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Abstract

Constructing accurate training tuples is crucial for unsuper-
vised local descriptor learning, yet challenging due to the ab-
sence of patch labels. The state-of-the-art approach constructs
tuples with heuristic rules, which struggle to precisely de-
pict real-world patch transformations, in spite of enabling fast
model convergence. A possible solution to alleviate the prob-
lem is the clustering-based approach, which can capture real-
istic patch variations and learn more accurate class decision
boundaries, but suffers from slow model convergence. This
paper presents HybridDesc, an unsupervised approach that
learns powerful local descriptor models with fast convergence
speed by combining the rule-based and clustering-based ap-
proaches to construct training tuples. In addition, Hybrid-
Desc also contributes two concrete enhancing mechanisms:
(1) a Differentiable Hyperparameter Search (DHS) strategy to
find the optimal hyperparameter setting of the rule-based ap-
proach so as to provide accurate prior for the clustering-based
approach, (2) an On-Demand Clustering (ODC) method to re-
duce the clustering overhead of the clustering-based approach
without eroding its advantage. Extensive experimental results
show that HybridDesc can efficiently learn local descriptors
that surpass existing unsupervised local descriptors and even
rival competitive supervised ones.

Introduction
Computing feature descriptors for image patches around in-
terest points serves as the cornerstone of many computer vi-
sion tasks, such as image retrieval (Radenović, Tolias, and
Chum 2019), object detection (Ren and Li 2016) and aug-
mented reality (Piao and Kim 2019). The goal is to construct
a discriminative feature space where matching patches are
projected to neighboring locations while non-matching ones
are mapped apart from each other.

Recently, supervised local descriptors based on Convo-
lutional Neural Networks (CNNs) have achieved remark-
able performance. However, the heavy reliance of these ap-
proaches on class-wise labels (or pairwise matching/non-
matching labels) greatly hinders their application in many
scenarios where patch annotations are costly to acquire (e.g.,
medical or hyperspectral images). On the contrary, learning
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local descriptors from unlabelled patches is more flexible
and has lately attracted lots of research attention.

Essentially, supervised and unsupervised local descriptor
learning share the same procedure: first construct training
tuples involving matching and non-matching patches (e.g.,
the triplet tuple 〈anchor, positive, negative〉), then calculate
a loss function defined over the tuples and minimize it.
The difference between the two types of approaches lies in
whether patch labels are available to guide the tuple con-
struction, which also accounts for their performance gap.
Therefore, the key to bridging this performance gap for un-
supervised approaches is constructing accurate training tu-
ples, which implies two requirements: accurately describing
pairwise patch relationships, and fully capturing the patch
variations undergoing in real-world scenarios.

The state-of-the-art unsupervised approach (Fan et al.
2021) relies on heuristic rules to construct tuples: the pos-
itive samples in the tuples are generated by applying heuris-
tic geometric transformation rules to the original patch, i.e.,
the anchor sample. Although the generated positive pairs
(i.e., positives) have relatively accurate pairwise relation-
ships which enable fast model convergence, the heuristic
rules fall short to simulate the diverse and complicated real-
world transformations due to their limited capability. As a
result, the constructed tuples with unrealistic patch varia-
tions can considerably hinder the CNN model from learning
accurate class decision boundaries.

A possible solution to ameliorate the problem is utilizing
the clustering-based approach (Xie, Girshick, and Farhadi
2016; Caron et al. 2018). Starting with a randomly initial-
ized CNN model, it first uses the CNN model to cluster sam-
ples and then constructs tuples with the estimated pseudo-
labels to train the CNN model. The clustering and optimiza-
tion processes are conducted alternately to progressively im-
prove the model. Since all samples come from the training
dataset, the positives constructed by such an approach nat-
urally embody more realistic patch variations and allow to
learn more powerful models. However, the clustering-based
approach suffers from inaccurate pairwise relationships in-
ferred by the less powerful CNN model at the early learning
period, leading to impaired model performance and slower
convergence than the rule-based approach.

Although neither approach can achieve the desired per-
formance, we observe that the rule-based approach has the
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advantage of fast model convergence while the clustering-
based approach possesses the advantage of learning mod-
els with more accurate class decision boundaries. To con-
struct accurate training tuples, our key idea is to leverage
the advantages of both approaches to address their respec-
tive shortcomings. To achieve the idea, the learning task is
divided into two stages. The first stage focuses on learn-
ing regular transformations depicted by transformation rules
to quickly learn a relatively powerful CNN model to boost
the subsequent learning. In the second stage, the clustering-
based approach is utilized to learn from tuples with realistic
patch variations. Based on the accurate prior, it can learn
more powerful local descriptors than the one bootstrapped
by a randomly initialized CNN model.

