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Abstract

Goal Recognition is the task of discerning the intended goal
agent aims to achieve given a sequence of observations,
whereas Plan Recognition consists of identifying the plan
to achieve such intended goal. Regardless of the underlying
techniques, most recognition approaches are directly affected
by the quality of the available observations. In this paper,
we develop neuro-symbolic recognition approaches that can
combine learning and planning techniques, compensating for
noise and missing observations using prior data. We evalu-
ate our approaches in standard human-designed planning do-
mains as well as domain models automatically learned from
real-world data. Empirical experimentation shows that our
approaches reliably infer goals and compute correct plans in
the experimental datasets. An ablation study shows that we
outperform existing approaches that rely exclusively on the
domain model, or exclusively on machine learning, in prob-
lems with both noisy observations and low observability.

Introduction
Plan Recognition is the task of inferring the actual plan an
observed agent is performing to achieve a goal, given a do-
main model and a partial, and possibly noisy, sequence of
observations (Carberry 2001; Ramı́rez and Geffner 2009;
Sukthankar et al. 2014; Mirsky, Keren, and Geib 2021).
Such task arises in a multitude of different areas, includ-
ing natural language processing (Geib and Steedman 2007),
elder-care (Geib 2002), multi-agent systems (Shvo, Sohrabi,
and McIlraith 2018), epistemic problems (Shvo et al. 2020)
and more (Granada et al. 2017; Wayllace et al. 2020; Shvo
and McIlraith 2020). Real-world recognition problems im-
pose limitations on the quality and quantity of the observa-
tions from an agent’s plan, resulting in observations miss-
ing parts of the underlying plan or including spurious ob-
servations from silent errors in the sensors. While recent
approaches have substantially improved performance under
partial observability and noisy (spurious) observations (Zhi-
Xuan et al. 2020; Pereira, Oren, and Meneguzzi 2020; San-
tos et al. 2021), these problems remains a challenge.

Recent work on Goal and Plan Recognition use learned
models to assist planning-based approaches in model-
ing domain knowledge (Pereira et al. 2019; Zhuo et al.
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2020; Amado, Mirsky, and Meneguzzi 2022). Learning ap-
proaches deal well with noisy data (Kim et al. 2011; Schlim-
mer and Granger 1986), creating robust models capable of
accurate predictions with missing or noisy data. Inspired
by such developments, we develop novel recognition ap-
proaches that mitigate low and faulty observability, solv-
ing both goal and plan recognition problems simultaneously,
combining planning heuristics and learning models into a
novel class of neuro-symbolic approaches. On the learn-
ing side, we train a predictive statistical model of the most
likely next states given a set of state observations. We com-
bine such predictive models with symbolic heuristics for
goal recognition to predict relevant states towards a goal
hypothesis given a sequence of observations. In the result-
ing approaches, the predictive models address the two most
common flaws in observations in goal and plan recogni-
tion: missing and noisy observations. This allows us to fill
in missing observations and rebuild the sequence of states of
a complete plan from an initial state to a goal state. While
completing missing observations, we detect faulty (noisy)
observations and build state sequences that do not necessar-
ily comply with all observations.

We empirically evaluate our approaches in standard hand-
crafted planning domain models, as well as in image-based
learned domain models, showing their effectiveness at rec-
ognizing both goals and plans. We compare the optimal-
ity of the computed plans and the precision of the pre-
dicted goals in scenarios with missing and faulty observa-
tions against the seminal recognition approaches of Ramı́rez
and Geffner (2009; 2010). In learned domain models, the
seminal recognition approaches struggle to achieve high pre-
cision, as the number of returned goals is usually very large.
Our approaches achieve high precision in all evaluated do-
mains, excelling in learned domains with a precision in-
crease of up to 60%, including problems with noisy observa-
tions. We show that our approaches can compute complete
optimal plans in most problems, resulting in reliable plan
recognition approaches. An ablation study shows the impact
of the learning component and the symbolic component on
the overall performance of our approaches. This showcases
the potential for neuro-symbolic approaches for goal and
plan recognition, combining the robustness of learned pre-
dictive models and the generalization provided by heuristic
search guided by informed heuristics.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

