follow LocalRetro (Chen and Jung 2021)
that predict a local reaction template t at reaction center c
and apply (t, c) to molecule M . More specifically, the t is
classified into two types: atom-template t ∈ Ta and bond-
template t ∈ Tb, depending whether c is an atom or a bond.

We also assume that there are a training set Dtrain, a vali-
dation set Dval, and a test set Dtest available. Each data split
contains the target and corresponding reactants, which is for-
mulated as D = {(Mi, ti, ci,Ri)}|D|

i=1 where ci is the reac-
tion center of Mi to apply the template ti and |D| is the data
size of D.

Meanwhile, we assume a GNN model trained on Dtrain
exist. Without loss of generality, we split the GNN into two
parts: a feature extractor f and a prediction head h. The fea-
ture extractor f takes a molecule graph G(V, E) as input and
output hidden representations hv for each node v ∈ V and
he for each edge e ∈ E . The hv and he are processed by
prediction head h to predict the probability distribution over
the template set Ta and Tb, respectively.

2.2 Store Construction
Our method uses two data store SA and SB that contain the
information of atoms and bonds. Both of the store are con-
structed offline before inference. Inside the store are key-

Algorithm 1: store construction algorithm
Input: Training data Dtrain.
Input: Feature extractor f .
Output: Atom store SA and bond store SB .

1 Let SA := ∅,SB := ∅ ; // Initialize.
2 for (M, t, c,R) ∈ Dtrain do
3 Let V denotes the node set of M ;
4 Let E denotes the edge set of M ;
5 for v ∈ V ; // Loop each node.
6 do
7 Let hv := f(v|M);
8 if v == c then
9 Let SA := SA ∪ {(hv, t)};

10 else
11 Let SA := SA ∪ {(hv,0)};
12 end
13 end
14 for e ∈ E; // Loop each edge.
15 do
16 Let he := f(e|M);
17 if e == c then
18 Let SB := SB ∪ {(he, t)};
19 else
20 Let SB := SB ∪ {(he,0)};
21 end
22 end
23 end
24 return SA, SB

value pairs that are computed from Dtrain and the construc-
tion procedure details are in Algorithm 1.

In this algorithm, the first step is to initialize the atom
store SA and bond store SB as an empty set. Next, for each
reaction in the training data Dtrain, we iterate all nodes v ∈ V
and all edges e ∈ E of the target molecule M in line 5 to
13 and line 14 to 22, respectively. For each node v, if it is
the reaction center, we add template t that indexed by the
hidden representation hv to the SA. Otherwise, we add a
special token 0 to indicate that template is not applied here.
Similarly, for each edge e, we add either (he, t) or (he,0) to
the bond store SB . Finally, we get the atom store SA and the
bond store SB used during inference.

2.3 Inference Method

The overview of inference procedure is available in Figure 2.
At inference time, given a new target molecule M , we first
compute the hidden representation hv, he and template prob-
ability PGNN(ta|M,a), PGNN(tb|M, b) for each atom a and
bond b, respectively1. Next, we retrieve the templates for
each node and edge, which can be written as

1Whenever possible, we omit the subscript of node and edge id
to simplify the notations.
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Figure 2: The illustration of RetroKNN for a target molecule in the middle left. The top and bottom half show the examples
of one atom and bond retrieval. The gray, blue, green, and brown lines denote the GNN prediction, KNN prediction, adapter
input/output, and merge process, respectively. The pink table denotes the final output from all predictions.

PKNN(ta|M,a) ∝
∑

(hi,ti)∈Na

Ita=ti exp

(
−d(ha, hi)

TA

)
, (1)

PKNN(tb|M, b) ∝
∑

(hi,ti)∈Nb

Itb=ti exp

(
−d(hb, hi)

TB

)
. (2)

In Equations (1, 2), the Na,Nb are candidates sets that re-
trieved from SA,SB , the I is the indicator function that only
outputs 1 when the condition (i.e., ta = ti or tb = ti) is
satisfied, and the TA, TB are the softmax temperate. Mean-
while, the d(·, ·) is the distance function to measure the
similarity between hi with hv or he. In another words, the
PKNN(ta|M,a) is proportional to the sum of the weights of
the neighbours whose template is ta.