Based on the idea, this paper proposes HybridDesc, an un-
supervised approach that leverages the advantages of both
worlds to learn more powerful local descriptors with fast
convergence speed (see Figure 1). To further improve the
performance, HybridDesc addresses two main challenges in
each learning stage:

(1) How to set hyperparameters in the transformation
rules? Selecting values for hyperparameters in the trans-
formation rules (e.g., magnitudes of rotation) is a non-
trivial task since it determines whether accurate prior can
be learned to boost the second-stage learning. Manually se-
lecting values from the prohibitively large hyperparameter
space (Fan et al. 2021) requires extensive tuning and strug-
gles to find the optimal setting. To solve the problem, a dif-
ferentiable hyperparameter search (DHS) strategy is de-
signed. The DHS strategy uses the similarity distributions of
positives and negatives as the feedback signal to measure the
quality of the current hyperparameter setting, and search for
the optimal setting in a differentiable manner by regulating
the similarity distributions to the desired ones.

(2) How to exploit the advantage of clustering while
avoiding its high computation overhead? In the second
stage, clustering should be conducted iteratively to utilize
the increasing power of the CNN model. Existing clustering-
based approaches (Caron et al. 2018, 2019) cluster all sam-
ples in the training dataset at each iteration, which can in-
cur considerable training overhead due to the large number
of samples. We thus introduce an On-Demand Clustering
(ODC) method, which only clusters samples whose pseudo-
labels are likely to change. Since these samples only account
for a small portion, the ODC method can effectively reduce
the number of samples for clustering and its incurred over-
head without degrading model performance.

In summary, the contributions of HybridDesc are: (i) com-
bining the advantages of the rule-based and clustering-based
approaches to improve local descriptor learning, (ii) design
of the DHS strategy to automatically search for the opti-
mal hyperparameters of transformation rules, (iii) design of
ODC that can reduce the clustering overhead without hurting
model performance, (iv) extensive evaluation of HybridDesc
on several benchmarks covering a wide range of tasks.

Related Work
This section reviews the training tuple construction meth-
ods in unsupervised local descriptor learning. We also dis-

Figure 1: Evolution of the patch verification performance.
HybridDesc learns a better local descriptor model than other
approaches with a fast convergence speed.

cuss the clustering-based unsupervised learning methods.
Although they are not designed for the task of local descrip-
tor learning, they inspire our design.

Training tuple construction. Existing approaches con-
struct training tuples relying on either hand-crafted descrip-
tors or heuristic rules. A typical approach of the first type
is the Relative Distance Ranking Loss (RDRL) (Yu et al.
2019), which infers pairwise relationships between patches
based on the similarities of their corresponding SIFT de-
scriptors (Lowe 2004). Since the manually designed spatial
filters in hand-crafted descriptors struggle to cope with dras-
tic patch appearance changes, pairwise relationships inferred
by hand-crafted descriptors are error-prone.

Rule-based approaches (Lin et al. 2019; Fan et al. 2021)
generate positives for training tuples by applying heuristic
geometric transformation rules to the original patch, i.e., the
anchor sample. The underlying assumption is that a patch
shares the same class label as its geometric transformed
ones. Although heuristic rules can simulate certain transfor-
mations and generate positives with relatively accurate pair-
wise relationships, it is difficult for them to cover the diverse
and complex patch transformations in real-world scenarios.
As a result, the constructed training tuples struggle to cap-
ture realistic patch variations, making it hard to learn robust
local descriptors against patch appearance changes. More-
over, the performance of rule-based approach is sensitive to
hyperparameter settings, and improper settings further dete-
riorate the quality of constructed training tuples.

Clustering-based approach. Several clustering-based
approaches have been recently developed to address the
image-level unsupervised learning problem. One typical
clustering-based approach that can be applied to our task is
DeepCluster (Caron et al. 2018). Their main idea is lever-
aging the CNN model to cluster samples and in turn us-
ing the obtained pseudo-labels to supervise the CNN model
training. The above two steps are usually conducted alter-
nately to progressive improve the CNN model. Since all pos-
itives are collected from the training dataset, the constructed
tuples can capture more realistic patch variations than the
heuristic rule based approach and enable to learn local de-
scriptors with more accurate decision boundaries. However,
clustering-based approaches suffer from slow convergence
and impaired performance caused by the error-prone pair-
wise relationships inferred by the less powerful CNN model
at the early learning period.
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Figure 2: Overview of HybridDesc. Steps marked by the
solid and dashed lines in Stage 2 are conducted alternately.