11937



Background and Notation
Automated Planning
A planning domain Ξ is a tuple ⟨F ,A⟩, in which F is a set
of facts and A is a set of actions. States s ⊆ F are com-
posed of facts, indicating properties that are true at any mo-
ment in time. Conditions or formulas comprise positive and
negative facts (f , ¬ f) representing an implicit conjunctive
formula indicating what must be true (alternatively, false) in
a state. The positive part pos(c) of a condition c comprises
the positive facts, and the negative part neg(c) of a condition
comprises the negative facts. We say a state s supports a con-
dition c, s |= c (alternatively, c is valid in s), iff all positive
facts are present in s, and all negative facts are absent in s,
i.e. s |= c iff (s∪pos(c) = s)∧ (s∩neg(c) = ∅). An action
a ∈ A is represented by a tuple o = ⟨pre(a), eff(a), cost(a)⟩
containing the preconditions pre(a), the effects eff(a), and
a non-negative cost cost(a). The transition of a state s
into a new state s′ using an action a is represented as
s′ = γ(s, a). The transition is valid iff s |= pre(a), and
s′ = (s ∪ pos(eff(a))) − neg(eff(a)). A planning problem
is a tuple Π = ⟨Ξ, I, G⟩, in which I is an initial state, G
is a goal condition (a conjunctive formula), and Ξ is a plan-
ning domain. A solution for Π is a sequence of actions (i.e.,
a plan) π = ⟨a1, . . . , an⟩ that induces a sequence of states
⟨s0, s1, . . . , sn⟩ such that I = s0 |= pre(a1), sn |= G and
that every state si ∈ π is such that si−1 |= pre(ai) and
si = γ(si−1, ai). The cost of a plan is the sum of the cost
of all of its actions such that cost(π) =

∑n
i=1 cost(ai). An

optimal plan π* has the minimum possible cost for achiev-
ing a state sG such that sG |= G from an initial state I . We
assume that every action in A has cost 1, hence, the optimal
plan is the one with the smallest number of actions.

Goal and Plan Recognition as Planning
Goal Recognition is the task of identifying the goal an agent
is trying to achieve, whereas Plan Recognition is the task of
identifying the underlying plan to achieve such goal (Mirsky,
Keren, and Geib 2021). Key to solving recognition prob-
lems are the observations generated as a consequence of an
agent’s plan execution. Most recognition approaches use a
very specific notion of observations consisting of a sequence
of identifiers of the actions executed by an agent, or a se-
quence of states properties, which we formally define as fol-
lows. Let π = ⟨a1, . . . , an⟩ be a plan for a planning problem
Π. We define Ωπ as a sequence of observed actions from
π maintaining the same order but possibly missing actions.
Let π = ⟨a1, . . . , an⟩ be a plan for a planning problem Π,
with a sequence of induced states Sπ = ⟨s0, . . . , sn⟩. We
define Ωs as a sequence of observed states from Sπ with
possibly missing states that maintains the same order. Action
and state observations may be noisy if they contain at least
one observation not included in the sequence from which
they originate (Sohrabi, Riabov, and Udrea 2016; Meneguzzi
and Pereira 2021). We denote individual observations corre-
sponding actions ai as a⃗i, and to states si as s⃗i.

In this paper, we use Ω to refer to any sequence of ob-
servations, such that we can define recognition problems
independently of the nature of the observations. Thus, us-
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Figure 1: Goal and Plan Recognition in Latent Space.

ing the planning formalism defined above and the standard
definition of Plan Recognition as Planning of Ramı́rez and
Geffner (2009), we formally define a plan (alternatively
goal) recognition problem ΠΩ

π (alternatively ΠΩ
G ) as tuple

⟨Ξ, I,G,Ω⟩, where Ξ is a planning domain, I is an initial
state, G is a set of goal hypotheses, which includes a correct
goal G∗ (unknown to the observer), and Ω is a sequence of
observations (either action or state observations).

We establish the key difference between goal and plan
recognition as what we expect the solution to be. Namely,
we define the solutions as follows. Let ⟨Ξ, I,G,Ω⟩ be a
plan recognition problem ΠΩ

π (respectively, goal recognition
problem ΠΩ

G ) with domain Ξ, initial state I, goal hypotheses
G, and observations Ω. A solution π* for plan recognition
problem ΠΩ

π is one of the least-cost plan resulting from ex-
ecuting the observed plan that generated Ω, whereas a solu-
tion G* for goal recognition problem ΠΩ

G is recognizing the
correct goal G* ∈ G resulting from executing the plan that
generated Ω. Intuitively, solving a plan recognition problem
also solves a goal recognition problem, hence goal recogni-
tion problems are a subset of plan recognition problems.