Finally, we combine the GNN output and KNN output
with interpolation factors λ, which is
P (ta|M,a) = λaPGNN(ta|M,a)+(1−λa)PKNN(ta|M,a), (3)
P (tb|M, b) = λbPGNN(tb|M, b) + (1−λb)PKNN(tb|M, b). (4)

In the Equation (1)-(4), the temperature TA, TB ∈ R+ and
the interpolation factors λa, λb ∈ [0, 1] are predicted by the
adaptor network and details are introduced in Section 2.4.

In Figure 2, we only illustrate one node and one bond re-
trieval as examples, but in practice, we conduct such a pro-
cess for all atoms and bonds. Following LocalRetro (Chen
and Jung 2021), after we get the P (ta|M,a) and P (tb|M, b)
for each atom a and bond b, we will rank all non-zero pre-
dictions by their probability. The atom template and bonds
templates are ranked together, and the top 50 predictions are
our system’s final output.

2.4 Adaptor Network
To adaptively choose the TA, TB , λa, and λb for each atom
and bond, we design a lightweight network to predict these
values. The input to adapter are hidden representation hv, he

from GNN side and distance list d(hv, hi), d(he, hi) from
the KNN side.

We use a one-layer GNN followed by a few fully con-
nected (FC) layers for the network architecture. We use the
the graph isomorphism network (GIN) with edge features
(Hu et al. 2019) layer to capture both node feature hv and
edge feature he, which is formulated as:

h(g)
v = Wvg((1+ ϵ)hv+

∑
e∈E(v)

ReLU(hv+he))+ bvg, (5)

where the h
(g)
v is the output, ϵ and W are learnable parame-

ters of GIN, and the E(v) is the set of edges around v. Mean-
while, we use the FC layer to project the KNN distances to
extract the features that can be formulated as

h(k)
v = Wvk({d(hv, hi)}Ki=1) + bvk, (6)

h(k)
e = Wek({d(he, hi)}Ki=1) + bek, (7)

where the brackets {·}Ki=1 means building a K-dimensional
vector. Finally, the feature from GNN and KNN are com-
bined to a mixed representation, which are

h(o)
v = ReLU(WvoReLU(h(g)

v ∥h(k)
v ) + bvo), (8)

h(o)
e = ReLU(WeoReLU(h(g)

es ∥h
(g)
et ∥h(k)

e ) + beo), (9)
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where the ∥ denotes tensor concatenation and es and et are
start and end node of edge e.

The TA, λa are predicted by h
(o)
v and the TB , λb are predi-

cated by h
(o)
e by another FC layer. We also use sigmoid func-

tion σ to guarantee the λa, λb ∈ (0, 1) and clamp the TA, TB
into range [1, 100]. Formally, we have

TA = max(1,min(100,Wtah
(o)
v + bta)), (10)

λa = σ(Wlah
(o)
v + bla), (11)

TB = max(1,min(100,Wtbh
(o)
e + btb, 1, 100)), (12)

λb = σ(Wlbh
(o)
e + blb). (13)

Because all the formulas used here are differentiable, we
optimize the adapter parameters W with gradient decent to
minimize the template classification loss

LM =− 1

|V|
∑
a∈V

logP (t̂a|M,a)

− 1

|E|
∑
b∈E

logP (t̂b|M, b), (14)

for each target molecule M with node set V and edge set E .
The P (t̂a|M), P (t̂b|M) are computed by Equation (3) and
Equation (4). The t̂a, t̂b are the ground truth template.

3 Experiments
3.1 Experimental Settings
Data. Our experiments are based on the chemical reac-
tions extracted from the United States Patent and Trade-
mark Office (USPTO) literature. We use two versions of the
USPTO benchmark: the USPTO-50K (Coley et al. 2017)
and USPTO-MIT (Jin et al. 2017). The USPTO-50K con-
tains 50k chemical reactions, split into 40k/5k/5k reactions
as training, validation, and test, respectively. Meanwhile, the
USPTO-MIT consists of about 479k reactions, and the split
is 409k/40k/30k. All the partitions are the same as in previ-
ous works (Coley et al. 2017; Jin et al. 2017) to make fair
comparisons. We also use the preprocess scripts by Chen
and Jung (2021) to extract the reaction templates from these
reactions, which leads to 658 and 20,221 reaction templates
in USPTO-50K and USPTO-MIT.