Design of HybridDesc
Figure 2 overviews HybridDesc, which constructs tuples in
a hybrid way and learns local descriptors in two stages.
Stage 1: HybridDesc utilizes the rule-based approach to
construct training tuples. The hyperparameters of the trans-
formation rules are identified by the DHS strategy instead of
being manually set, which helps learn accurate prior to boost
the clustering-based approach in stage 2.
Stage 2: Based on the prior learned in stage 1, Hybrid-
Desc clusters samples with the ODC method and constructs
training tuples based on the estimated pseudo-labels. Dur-
ing learning, ODC and model optimization are alternately
conducted to progressively learn powerful local descriptors.

Differentiable Hyperparameter Search (DHS)
The hyperparameter setting of transformation rules has a
significant influence on the quality of constructed train-
ing tuples, which determines whether accurate prior can
be learned to boost the subsequent clustering-based ap-
proach. Existing approaches (Fan et al. 2021; Lin et al.
2019) manually set these hyperparameters, which requires
substantial efforts for tuning and struggles to find the opti-
mal setting. Although some hyperparameter searching meth-
ods have been developed for automatic data augmentation
(Cubuk et al. 2019; Hataya et al. 2020), they are not appli-
cable to our task due to their requirement for sample labels.

To overcome the challenge, we introduce the DHS strat-
egy to efficiently find the optimal hyperparameter setting.
Our key insight is that the similarity distributions of posi-
tives and negatives in the training batch reflect the quality
of the current hyperparameter setting, and can be used as
the feedback signal to guide the search process. During the
search, the DHS strategy adjusts the hyperparameters via
backpropagation to regulate current similarity distributions
to the desired ones. The optimal setting is found when the
similarity distributions match the desired ones. Next, we will
discuss details of the DHS strategy with respect to its search
space, search objective and the search algorithm.

Search space. In this work, 7 operations are utilized as
the transformation rules including scaling x/y, translation
x/y, shear x/y and rotation, which cover the common geo-
metric transformations in real-world scenarios. The positive
sample of a patch is generated by sequentially applying these

(a) Too large values (b) Too small values (c) Proper values

Figure 3: Similarity distributions of positives and negatives
in a training batch under different hyperparameter settings.

operations to the input patch. Similar to the previous study
(Fan et al. 2021), this work mainly concerns the magnitude
of each transformation operation. The search space of DHS
is thus a combinational continuous space jointly determined
by the magnitude ranges of all transformation operations.

Search objective. Intuitively, the hyperparameter setting
directly affects the similarity distributions of positives and
negatives in a training batch. As shown in Figure 3, set-
ting too large values can cause a large overlap between
two distributions and impair the discriminative ability of the
learned model, while setting too small values can overwhelm
the model with easy positives and degrade its robustness to
patch appearance changes. On the contrary, the ideal setting
can maintain a good balance between two distributions as
shown in Figure 3c, which helps learn both discriminative
and robust local descriptors. These observations suggest that
the similarity distributions of positives and negatives can be
leveraged as the feedback signal to reflect the quality of the
hyperparameter setting. Moreover, the objective of search-
ing the optimal setting can be converted to regulating the
similarity distributions to the desired balance.

Search algorithm. Inspired by the efficiency advantage
of differentiable search methods (Hataya et al. 2020) over
black-box search methods (Cubuk et al. 2019), the DHS
strategy also searches the optimal hyperparameter setting in
a differentiable manner. To sculpt the desired distributions, it
simultaneously minimizes the overlap of two similarity dis-
tributions and unfolds the similarity distribution of positives.
In this work, the histogram loss (Ustinova and Lempitsky
2016) is adopted to minimize the distribution overlap. Given
two sets S+ and S− that represent the similarities of pos-
itives and negatives in a training batch, the histogram loss
first estimates the probability distributions of similarities re-
garding positives p+ and negatives p− using histograms.
Specifically, considering the R-dimensional similarity his-
togram of positives H+ where nodes n1, n2, · · · , nR are
uniformly distributed between [−1, 1] with a step size ∆ =