Goal and Plan Recognition in Latent Space
We extend the definition of goal recognition in latent
space (i.e., image-based domains) proposed by Amado
et al. (2018) to also formalize the task of plan recognition
in latent space. Here, an image-based plan (alternatively
goal) recognition problem IΠΩ

π
(alternatively IΠΩ

G
) is a tu-

ple ⟨ΞI , II ,GI ,ΩI⟩, where ΞI is an inferred domain knowl-
edge from a set of images, II is an image representation of
an initial state, GI is a set of image representations of goal
hypotheses, which includes a correct goal G∗

I (unknown to
the observer), and ΩI is a sequence of image observations. A
solution to IΠΩ

π
(alternatively IΠΩ

G
) is to recognize (or antic-

ipate) the sequence of images (alternatively the final image)
from a sequence of observed images. Figure 1 illustrates an
image-based recognition problem for the 8-puzzle problem.

Predictive Plan Recognition (PPR)
We now introduce Predictive Plan Recognition (PPR),
which is a novel class of approaches to solve both goal and
plan recognition problems, dealing with noisy and missing
observations. We solve goal and plan recognition by com-
puting a sequence of intermediary states achieved by a plan
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π given a plan recognition problem ΠΩ
π = ⟨Ξ, I,G,Ω⟩.

Our algorithm rebuilds the sequence of intermediary states
for each goal hypothesis induced by a plan π by iterating
through the sequence of observations Ω and filling in any
gaps due to partial observability. PPR is the first end-to-end
goal and plan recognition approach to cope with partial ob-
servability with a predictive model. In what follows, we ex-
plain each of the key components of this approach: complet-
ing observations, predicting states, and inferring the goal.

Observation Completion Toward the Next Subgoal
PPR relies on mechanisms to predict missing observations,
allowing it to estimate which states are missing from the
observations of a plan. We define this problem as estimat-
ing the most likely next state s′, given an ordered set of
consecutive states S . We refer to this mechanism as a pre-
dictor function, which we treat as a “black-box”, and pro-
vide three distinct predictor functions that yield three dif-
ferent types of PPR. Such predictor function can fill in any
number of missing observations, which we use to fully re-
construct the sequence of states induced by the plan to-
wards a single goal hypothesis in the process. We determine
where observations are faulty or missing by using the known
transition model to identify invalid transitions. Formally, let
ΩI

s = ⟨s⃗0 = I, s⃗1, . . . , s⃗n⟩ be an observation sequence from
I, we then check whether ∀i∈[1,...,n]∃a∈A(s⃗i = γ( ⃗si−1, a)).
Namely, if the sequence of states is invalid, we conclude that
an observation is missing at the point of the invalid transition
of the observation sequence, thus we must predict the next
state expected at this point.

Algorithm 1 formalizes our approach to compute a se-
quence of states (or a plan) for a goal hypothesis G. This
algorithm takes as input a plan recognition problem ΠΩ

π , a
goal G, and a limit λ. To generate a sequence of states S
that a plan π achieves for each goal hypothesis, we use the
initial state I as the starting point (Line 1).

We concatenate the list of state observations Ω with the
goal hypothesis G (Line 2) creating a new list Ω̂. We as-
sume that the goal G is a complete state, same as the ob-
servations. We iterate through Ω̂ (Line 4), checking if o (an
observation from Ω̂) is the result of a valid transition from
the last known valid state of S (denoted as S | S |). If there
exists a valid transition between these two states, we add
the observation to the sequence of states and move to the
next observation (Line 5 and 10). Otherwise, in Line 6, we
use PREDICTNEXTS to predict a missing state in the ob-
servations. PREDICTNEXTS can be any function capable of
predicting the next state. The algorithm predicts succes-
sor states until the predicted state supports a single action to
achieve the next observation in Ω̂. This process repeats for
every observation, including the goal G, until we compute
a sequence of states that can achieve G (Line 9). The algo-
rithm stops when it achieves G during the prediction phase,
returning the current sequence of states S (Line 12).

Since we assume approximate optimality, unlikely goal
hypotheses should lead to longer plans. In practice, incor-
rect goal hypotheses induce much longer plans than the one
for the correct hypothesis in domains with connected state

Algorithm 1: COMPUTESEQUENCE(I,A,Ω, G, λ)
1 S ← ⟨I⟩
2 if Ω|Ω | |= G then Ω̂← Ω else Ω̂← Ω · G
3 predicted ← 0

4 for o in Ω̂ do
5 while ¬∃a∈A(o = γ(S | S |, a)) do
6 s′ ← PREDICTNEXTS(A,S, G, o)
7 S ← S · s′
8 predicted += 1
9 if G ∈ S or predicted > λ then return S

10 S ← S · o
11 predicted ← 0

12 return S

spaces, or infinite plans that never reach it. To prevent the al-
gorithm from generating such plans, we stop trying to com-
plete a plan for a goal hypothesis G if during the prediction
process we predict λ (a threshold) consecutive states that are
unable to achieve the current observation o, returning the
current sequence of states. This threshold can be any heuris-
tic value estimating the maximum length of a plan.