Implementation details. We follow the same model con-
figuration as LocalRetro (Chen and Jung 2021) to build
the backbone GNN model. The feature extractor f is a 6-
layer MPNN (Gilmer et al. 2017) followed by a single GRA
layer (Chen and Jung 2021) with 8 heads. We use the hidden
dimension 320 and dropout 0.2. The atoms’ and bonds’ in-
put feature is extracted by DGL-LifeSci (Li et al. 2021).The
prediction head h consists two dense layers with ReLU ac-
tivation. The backbone model is optimized by Adam opti-
mizer with a learning rate of 0.001 for 50 epochs. We also
early stop the training when there is no improvement in the
validation loss for five epochs. The configurations for back-
bone are all same as Chen and Jung (2021).

The implementation of KNN is based on the faiss (John-
son, Douze, and Jégou 2019) library with IndexIVFPQ in-
dex for fast embedding searching, and the K of KNN is set

to 32. For the adapter network, we use the same hidden di-
mension as the backbone GNN. The adapter is also trained
with Adam optimizer with a learning rate of 0.001. Consid-
ering the data size difference, we train the adapter for ten
epochs and two epochs on the validation set of the USPTO-
50K and USPTO-MIT datasets, respectively. The adapter
with the best validation loss is used for test.

Evaluation and baselines Following previous works, our
system will predict top-50 results for each target molecule
and report the top-K accuracy where K=1,3,5,10, and 50 by
the script from Chen and Jung (2021). We also use represen-
tative baseline systems in recent years, include:
• Template-based methods: retrosim (Coley et al. 2017),
neuralsym (Segler and Waller 2017), GLN (Dai et al. 2020),
Hopfield (Seidl et al. 2021), and LocalRetro (Chen and Jung
2021);
• Semi-template based methods: G2Gs (Shi et al. 2021),
RetroXpert (Yan et al. 2020), and GraphRtro (Somnath et al.
2021);
• Tempate-free methods: Transformer (Lin et al. 2020),
MEGAN (Sacha et al. 2021), Chemformer (Irwin et al.
2021), GTA (Seo et al. 2021), and DualTF (Sun et al. 2021).

3.2 Main Results
The experimental results of the USPTO-50K benchmark are
shown in Table 1 when the reaction type is unknown and
in Table 2 when the reaction type is given. Meanwhile, the
results on the USPTO-MIT benchmark are in Table 3. In
these tables, we sort all systems by their top-1 accuracy and
mark their type by filling the cycle symbols. Our method
(RetroKNN) is in the last row and highlighted in bold.

Comparing these accuracy numbers, we can find that our
method outperforms the baseline systems with a large mar-
gin. When the reaction type is unknown, we achieved 57.2
points top-1 accuracy and improved the backbone result
from LocalRetro by 3.8 points, which is a 7.1% relative gain.

Method TPL. K = 1 3 5 10 50
retrosim  37.3 54.7 63.3 74.1 85.3
neuralsym  44.4 65.3 72.4 78.9 83.1
MEGAN # 48.1 70.7 78.4 86.1 93.2
G2Gs G# 48.9 67.6 72.5 75.5 -
RetroXpert G# 50.4 61.1 62.3 63.4 64.0
GTA # 51.1 67.6 67.8 81.6 -
Hopfield  51.8 74.6 81.2 88.1 94.0
GLN  52.5 69,0 75.6 83.7 92.4
LocalRetro  53.4 77.5 85.9 92.4 97.7
Dual-TF # 53.6 70.7 74.6 77.0 -
GraphRetro G# 53.7 68.3 72.2 75.5 -
Chemformer # 54.3 - 62.3 63.0 -

RetroKNN  57.2 78.9 86.4 92.7 98.1

Table 1: Top-K exact match accuracy on the USPTO-50K
dataset when the reaction type is unknown. The  , G#, and
# denote template-based, semi-template, and template-free,
respectively. Systems are ordered by top-1 accuracy.
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Method TPL. K = 1 3 5 10 50
retrosim  52.9 73.8 81.2 88.1 -
neuralsym  55.3 76.0 81.4 85.1 -
MEGAN # 60.7 82.0 87.5 91.6 95.3
G2Gs G# 61.0 81.3 86.0 88.7 -
RetroXpert G# 62.1 75.8 78.5 80.9 -
GraphRetro G# 63.9 81.5 85.2 88.1 -
LocalRetro  63.9 86.8 92.4 96.3 97.9
GLN  64.2 79.1 85.2 90.0 93.2
Dual-TF # 65.7 81.9 84.7 85.9 -

RetroKNN  66.7 88.2 93.6 96.6 98.4

Table 2: Top-K exact match accuracy on the USPTO-50K
dataset when the reaction type is given. The ,G#, and# de-
note template-based, semi-template, and template-free, re-
spectively. Systems are ordered by top-1 accuracy.