2
R−1 , the value ofH+ at node r is h+r = 1

|S+|
∑

si∈S+ δsi,r,
where δsi,r is computed by

δsi,r =

 (si − nr−1)/∆, si ∈ [nr−1, nr]
(nr+1 − si)/∆, si ∈ [nr, nr+1]
0, otherwise

(1)

The similarity histogram of negatives H− can be estimated
in a similar way. Once p+ and p− have been estimated, the
discrete form of the probability that the similarity of a ran-
domly selected negative pair is higher than that of a ran-
domly selected positive pair can be denoted by
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Loverlap =

R∑
r=1

(h−r

r∑
q=1

h+
q ) =

R∑
1

h−r φ
+
r (2)

where φ+r represents the cumulative sum of H+. By mini-
mizing the above equation, the overlap between p+ and p−
can be effectively reduced. More details can be referred to
the histogram loss (Ustinova and Lempitsky 2016) paper.
In addition, to obtain a spread-out similarity distribution of
positives, the following loss function is introduced

Ldist =
1

|S+|

|S+|∑
i

(1− (d+i )2

2
) (3)

where d+i is the Euclidean distance between positives. Fi-
nally, the loss for hyperparameter search is expressed as:

Lhyper = Loverlap + λ× Ldist (4)

where λ is a weighting factor to balance the two parts.
For the transformation operations considered in this work,

their gradients w.r.t. their magnitude parameters can be eas-
ily obtained, thus can be directly optimized via backprop-
agation. Considering the contradiction between the goal of
minimizing the distance between positives during model op-
timization and maximizing the distance between positives
during hyperparameter search, HybridDesc adopts an alter-
nate optimization strategy to alternatively conduct these two
optimization processes.

On-Demand Clustering (ODC)
For the clustering-based approach, clustering needs to be
conducted iteratively so as to utilize the increasingly pow-
erful CNN model. Existing clustering-based approaches
(Caron et al. 2018, 2019) cluster all samples at each itera-
tion, which incurs considerable training overhead due to the
large number of samples in the training dataset (i.e., a patch
dataset typically contains nearly millions of patches). Dif-
ferent from existing approaches, the proposed ODC method
only clusters the samples whose pseudo-labels are likely to
change, which helps considerably reduce the overhead in-
curred by clustering without losing its benefit.

Many pseudo-labels remain unchanged. Essentially, af-
ter model optimization in the first stage, the parameters
of the local descriptor model tend to be stable, which has
been recognized as the “slow drift” phenomena in the pre-
vious study (Wang et al. 2020b). As a result, a large portion
of pseudo-labels remains unchanged in the second learning
stage and the number of changing pseudo-labels gradually
decreases as shown in Figure 4a. This provides us the op-
portunity to reduce the overall data scale for clustering by
only updating those pseudo-labels that are about to change.

Predicting the change of pseudo-labels. The key is to
accurately predict which pseudo-labels are likely to change.
Intuitively, the pseudo-labels of ambiguous samples (e.g.,
samples close to multiple cluster centers) are prone to
change due to their inherent instability. Inspired by the
Lowe’s matching criterion, we introduce the distance ratio
to measure the uncertainty of a sample, which is defined as
the ratio of its distances to the nearest and second nearest

(a) UBC Dataset (b) Liberty (c) Liberty

Figure 4: (a) the ratio of changing pseudo-labels, (b) the ratio
of accurately selected pseudo-labels, (c) the ratio of samples
selected by ODC.

Algorithm 1: Model optimization with the ODC method
Input: Training set X , pre-trained CNN modelM(θ), clus-
ter number C, epoch number N , distance ratio threshold ρ
Output: Optimized CNN model

1: Randomly select C patches from X as the cluster center
set C

2: Construct the query set Q ← X − C
3: for i = 1,2,· · · , N do
4: Compute descriptor with M(θ) for each patch x ∈

C ∪ Q
5: Initialize the ambiguous sample set U ← ∅
6: for j = 1,2,· · · , |Q| do
7: Retrieve top 2 nearest centers c1 and c2 in C for qj
8: Assign qj to the nearest cluster center c1
9: if d(f(qj), f(c1)) > ρ× d(f(qj), f(c2)) then

10: U ← U ∪ qj
11: end if
12: end for
13: Update the query set Q ← U
14: Construct training tuples with obtained pseudo-labels
15: Optimize θ by minimizing the loss computed over

constructed training tuples.
16: end for
17: returnM(θ)

cluster centers. A distance ratio close to 1 means that the
pseudo-label of the sample is very likely to change and vice
versa. Figure 4b shows that the distance ratio can effectively
pick out samples whose pseudo-labels are about to change.