To deal explicitly with noisy observations, we develop a
variation of Algorithm 1. We adopt the usual notion of noisy
observation sequence from (Sohrabi, Riabov, and Udrea
2016; Pereira, Oren, and Meneguzzi 2020), which defines
that an observation is noisy if it contains observations emit-
ted without a corresponding state or action in the actual plan
executed by the observed agent, as illustrated in the center
of Figure 2. To recognize plans with noisy observations, we
compute plans that can be non-compliant with all observa-
tions in Ω, while keeping the assumption of ordered obser-
vations. Algorithm 1 will likely fail to find a valid transition
to oi in Line 4 when dealing with noisy observations, either
because there is no path to such a state, or because it needs
more steps than the threshold. In order to overcome this lim-
itation, we must be able to compute plans that ignore the
noisy observations. We assume an observation oi is noisy if
we can predict a state induced by subsequent observations
(i.e., oj , such that i < j) that can be reached by valid transi-
tions between the last valid inferred state before oi and oj . A
skipping mechanism in Algorithm 1 implements this notion.

Figure 2 illustrates the process of computing a plan given
three observations, where o2 is a noisy observation. Blue
boxes represent states achieved by plan π; purple boxes rep-
resent correct observations; gray boxes represent states pre-
dicted by a predictor function (such as Algorithm 2), and
finally, red boxes represent noisy observations. In this ex-
ample, our approach computes the sequence of states and
skips observation o2 by predicting s4 which corresponds to
observation o3, thus eliminating the need to achieve a valid
transition to observation o2. Our approach thus modified can
compute plans that skip noisy observations.
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Figure 2: PPR workflow for noisy observations.

Predictor Functions
Given a sequence of states S , a predictor function should
ideally compute the probability P(s′| S) of all states in the
state space 2F being the next successor state s′, thus select-
ing the most likely state argmaxs′∈2F |p(s′| S)|. Follow-
ing the maximum likelihood principle, we try to estimate
the most likely successor states to a history of states. Here,
we detail three distinct predictor functions to predict the
most likely next state in our PPR algorithm. First, a machine
learning approach using LSTMs to predict s′ (PPRσ). Sec-
ond, a purely symbolic function leveraging planning heuris-
tics (PPRh). Finally, we combine both previous predictors
functions to create a neuro-symbolic approach (PPRσ

h).

PPRσ: Our first predictor function computes the most prob-
able next state using an LSTM. While any model capable
of predicting consecutive states could be used, we use a
simple 5-layer neural network. The first layer is an embed-
ding in which we tokenize the input. The second layer is
an LSTM with 1024 hidden neurons, which is connected
to a self-attention layer with softmax activation. A flat-
ten layer takes this output and feeds into a fully connected
layer activated with sigmoid. The final output is a vec-
tor with the size of unique facts F of the state, where each
output node represents a possible fact. Thus, this neural net-
work computes the conditional probability of each individ-
ual proposition f ∈ F in the vocabulary, given a history of
propositions, i.e., P( f | S). The output of the network is a
set of facts (true or false) comprising an approximated state
ŝ, thus reconstructing a state in a binary representation. We
train the network using Binary Cross-Entropy as a loss func-
tion, which applies well here since this is a binary choice:
a proposition is either true or false. Notice that our predic-
tion is analogous to building a probabilistic planning graph
trained from a sample of plans from a single agent.

Since we have no guarantees that the reconstructed state
is valid, we instead use this reconstructed state as a metric
to discriminate the successor state. Logically, the successor
state must be a state achievable from the last state S | S | of
the prior state sequence S . PPRσ computes the achievable
states C from S | S | using the planning domain. We discrim-

inate these candidate states by comparing the cosine distance
of each achievable state s ∈ C, selecting as s′ the state that
is closer to the model’s prediction. Here, we could use any
vector distance metric, but we choose cosine distance as we
want to find similarities between two states, as the output of
the network can be any number between 0 and 1.