Method TPL. K = 1 3 5 10 50
Seq2Seq # 46.9 61.6 66.3 70.8 -
neuralsym  47.8 67.9 74.1 80.2 -
Transformer # 54.1 71.8 76.9 81.8 -
LocalRetro  54.1 73.7 79.4 84.4 90.4

RetroKNN  60.6 77.1 82.3 87.3 92.9

Table 3: Top-K exact match accuracy on the USPTO-MIT
dataset. The  and # denote template-based and template-
free methods. Systems are ordered by top-1 accuracy.

When the reaction type is given, we also improve the top-1
accuracy by 2.8 points from 63.9 to 66.7. Meanwhile, on
USPTO-MIT, our method shows 60.6 points top-1 accuracy
with a 6.5 points improvement or 12% relative gain. More
importantly, these top-1 accuracies are also better than other
strong baselines and state-of-the-art, demonstrating the ef-
fectiveness of our method.

At the same time, we achieved 78.9 points top-3 accu-
racy and 86.4 points accuracy in USPTO-50K when the re-
action type is unknown, which are also much higher than
baselines. For the top-10 and top-50 accuracy, we get 92.7
and 98.1 points accuracy. Considering that the accuracy is
already very high, the improvement is still significant.

To sum up, the local template retrial method efficiently
improves the retrosynthesis prediction accuracy.

4 Study and Analysis
4.1 Case Study
Retrieval case study. To better understand if we can retrieve
useful reactions by the hidden representations, we conducted
case studies on the USPTO-50K datasets, and the results
are shown in Figure 3. We fist select an atom-template re-
action and the first bond-template reaction from the data.
Next, we query the atom and bond store by the correspond-
ing atom and bond. Finally, for each retrieved template, we
show the original target molecule in the training data, where
the reaction atom/bond is highlighted by green background.

The bond-template and atom-template reactions are avail-
able in the figure’s first and second rows. In each row, we
first show the target molecule M of the reaction and then
five neighbors of M. From these cases, we can find that the
neighborhoods retrieved by hidden representations can ef-
fetely capture the local structure of molecules. For exam-
ple, the carbon-nitrogen bond retrieves all neighbors in the
edge-template reaction. Moreover, all carbon atoms are sur-
rounded by oxygen in a double bond (=O) and a trifluoro-
carbon (-CF3), and all nitrogen atoms are connected to an
aromatic ring. Meanwhile, for the node-template reaction,
all retrieved atoms are the oxygen atoms that are connected
to a phenyl. In conclusion, retrieving molecules with hidden
representations is efficient because it can capture the local
structure well. Therefore, we can improve the prediction ac-
curacy by using the retrieved templates.
Adapter case study. We show three representative cases for
the effect of adapter in Table 4. In each row, we show the
target molecule and ground truth template id, then the λ
and T output by the adapter, and finally the GNN predic-
tion and KNN retrieved neighbors. When the GNN predic-
tion is accurate in the first row, the adapter will generate a
high λ value (e.g., 0.96) so that the GNN output has a higher
weight. However, when that is not the case (the second and
third row), the λ tends to be lower (e.g., 0.14), which gives
more weight to KNN prediction. Meanwhile, when only the
N1 has the correct prediction (the second row), the adapter
tends to output a small T (e.g., 7.89) to make the sharp dis-
tribution that gives more weight to N1’s prediction. On the
contrary (the third row), the adapter tends to output a larger
value (e.g., 19.36) so that more neighbors can contribute
to the final output. Moreover, our statistics show that when
λ < 0.5, the GNN and KNN accuracy are 46.9% and 69.2%,
showing that KNN is complementary to GNN prediction.

4.2 Zero-shot and Few-shot Study
We modify the USPTO-50K dataset to zero-shot and few-
shot versions to study the domain adaptation ability of our
method. Specifically, in the USPTO-50K data, each reaction
has its reaction class available in class 1 to 10. To build the
zero-shot data, we filter the train and validation data by re-
moving all reactions with reaction class 6 to 10 and only
keeping those with reaction class 1 to 5. Similarly, to build
the few-shot data, we only keep 10% of reactions that have
class 6 to 10. Finally, we evaluate the performance of these
new data with the LocalRetro baseline and our RetroKNN
method. The results are summarized in Figure 4.