Clustering only uncertain samples. Based on the dis-
tance ratio, the ODC method actively selects and clusters
ambiguous samples instead of the whole dataset, which con-
siderably reduces the data scale for clustering as shown in
Figure 4c. Specifically, at the beginning of the second-stage
learning, the ODC method selects a fixed number of sam-
ples as cluster centers. Since randomly selecting cluster cen-
ters at each iteration brings no performance improvement,
these samples are constantly used as cluster centers in sub-
sequent learning. Before clustering at each iteration, am-
biguous samples are selected from the ambiguous set of the
previous iteration. Afterwards, the local descriptors of these
samples along with samples corresponding to their top-two
nearest cluster centers are calculated with the CNN model
to be used for updating their cluster assignments. Detailed
steps of applying the proposed ODC method for model op-
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timization are given in Algorithm 1, where f(·) represents
the descriptor of the input patch while d(·, ·) computes the
distance between two input descriptors.

Implementation Details
The L2Net (Tian, Fan, and Wu 2017) is adopted as the CNN
model to embed local patches to descriptors of length 128
and 256 for a fair comparison with existing varying-length
descriptors. The sign(·) function is applied to the learned
real-valued descriptors to obtain the binary descriptors. For
model optimization, the “hardest-in-batch” mining strategy
and the triplet margin loss are utilized following HardNet
(Mishchuk et al. 2017). Data augmentation composed of
random horizon flipping and 90-degree rotation is also used.
The stochastic gradient descent (SGD) optimizer is adopted
with an initial learning rate of 10, which is linearly de-
cayed to zero. All models are trained for 60 epochs, with the
first 10 epochs trained using the rule-based approach and
the other 50 epochs trained using the clustering-based ap-
proach, unless otherwise stated. For hyperparameter search,
the Adam optimizer (Kingma and Ba 2015) is used with a
constant learning rate of 0.1. The magnitude range of scal-
ing x/y, translation x/y, shear x/y and rotation are [0.5, 1.5],
[−0.5, 0.5], [−0.5, 0.5] and [−180◦, 180◦]. The initial hyper-
parameter of each operation is set to 0.01 of its max magni-
tude. The manually set hyperparameters have the same val-
ues as that in (Fan et al. 2021), except that the shear op-
eration is used to replace tilt and out-plane rotation opera-
tions for simplicity. The cluster number C, weighting factor
λ and distance ratio ρ are set to 100K, 0.02 and 0.8 respec-
tively. Training is done with PyTorch (Paszke et al. 2019)
on an NVIDIA RTX 2080 GPU. The differentiable geomet-
ric transformations are implemented by the Kornia Library
(Riba et al. 2020), while clustering is implemented by the
Faiss library (Johnson, Douze, and Jégou 2019).

Evaluation
In this section, we compare HybridDesc with several exist-
ing approaches including unsupervised deep local descrip-
tors DeepBit (Lin et al. 2019), GraphBit (Duan et al. 2018),
D-GraphBit (Wang et al. 2022), TBLD (Miao et al. 2021),
BLCD (Fan et al. 2021), RDRL (Yu et al. 2019), super-
vised deep local descriptors DeepDesc (Simo-Serra et al.
2015), DC (Zagoruyko and Komodakis 2015), TFeat (Bal-
ntas et al. 2016), L2Net (Tian, Fan, and Wu 2017), Hard-
Net (Mishchuk et al. 2017), DOAP (He, Lu, and Sclaroff
2018), SOSNet (Tian et al. 2019), Dynamic Soft Margin
(DSM) (Zhang and Rusinkiewicz 2019), DualHard (Wang
et al. 2020a), HyNet (Tian et al. 2020) as well as hand-
crafted descriptors SIFT (Lowe 2004), BRIEF (Calonder
et al. 2010), ORB (Rublee et al. 2011). The evaluation is
conducted on the UBC Phototour (Brown, Hua, and Winder
2011), HPatches (Balntas et al. 2017), Heinly (Heinly, Dunn,
and Frahm 2012) and W1BS (Mishkin et al. 2015) datasets.