We compute the most likely next s′ using Equations 1
and 2 , formalizing our first predictor function, as follows:

s′ = argmin
c∈C

|cos(bin(c), ŝ)| (1)

cos(bin(c), ŝ) =
c · ŝ
∥c∥ ∗ ∥ŝ∥

(2)

where bin(c) is a binary representation of a candidate state c.
Using this predictor function, it is possible to compute state
sequences for each one of the goal hypotheses. However,
this predictor function is not goal-driven, ignoring the goal
hypotheses in its prediction.
PPRh: Our second predictor function, denoted as PPRh, pre-
dicts the most likely next state s′ without machine learning
techniques using exclusively a heuristic function h. Our goal
with this predictor function is to compute the most likely
next state without relying upon prior data and consider the
pursued goal hypothesis. Given a sequence of states S , we
use the domain model Ξ to compute all achievable succes-
sor states from the last state in the sequence S , following the
same procedure as PPRσ . Given all the achievable states C
(candidate states), we apply a domain-independent heuris-
tic to evaluate which state in C is the most likely next state.
While the heuristic here can be any planning heuristic, we
experiment using the Fast-Forward heuristic (Hoffmann and
Nebel 2001) (in the main paper), due to its good balance in
terms of speed and information, and Additive Heuristic (in
the supplement), as it is an admissible heuristic. To choose
the most likely next state in C, we compute the mean hs of
the heuristic value h from each state s ∈ C to the next ob-
servation o we are trying to achieve, and from each state to
the goal hypothesis G, as follows:

hs(s, o,G) = (h(s, o) + h(s,G))/2 (3)

where we measure how close the state is to the following ob-
servation and how close it is to the goal hypothesis. Finally,
Equation 3, selects the state with the lowest hs value as the
most likely next state s′, using the following equation:

s′ = argmin
c∈C

|hs(c, o,G)| (4)

PPRσ
h : Our final predictor function, PPRσ

h , combines the
two previous predictor functions, using a machine learning
model and a planning heuristic. This approach aims to com-
bine the reconstruction of PPRσ with the heuristic distance
between goal hypotheses and the next observation of PPRh.

Like our other predictor functions, we compute the
achievable states C from S | S |, using the planning domain.
Using the machine learning model, we compute ŝ, but in-
stead of using Equation 1 to discriminate the next state s′, we
compare the cosine distance of each achievable state s ∈ C,
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Algorithm 2: PREDICTNEXTS(A,S, G, o)
1 M← any model for p(f | S) /* e.g. an ANN*/

2 ϑ← confidence ofM
3 ŝ← a state computed usingM(S)
4 s← S | S |
5 C ← {s′ | s′ = γ(s, a), for a ∈ A, s.t. s |= pre(a)}

/* Candidate next states.*/

6 for s′ ∈ C do
7 if distance(bin(s′), ŝ) > ϑ then
8 C ← C − s′

9 return argmin
c∈C

|hs(c, o,G)| /* s’ with max LG.*/

removing any state with a distance to ŝ larger than a confi-
dence threshold (ϑ) between 0 and 1 in the machine learn-
ing model. The following section details how we compute
this threshold. Finally, since the machine learning model is
goal-independent, we apply a heuristic to measure the dis-
tance of all remaining candidate states to the goal and the
next observation (Equations 3-4). If there is a tie after using
Equation 4, we return the state closest to the goal hypothesis
G using Equation 1. Algorithm 2 formalizes the entire pro-
cess for selecting the most likely next state s. The machine
learning confidence threshold modulates the impact of the
model and the planning heuristic on the selection process. If
the threshold is 1.0, the machine learning model has no im-
pact, and the heuristic value dictates the selection of the next
state. The planning heuristic has no impact if the threshold is
0, in which case the algorithm selects only the closest state.

Discriminating the Correct Goal and Plan
We solve a plan recognition problem ΠΩ

π by applying Al-
gorithm 1 to all goals G ∈ G and ranking the returned se-
quences of states with regards to the observations. To in-
fer the intended goal, we compare the predicted sequence of
states SG for each goal. First, we try to discard goal hypothe-
ses G that are not in the last state of the their predicted se-
quence SG from Algorithm 1. Then, we rank the remaining
SG based on their compliance with the set of observations
Ω, i.e. | SG ∩Ω |. More formally, let SG be the sequences
predicted by COMPUTESEQUENCE(I,A,Ω, G, λ) such that
SG |= G, the predicted goal is G* = argminG∈G |CG|
where CG = {c such that |c| = maxG∈G | SG ∩Ω | }. If
there is a tie, we select the shortest sequence of states SG,
following the notion that agents are at least approximately
rational and prefer shorter plans (Ramı́rez and Geffner
2009). Finally, if Algorithm 1 yields no sequence of states
that complies with a goal hypothesis, we cannot discriminate
the current goal, which happens with PPRσ , as it is not goal-
driven. In this case, we compare the cosine distance of the
last state of each computed sequence with its respective goal
hypothesis and select the sequence of states that is closest to
its goal hypothesis. Our approach predicts a single sequence
of states (from which we can derive a plan), for a single goal
as the most likely goal and plan the agent is pursuing, solv-
ing both the problems of goal and plan recognition. Hence,
it is guaranteed to return a goal and a plan, even if not a

complete (and valid) plan to achieve the goal hypothesis.