From these plots, we notice that zero-shot is a challenging
setting for conventional template-based methods, which is a
known shortcoming of this kind of methods. However, when
combined with KNN, our system can generate meaning-
ful results. For example, in reaction class 8, the RetroKNN
haves 6.1 points top-5 accuracy and 9.8 points top-10 ac-
curacy in the zero-shot data. The few-shot setting is easier
than the zero-shot because a few examples are available dur-
ing training. Nevertheless, the RetroKNN also outperforms
baseline on all reaction types. On average, the RetroKNN
improved 8.56 points top-5 accuracy and 5.64 points top-
10 accuracy. These results show that our method is can also
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Target M Neighbour 1 Neighbour 2 Neighbour 3 Neighbour 4 Neighbour 5

Target M Neighbour 1 Neighbour 2 Neighbour 3 Neighbour 4 Neighbour 5

Figure 3: Case study of retrieved molecules. The bonds and atoms used in retrieval are highlighted by green background. The
first column shows the target molecules, and the rest show five neighbourhood targets from the training data.

Target Molecule GT. λλλ T GNN N1 N2 N3 N4 N5

Cc1ccc(-c2cccnc2C#N)cc1 b542 0.96 21.42 b542 b519 b519 b519 b519 b0
(67.51) (77.35) (77.35) (77.35) (104.00)

CCOc1ccc(C[C@H](NC(=O)C(
F)(F)F)C(=O)O)cc1 b524 0.14 7.89 b495 b524 b523 b495 b495 b495

(22.79) (33.84) (67.3) (76.21) (76.55)

CC1(C)CC(=O)N(Cc2ccccc2)c2
ccc(C#Cc3ccc(C(=O)O)cc3)cc21 a121 0.02 19.36 a124 a121 a121 a121 a0 a0

(34.41) (57.3) (58.4) (59.91) (61.17)

Table 4: Case study of parameter T and λ. The GT. denotes ground truth template id, GNN denotes the GNN prediction, and
N1 to N5 denotes five neighbors. The prefix a, b of template id means it is an atom or bond template. We show each neighbor’s
distance in the brackets below template id. The correct predictions are highlighted in bold.
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(d) Top 10 Acc. on few-shot data.

Figure 4: Top-5 (a, b) and top-10 (c, d) accuracy (Acc.) on
the zero-shot (a, c) and few-shot (b, d) data. The columns C6
to C10 denote different reaction classes.

improve the performance on zero/few-shot data, which are
important scenarios in this field.

4.3 Ablation Study
We conducted an ablation study on the USPTO-50K dataset
to study the contributions of different components, and the
results are shown in Table 5. We show the top-1 accuracy in
the table by comparing different systems. The system 1⃝ is
the LocalRetro baseline without using KNN, which achieved
53.4 points accuracy. In system 2⃝, we add the KNN without
using the adapter. To find the optimal paramters, we conduct
comprehensive grid search on by T ∈ {1, 5, 25, 50} and
λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, which leads to total 20 com-
binations. We select the parameters by the validation loss
and finally get the 56.3 points accuracy. Furthermore, in sys-
tem 3⃝, we add the adapter only for T and keep the λ same
as system 2⃝. Similarly, we only add the adapter only for λ
in system 4⃝. The system 5⃝ is the full RetroKNN model.

Comparing the system 1⃝ with others that using KNN, we
can find that introducing KNN to this task can effectively
improve the model performance. These numbers show that
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ID System Accuracy
1⃝ Baseline 53.4
2⃝ + KNN 56.3
3⃝ + KNN, adaptive T 56.7
4⃝ + KNN, adaptive λ 56.8
5⃝ + KNN, adaptive T, adaptive λ 57.2

Table 5: Ablation study on the USPTO-50K dataset when
the reaction type is unknown.

#Retrieved reactions 1 4 8 16 32

Accuracy 55.6 57.4 57.1 56.9 57.2

Table 6: Study on the number of retrieved reactions by KNN.

the local template retrieval is vital for the system. Mean-
while, comparing system 3⃝ 4⃝ to system 2⃝, we notice that
adding both T and λ adapter is helpful. Finally, when both
parameters are adaptively predicted in system 5⃝, the accu-
racy can be boosted to 57.2, showing that they can work to-
gether effectively. Therefore, all components are necessary
for this system.