UBC Phototour Dataset
As the most widely used dataset for local descriptor learn-
ing, the UBC Phototour dataset consists of three subsets,

Train Dim ND YOS LIB YOS LIB ND MeanTest /Bits LIB ND YOS
Real-valued Descriptors

DeepDesc 128 8.82 8.82 4.54 4.54 16.19 16.19 9.85
TFeat 128 7.22 9.79 3.12 3.85 7.82 7.08 6.47
L2Net 128 2.36 4.7 0.72 1.29 2.57 1.71 2.22
DOAP 128 1.54 2.62 0.43 0.87 2.00 1.21 1.45
HardNet 128 1.49 2.51 0.53 0.78 1.96 1.84 1.51
DSM 128 1.21 2.01 0.39 0.68 1.51 1.29 1.18
SOSNet 128 1.08 2.12 0.35 0.67 1.03 0.95 1.03
DualHard 128 1.24 2.23 0.41 0.67 1.59 1.28 1.24
HyNet 128 0.89 1.37 0.34 0.61 0.88 0.96 0.84
DC 256 13.24 17.25 6.01 8.38 19.91 15.89 13.45
SIFT 128 30.76 30.76 25.17 25.17 27.77 27.77 27.90
RDRL 128 19.65 18.92 12.56 11.70 16.22 14.92 15.66

Ours 128 2.97 4.15 1.06 1.14 3.29 2.83 2.57
256 2.70 3.63 0.81 1.00 3.17 2.67 2.33

Binary Descriptors
L2Net 128 7.44 10.29 3.81 4.31 8.81 7.45 7.01
DSM 128 2.70 4.01 0.93 1.44 3.69 2.98 2.63
RDRL 128 27.59 29.25 20.96 20.79 23.20 23.23 24.17
ORB 256 56.26 56.26 48.03 48.03 54.13 54.13 52.81
BRIEF 256 59.15 59.15 54.57 54.57 54.96 54.96 56.23
DeepBit 256 33.83 34.64 20.66 28.49 56.69 54.63 38.15
GraphBit 256 21.18 24.72 15.25 17.78 49.64 49.94 29.75
D-GraphBit 256 15.66 9.56 10.63 17.78 41.47 40.07 22.05
TBLD 256 20.45 21.95 14.47 16.53 36.88 35.09 18.25
BLCD 256 10.07 11.90 4.90 5.26 9.02 10.03 8.53

Ours 128 9.36 12.13 4.77 4.83 10.32 8.72 8.35
256 5.62 6.76 2.38 2.22 6.15 5.41 4.76

Table 1: FPR95 (%) of different methods on the UBC Pho-
totour dataset. Best results of unsupervised local descriptors
are in bold.

namely Liberty (LIB), Y osemite (YOS) and Notredame
(ND). For evaluation, the dataset is split into six training-
test combinations, in which one subset is used for training
while the other two are used for testing. The false positive
rate at 95% true positive rate (FPR95) is reported follow-
ing the standard evaluation protocol (Mishchuk et al. 2017).
As can be seen from the results listed in Table 1, Hybrid-
Desc outperforms both hand-crafted descriptors and unsu-
pervised local descriptors on all training/testing splits. To
be specific, the previous best unsupervised real-valued de-
scriptor RDRL and binary descriptor BLCD report a mean
FPR95 of 15.66% and 8.53% respectively, while Hybrid-
Desc achieves much lower mean FPR95 values of 2.57%
and 4.76%, which verifies the effectiveness of our approach.
Moreover, for both real-valued and binary descriptors, the
performance of HybridDesc is very close to that of the su-
pervised approach L2Net which adopts the same network
architecture, showing the great potential of HybridDesc to
be applied in scenarios where patch labels are not available.

To better understand the contribution of each module in
HybridDesc, we also conduct an ablation study on the UBC
Phototour dataset with the results summarized in Table 2. All
models are trained for 20 epochs. For hybrid approaches, the
models are trained with the rule-based approach in the first
10 epochs and the clustering-based approach in the other
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Figure 5: Verification, matching and retrieval results on the HPatches dataset. Marker color and type represent the level of
geometric noises and experimental setup, respectively. DIFFSEQ and SAMESEQ indicate the source of negative samples for the
patch verification task while VIEWPT and ILLUM indicate the splits type for the image matching task.