Experiments and Evaluation
We evaluate our approaches over two types of datasets:
hand-crafted planning domains; and latent-space domains
learned through auto-encoders (Asai and Fukunaga 2018).

Hand-Crafted Domain Datasets: These datasets consist
of two domains from the International Planning Competition
(IPC), i.e., Blocks-World (BLOCKS) and LOGISTICS. We
build datasets using 100 planning problems for each domain.
To solve these problems, we use a planner, which computes a
plan to solve each problem instance. The plan is converted to
a sequence of states, starting from the initial state to the goal
state. After computing a plan for each problem, we sepa-
rate the data into a training set, containing 80 plan instances,
and a test set with 20 plan instances. We augment the data
used in training by generating windows of the training in-
stances (plans) as new data instances. For example, if we
have the train instance x1 = [s1, s2, s3, s4], where sn is a
state, and y1 = [s5] is the label to this training instance, we
create new training instances, such as x1a = [s1, s2, s3] us-
ing y1a = [s4] as label. The plan windows have minimum
length of three states and maintain the state contiguity.

Latent Space Datasets: To evaluate our approaches in
real-world data, we generated a set of image-based datasets
based on existing recognition problems (Amado et al. 2018).
We select two domains from (Asai and Fukunaga 2018):
MNIST 8-puzzle and Lights-Out Digital (LODIGITAL).
The MNIST 8-puzzle uses handwritten digits from the
MNIST dataset as tiles. The Lights-Out puzzle game (Fleis-
cher and Yu 2013) consists of a 4 by 4 grid of lights that
can be turned on and off, thus named Lights-Out Digital
(LODIGITAL). This domain starts with a random number
of lights initially on—toggling any of the lights toggles ev-
ery adjacent light—and the goal is to turn every light off. To
generate the training dataset, we create 100 planning prob-
lems for each latent space domain. We augment the training
set for these domains similarly to the hand-crafted domains.

Training and Testing
After building the training and test datasets, we train 4 dis-
tinct models for PPRσ and PPRσ

h , one for each domain. We
extract the final trace in each sequence and use it as a label
to the remainder of the sequence. We train the models with
the Adam optimizer. During training, our model receives a
trace as input, and outputs a prediction, which is a recon-
struction of the correct state. We interrupt training after 10
consecutive epochs with no improvement in validation loss.

Table 1 summarizes details for the trained models in each
dataset, where | F | is the size of the output layer, Max. Len
is the maximum sequence length that can be fed to the net-
work, State Acc is the accuracy of the model when recon-
structing an entire state (i.e., predicting all facts correctly),
Rec. Acc is the reconstruction accuracy of the sigmoid
function (i.e. how many facts the model predicts correctly
within each state), and ϑ is our confidence threshold of the
ML model used in PPRσ

h , measured as the mean value of
State Acc and Rec. Acc.
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Domain |f | Max Len State Acc Rec. Acc ϑ

BLOCKS 41 16 0.68 0.97 0.82
LOGISTICS 48 22 0.85 0.99 0.92
MNIST 36 8 0.52 0.97 0.74
LODIGITAL 36 8 0.35 0.92 0.64

Table 1: ML models details and results.

Experimentation and Setup
We use the 20 planning problems from each domain test
dataset to generate observation traces and create plan recog-
nition problems. Recognition approaches use different lev-
els of observability to assess their robustness. We randomly
remove observations from the test plans to obtain levels
of observability of 10%, 30%, 50%, and 70%, as well as
full observability (100%). The resulting traces are similar to
that illustrated in Figure 2 (without the noise), where three
out of seven observations are missing. Finally, we gener-
ate goal and plan recognition problems using the traces of
each domain in the datasets for each level of observabil-
ity, resulting in 100 plan recognition problems for each do-
main, each including 6 distinct goal hypotheses. We com-
pare the variations of PPR against two seminal plan recog-
nition approaches, RG2009 (Ramı́rez and Geffner 2009)
and RG2010 (Ramı́rez and Geffner 2010). We experimented
with other plan recognition approaches from the literature,
such as Vered et al. (2018) and Sohrabi et al. (2016). How-
ever, these approaches time-out or run out of memory.

We ran all experiments with a timeout of 1200 seconds
per problem in a single core of a 24 core Intel Xeon vE5-
2620 CPU @2.00GHz with 160GB of RAM and a mem-
ory limit of 8GB and an NVIDIA Titan Xp GPU. For latent
space problems, RG2010 timed out in all recognition prob-
lems. RG2010 outputs results even when timing out, so we
included such results in our evaluation.