4.4 Retrieved Templates Size
In Table 6, we show how the number of retrieved re-
actions (i.e., K of KNN) affects the model performance.
More specifically, in the KNN search, we set the K ∈
[1, 4, 8, 16, 32], then train adapters for each of them. Finally,
we report the top-1 accuracy in the table.

From these results, we first observe that only adding one
retrieved template (K=1) can improve the accuracy from
53.4 to 55.6. When K is ≥ than 4, the accuracy can be fur-
ther improved to around 57 points. There will be no further
significant improvement when more reactions are retrieved,
nor will more received templates hurt the performance. We
suppose it is because there is already enough information
to improve the accuracy as the templates far from the query
will contribute less to the prediction.

4.5 Inference Latency
In Table 7, we study the datastore size and the inference la-
tency. The last two rows present the latency with or with-
out retrieval during inference, which are measured on a ma-
chine with a single NVIDIA A100 GPU. Each latency value,
which is the average run time per reaction, is measured with
ten independent runs. In the USPTO-50K dataset, we ob-
serve that the average latency increased from 2.71 ms to
3.31 ms, which is about 0.6 ms for each reaction. The ex-
tra latency is a little more prominent for the USPTO-MIT
dataset because it is about ten times larger than the USPTO-
50K. However, considering the hours or even days that a
more accurate system can save for chemists, the extra ten-
millisecond cost is not a real obstacle to the practical use
of this method. Finally, some work (He, Neubig, and Berg-
Kirkpatrick 2021; Meng et al. 2021) show that the KNN

Dataset USPTO-50K USPTO-MIT
|Dtrain| 40k 409k
|SA| 1,039k 10,012k
|SB | 2,241k 21,495k

Latency w/o KNN 2.71 ± 0.02 ms 3.51 ± 0.05 ms
Latency w/ KNN 3.31 ± 0.09 ms 14.69 ± 0.29 ms

Table 7: Study of the datastore size and inference latency.

speed can be further accelerated, and we would like to add
these techniques in future work.

5 Related Work
5.1 Retrosynthesis Prediction
Retrosynthesis prediction is an essential task for scientific
discovery and have achieved promising results in recent
years (Segler and Waller 2017; Liu et al. 2017; Coley et al.
2017; Tetko et al. 2020; Irwin et al. 2021; Dai et al. 2020;
Yan et al. 2020; Seidl et al. 2021; Chen and Jung 2021; Shi
et al. 2021; Somnath et al. 2021; Wan et al. 2022). A few
research also use retrieval mechanisms for this task. For ex-
ample, Seidl et al. (2021) use Hopfield networks to select
templates, and Lee et al. (2021) use retrieval method to fetch
molecules from a database. Being differently, we are the first
to combine deep learning and KNN retrieval in this task.

5.2 Retrieval Methods
Retrieving from data store or memory to improve the ma-
chine learning model’s performance is an important re-
search topic. SVM-KNN (Zhang et al. 2006) first combines
the SVM and KNN for recognition tasks. Furthermore, the
KNN-LM (Khandelwal et al. 2020) and KNN-MT (Khan-
delwal et al. 2021) have shown promising results when com-
bining KNN with Transformer networks. Meanwhile, He,
Neubig, and Berg-Kirkpatrick (2021); Meng et al. (2021)
study the speed of retrival methods and Zheng et al. (2021)
study the adaptation problem. However, we are the first to
combine the strong capability of KNN with GNN and use
them on the retrosynthesis task.

6 Conclusion
Retrosynthesis prediction is essential for scientific discov-
ery, especially drug discovery and healthcare. In this work,
we propose a novel method to improve prediction accuracy
using local template retrieval. We first build the atom and
bond stores with the training data and a trained GNN and
retrieve templates from these stores during inference. The
retrieved templates are combined with the original GNN
predictions to make the final output. We further leverage
a lightweight adapter to adaptively predict the weights to
integrate the GNN predictions and retrieved templates. We
greatly advanced the prediction performance on two widely
used benchmarks, the USPTO-50K and USPTO-MIT, reach-
ing 57.2 and 60.6 points for top-1 accuracy. These results
demonstrate the effectiveness of our methods.
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