Config ND YOS LIB YOS LIB ND Mean(dim=128) LIB ND YOS
Manual 8.70 8.62 5.83 4.75 9.54 10.19 7.94
Clustering 4.76 5.67 1.32 1.26 5.49 4.14 3.77
Manual+Clustering 3.70 5.01 1.02 1.24 4.69 3.72 3.23
Ours (DHS) 8.51 8.18 3.44 4.10 7.28 7.74 6.54
Ours (DHS+Clustering) 3.64 4.69 0.99 1.18 3.99 3.40 2.98
Ours (DHS+ODC) 3.50 4.61 0.96 1.18 3.90 3.45 2.93

Table 2: FPR95 (%) on the UBC Phototour dataset achieved
by models trained with different configurations.

Method LIB ND YOS Average
Clustering 45.82 47.44 68.95 54.07
ODC 20.03 21.56 34.39 25.33

Table 3: Comparison of the clustering time (%).

10 epochs. As can be seen from the table, using either the
rule-based approach (Manual) or the clustering-based ap-
proach (Caron et al. 2018) only achieves inferior perfor-
mance. Although directly combining these two approaches
(Manual+Clustering) brings noticeable improvements, the
benefit of combining both approaches is not fully unleashed
due to the suboptimal hyperparameter setting of the trans-
formation rules. For our approach, the DHS strategy enables
to learn better local descriptor models than the rule-based
approach with manually selected hyperparameters, thus ver-
ifying its advantage in finding the optimal setting. More-
over, the DHS strategy also helps boost the performance of
the clustering-based approach in the second stage. Table 3
presents the ratio of time for clustering to time for model op-
timization. Since the time used for model optimization is the
same for both methods, the results can directly reflect their
clustering overhead. From the results in Table 2 and Table 3,
it can be drawn that the proposed ODC method can consis-
tently reduce the clustering overhead by more than 50% on
all three subsets without degrading model performance.

HPatches Dataset
The HPatches dataset contains more than 1.5 million patches
extracted from 116 sequences of viewpoint and illumina-

tion changing images. The extracted patches are divided
into three groups including EASY, HARD and TOUGH based
on the level of geometric noise. There are three evaluation
tasks: patch verification, image matching and patch retrieval.
Following previous studies (Mishchuk et al. 2017; Tian et al.
2019), all our models are trained on Liberty and the mean av-
erage precision (mAP) is used to measure the performance
of compared approaches on the “a” split. The results are il-
lustrated in Figure 5. As depicted by the figure, our approach
surpasses the state-of-the-art unsupervised approach BLCD
on all evaluation tasks in terms of both real-valued and bi-
nary local descriptors. In particular, our binary local descrip-
tor OURS†-b with a dimension length of 256 improves the
mAP by 0.11%, 2.25% and 1.2% on all three tasks com-
pared with BLCD. In the meanwhile, its real-valued version
OURS† yields even larger improvements over BLCD-r, which
are 2.02%, 3.24% and 2.2% respectively. Surprisingly, our
real-valued local descriptor OURS with a dimension length
of 128 achieves better performance than L2Net and close
performance to the seminal supervised approach HardNet.

Heinly Dataset
In real-world image matching scenarios, the diverse im-
age distortions (e.g., geometric transformations, illumina-
tion changes, JPEG compression and etc.) pose great chal-
lenge for establishing correct correspondences. In order to
verify whether our learned local descriptor models are capa-
ble of handling these distortions, we evaluate our approach
on the Heinly dataset. The matching score is adopted to eval-
uate the image matching quality following the previous work
(Heinly, Dunn, and Frahm 2012). To determine the correct-
ness of a match, the ground-truth homographies is leveraged
to warp the detected keypoints from the first image to all re-
maining images in the sequence. Only matching points that
are within 2.5 pixels of each other are considered to be cor-
rect. The matching scores achieved by different approaches
are presented in Figure 6. For binary local descriptors, our
learned model OURS†-b surpasses the state-of-the-art un-
supervised approach BLCD on all sequences. Besides, our
real-valued local descriptor model not only outperforms the
handcrafted descriptor SIFT and supervised local descrip-
tors TFeat, L2Net, but also achieves a matching score close
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Figure 6: Image matching results on the Heinly dataset.