Results for Missing and Full Observations
Table 2 shows the results for all four domains comparing our
three approaches and RG2009 and RG2010. Column P mea-
sures Precision, which is how many times each approach
computes a valid plan for the correct goal and select this plan
as the most likely one between six goal hypotheses, divided
by the number of recognized goals. Since our approaches al-
ways return a single goal, precision measures their accuracy.
We use precision instead of accuracy because the spread for
latent space domains for both RG2009 and RG2010 is close
to 6 (the number of goal hypotheses), making accuracy a less
informative metric. Column RG shows the average number
of returned goals for each approach. Column t(s) shows the
average time an approach takes to solve a problem in any of
the given domains. Finally, the π∗ column measures the per-
centage of optimal plans found, since our approach has no
formal guarantee of optimality. We compute this value by
dividing the number of optimal plans found by the number
of correctly predicted goals e.g., if the accuracy is 0.5 in 20
problems and 8 of these plans are optimal, π∗ is 0.80 (8/10).
PPRσ

h computes plans with high precision outperforming
the other approaches in almost every scenario. For LOGIS-
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Figure 3: Performance of all approaches for each domain.
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Figure 4: Performance of all approaches per observability.

TICS, PPRσ
h had slightly less precision when compared to

PPRh, which does not rely on machine learning models.
This is likely due to the inherent parallelism of the LOGIS-
TICS domain, which enables multiple linearizations for the
same plan, confusing the predictive model. Still, PPRσ

h is
faster and computes more optimal plans than PPRh. Fig-
ure 3 shows the mean precision (with variance) for all do-
mains. Overall, PPRσ

h outperforms all approaches with low
variance through all domains. Figure 4 shows the mean pre-
cision and variance of all approaches over all observability
levels. PPRσ

h dominates the other approaches (within vari-
ance) over all levels of observability. With the Table 2 and
Figures 3 and 4, we can conclude that PPRσ

h is the most ac-
curate approach, and returns optimal plans more often when
compared to PPRh and PPRσ .

Results for Noise in Missing and Full Observations
To further stress our approaches, we introduce noise in the
observations using two new datasets for each of our do-
mains, one with 10% noise and the other with 20% noise. We
introduce noise by iterating through all observations of the
dataset and swapping a correct observation for a noisy one
with a probability of either 10% or 20%. Thus, a dataset with
10% of noise means that, of all observations in the dataset,
10% are invalid observations through all problems, with no
guarantee that a given problem will have a noisy observa-
tion. Table 3 shows the results for the 8 noisy datasets. We
do not include RG2010 in this comparison because it either
times out, or it is dominated by RG2009. Our approaches
vastly outperform RG2009 in terms of precision while trad-
ing off time to recognition. RG2009 has poor precision since
it tries to compute optimal plans, including the noisy obser-
vation, while our approaches skip the noisy observation al-
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Missing and Full Observations
PPRσ PPRh PPRσ

h RG2009 RG2010
P RG t(s) π∗ P RG t(s) π∗ P RG t(s) π∗ P RG t(s) π∗ P RG t(s) π∗

BLOCKS 0.92 1.0 0.55 0.90 0.80 1.0 0.05 0.51 0.95 1.0 0.68 0.97 0.40 2.1 0.40 1.0 0.73 1.2 168.8 1.0
LOGISTICS 0.72 1.0 6.8 0.2 0.84 1.0 35.9 0.67 0.82 1.0 7.20 0.81 0.44 1.9 0.56 1.0 0.60 1.4 12.1 1.0
LODIGITAL 0.86 1.0 2.8 0.56 0.56 1.0 41.4 0.30 0.93 1.0 17.26 0.88 0.20 4.9 81.1 1.0 0.19 4.9 1200.0 1.0
MNIST 0.85 1.0 2.70 0.70 0.74 1.0 25.23 0.40 0.97 1.0 7.7 0.90 0.18 5.3 41.5 1.0 0.19 4.9 1200.0 1.0

Table 2: Results for missing and full observations.

Missing and Full Observations with 10% Noise
PPRσ PPRh PPRσh RG2009

P t(s) π∗ P t(s) π∗ P t(s) π∗ P t(s) π∗

BLOCKS 0.85 0.520.75 0.64 0.06 0.36 0.92 0.58 0.76 0.11 0.361.0
LOGISTICS 0.72 6.8 0.32 0.84 34.4 0.46 0.81 13.86 0.8 0.53 0.27 1.0
LODIGITAL 0.79 3.720.70 0.67 134.66 0.41 0.84 18.9 0.79 0.20 85.31.0
MNIST 0.86 2.43 0.44 0.67 24.63 0.33 0.96 9.70 0.61 0.18 27.61.0

Missing and Full Observations with 20% Noise
PPRσ PPRh PPRσh RG2009

P t(s) π∗ P t(s) π∗ P t(s) π∗ P t(s) π∗

BLOCKS 0.84 0.820.33 0.63 0.08 0.39 0.91 0.73 0.68 0.07 0.351.0
LOGISTICS 0.73 7.140.47 0.82 39.81 0.39 0.80 16.540.77 0.400.23 1.0
LODIGITAL 0.86 3.010.66 0.5882.04 0.31 0.87 20.06 0.75 0.20 87.61.0
MNIST 0.78 2.50 0.49 0.7029.25 0.24 0.94 12.44 0.63 0.18 30.81.0

Table 3: Results for missing and full observations with noise.

together when disagreeing with the predictive model.

Related Work
Current approaches to Goal and Plan Recognition em-
ploy both symbolic-based search and machine-learning
based techniques in isolation, but they all share limita-
tions handling noise or partial observability. Ramirez and
Geffner’s (2009; 2010) seminal approaches for goal and
plan recognition as planning model the problem as a plan-
ning problem towards to a set of goal hypotheses and solve
it using planning algorithms. Work by Sohrabi, Riabov, and
Udrea (2016) explicitly deals with noisy and missing obser-
vations by running an expensive top-k planner. More recent
work by Vered et al. (2018) efficiently recognizes goals com-
bining the planning landmarks and plan mirroring. Related
approaches to goal (but not plan) recognition include that
of E-Martin et al. (2015) and Pereira et al. (2017; 2020),
both of which perform recognition based on the structure of
planning problems. Most recently, Zhi-Xuan et al. (2020) re-
lax the optimality (rationality) assumption, and introduce a
Bayesian approach for online goal inference that deals with
sub-optimal behavior by modeling the observed agents as
boundedly-rational planners, restricting the amount of re-
sources available to an observed agent for planning.

By contrast, approaches based on machine learning forgo
engineered domains by learning the transition function us-
ing data. Min et al. (2014) develop an LSTM-based ap-
proach to recognize the goals of a player in an educational
game. The dataset used for training an LSTM (Hochreiter
and Schmidhuber 1997) and a player behavior corpus con-

sisting of distinctive player actions, which are noisy and sub-
optimal, annotated with the corresponding goal. Unlike our
work, their approach can only recognize goals included in
the training dataset. Zhuo et al. (2020) develop plan recog-
nition using learned models to predict the next action given a
set of observed actions, aiming to reconstruct a plan. Unlike
our work, they predict actions instead of states, and assume
much higher observability and no noise. By contrast, we deal
with very low observability and noisy observations. Finally,
while LatPlan (Asai and Fukunaga 2018) is not an approach
for goal recognition, its use of a learned latent model to plan
serves as inspiration to our work.

Discussion and Future Work
We developed a neuro-symbolic approach for goal and plan
recognition, PPR, combining machine learning statistical
prediction with domain knowledge within planning tech-
niques. The resulting approach achieves very high precision
in hand-crafted and automatically generated plan recogni-
tion domains. We empirically show that our best approaches
can reconstruct plans with very low observability (up to
90% missing) and noisy observations (up to 20% noise).
Our machine learning model is simple enough that the same
network architecture works for all domains; thus, tuning
the machine learning model is not really required for our
approach. Importantly, we show that the machine learning
model is critical for the robustness of our approaches, as the
purely symbolic approaches have substantially lower accu-
racy and higher variance.

The main limitation of our PPR approach is the require-
ment of data, which is absent in standard recognition ap-
proaches. This limitation entails that the length of the bi-
narized vector representing state features imposes a limit
on the generalization of the networks within the same do-
main. This limitation is relatively strong for standard recog-
nition using hand-crafted domain models. However, we ar-
gue that this is less of an issue in automatically learned do-
mains (e.g., in latent space (Asai and Fukunaga 2018)), as
they are both intrinsic to the learned domain. On the flip side,
the predictive model implicitly encodes a preference relation
for goals given a sequence of observations, i.e., P( Ω | G)
used for some approaches in the literature (Ramı́rez and
Geffner 2010). PPR approach entirely modular and can use
any new predictor function, which we intend to explore as
future work with more complex learning models. Our ap-
proach provides a critical initial step for neuro-symbolic ap-
proaches to goal and plan recognition, bridging the gap be-
tween learned behavior models and planning algorithms.
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