Method A G L S M2P Average
SIFT 0.1056 0.1097 0.1334 0.0089 0.0311 0.0777
TFeat 0.0702 0.0912 0.1130 0.0031 0.0076 0.0570
L2Net 0.1199 0.1259 0.1302 0.0131 0.0223 0.0823
HardNet 0.1268 0.1312 0.1324 0.0201 0.0239 0.0869
Ours 0.1260 0.1241 0.1335 0.0154 0.0271 0.0852
BLCD 0.0742 0.0852 0.1166 0.0045 0.0048 0.0571
Ours†-b 0.0962 0.1003 0.1192 0.0066 0.0149 0.0675

Table 4: Evaluation results on the W1BS dataset.

to HardNet, which demonstrates the superiority of our ap-
proach for handling diverse patch variations.

W1BS Dataset
To further validate the capability of our learned local de-
scriptors to operate in extreme conditions, we evaluate
them on the W1BS dataset, which contains 40 image pairs
with each involving one specific nuisance factor such as
Appearance (A), Geometry (G), Illumination (L), Sensor
(S) and electronic map to satellite photos (M2P). In ad-
dition, local features in the W1BS dataset are detected
with MSER (Matas et al. 2002), Hessian-Affine (Mikola-
jczyk and Schmid 2004) and FOCI (Zitnick and Ramnath
2011) detectors. These keypoint detectors fire on different
locations from DoG (Lowe 2004) used to extract training
patches, which can help verify the generalization ability of
our learned local descriptors across different detectors. Fol-
lowing the previous study (Mishchuk et al. 2017), the mean
Area Under Curve (mAUC) is employed to compare the per-
formance of different local descriptors. Table 4 illustrates
the evaluation results, in which our approach exhibits com-
petitive performance for both real-valued and binary local
descriptors. As shown in the table, our real-valued local de-
scriptor achieves superior performance than SIFT, TFeat and
L2Net on almost all sequences, and is only slightly inferior
to HardNet. Moreover, the binary local descriptor OURS†-b
consistently yields higher mAUC values than BLCD on all
sequences. The above results indicates the strong generaliza-
tion ability of local descriptors learned with our approach.

Sensitivity Analysis
In this part, we empirically investigate the impact of key
parameters in our approach including the cluster number,
clustering frequency, weighting factor λ as well as the dis-
tance ratio ρ on the performance of learned local descriptors.
The local descriptor model is trained on Liberty with vary-
ing experimental settings and the mean FPR95 achieved on

Figure 7: Impact of hyperparameters on model performance.

Yosemite and Notredame is used to measure model perfor-
mance. The results of our approach under different hyper-
parameter settings are illustrated in Figure 7. Specifically,
as can be seen from the figure that the optimal setting for
cluster number is 100K, which is smaller than the actual
cluster number of Liberty 161072. The reason is that some
patches from different classes in Liberty have very similar
appearances, thus the intrinsic data distribution can be well
represented by fewer clusters. For the clustering frequency,
a higher frequency yields a relatively steady trend of per-
formance improvements, but at the cost of extra clustering
overhead. The weighting factor λ has a significant impact
on the discriminative ability and robustness of the learned
local descriptors. As its value increases, the performance of
the learned model first increases and then decreases when
the value exceeds 0.01. In the meanwhile, it is observed
that a wide range of λ values can achieve similar perfor-
mance to that of the optimal setting. In the last figure, the
dash line represents the ratio between the clustering time
and the model optimization time when conducting cluster-
ing on all samples in the dataset (baseline). The values be-
side each marker denote the performance improvement or
degradation with respect to the baseline. In general, as ρ in-
creases, the clustering overhead is reduced, which however
leads to the gradually degraded performance of the learned
local descriptor model. In addition, when ρ is properly set,
the clustering overhead can be greatly reduced without hurt-
ing model performance. We also note that the performance
of the learned model outperforms the baseline when ρ is set
to 0.5 or 0.6, we hypothesize this is because selectively clus-
tering samples as done in the ODC method can help stabilize
the training by alleviating the fluctuation of pseudo-labels.

Conclusion
This paper proposes an unsupervised approach HybridDesc
which improves local descriptor learning by combining the
advantages of the rule-based approach and the clustering-
based approach to construct accurate training tuples. To fully
exploit the benefit of combining two approaches, we pro-
pose the DHS strategy to find the optimal hyperparameter
setting of transformation rules to provide accurate prior for
subsequent learning, and propose the ODC method to reduce
the training overhead incurred by clustering without hurting
model performance. Extensive experiments conducted on
several datasets show that HybridDesc can achieve notice-
able improvements over existing unsupervised approaches
and close performance to the competitive supervised ap-
proach. The promising results suggest the potential of our
approach for learning powerful local descriptors without
patch labels.
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