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Abstract

Multi-task learning models based on temporal smoothness as-
sumption, in which each time point of a sequence of time
points concerns a task of prediction, assume the adjacent
tasks are similar to each other. However, the effect of out-
liers is not taken into account. In this paper, we show that
even only one outlier task will destroy the performance of the
entire model. To solve this problem, we propose two Robust
Temporal Smoothness (RoTS) frameworks. Compared with
the existing models based on temporal relation, our meth-
ods not only chase the temporal smoothness information, but
identify outlier tasks, however, without increasing the com-
putational complexity. Detailed theoretical analyses are pre-
sented to evaluate the performance of our methods. Experi-
mental results on synthetic and real-life datasets demonstrate
the effectiveness of our frameworks. We also discuss several
potential specific applications and extensions of our RoTS
frameworks.

Introduction
In recent years, the temporal smoothness assumption (Wei
2006) has been used in a wide range of machine learning
applications (Wang, Shi, and Reddy 2020; Zhou et al. 2022;
Xu et al. 2021; Romeo et al. 2020; Emrani, McGuirk, and
Xiao 2017; Saha et al. 2018). They model the interactions
between a time point and its adjacent time points and thus
capture the temporal relationship to some extent. Owing to
intrinsic correlation among multiple time points, a joint anal-
ysis of multiple time points is supposed to be more effective
than analysing each time point independently. Therefore, the
idea of multi-task learning (MTL) (Shen et al. 2021; Fifty
et al. 2021; Zhang and Yang 2021) is applied to analyse mul-
tiple time points simultaneously. Specifically, existing meth-
ods (Romeo et al. 2020; Wang, Shi, and Reddy 2020; Em-
rani, McGuirk, and Xiao 2017; Zhao et al. 2015; Zheng and
Ni 2013) formulate the prediction of a target at a sequence of
time points as a multi-task learning problem, and each task
concerns the prediction at a time point. As shown in Figure
1, the t-th time point is treated as the t-th task wt.

The crucial challenge of MTL is to know how the tasks
are related and how to capture such complex task relation
(Zhang and Yang 2021). One common way is employing the
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Figure 1: We decompose every wi = pi + ri. P satisfies
the temporal smoothness, R identifies the outlier tasks.

Temporal Smoothness assumption (TS). It assumes the dif-
ference between two successive tasks is relatively small and
thus chases the temporal correlation among multiple tasks.
With TS, advanced MTL benefits many applications, like
disease progression prediction, survival analysis, and key-
point tracking.

In (Nie et al. 2016; Zhou et al. 2011), the authors use MTL
with TS to predict the progression of Alzheimer’s disease.
They assume the cognitive score of one patient will not fluc-
tuate dramatically over time, and the difference of cogni-
tive scores between two successive time points is relatively
small. So they penalize ∥wi−wi+1∥22, known as Laplacian
based Temporal Smoothness assumption (LTS). In (Zhou
et al. 2022, 2012), the authors argue that LTS only focuses
on the smoothing of tasks across different time points. It is a
better way to enforce that the nearby time points have sim-
ilar feature weight, so they penalize |wij − wi,j+1| using
the famous fused Lasso (Tibshirani et al. 2005), regarded
as the Fused Lasso based Temporal Smoothness assumption
(FTS). Clearly, if FTS is satisfied, so is LTS. Similarly, in
(Emrani, McGuirk, and Xiao 2017), the authors use MTL
with TS to conduct prognosis and diagnosis of the progres-
sion of Parkinson’s disease. In (Romeo et al. 2020), the au-
thors propose a novel spatio-temporal MTL model based on
TS to predict the progression of diabetes and its complica-
tions. Besides in the field of disease diagnosis and treatment,
(Wang, Shi, and Reddy 2020) applies TS to propose a tensor
based temporal MTL survival model.

Introducing TS into the MTL model has been shown to
improve performance and robustness, however, the signifi-
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cant problem is that TS does not consider the difference be-
tween tasks and the impacts of potential outlier tasks. Actu-
ally, the asymptotic property of fused Lasso proved in (Tib-
shirani et al. 2005) demonstrates that TS just tends to aver-
age all tasks. Due to the usual existence of outlier tasks, TS
is too restrictive for real-world applications. Here we first
define the outlier task: A task should be considered as out-
lier if it is vastly different from most tasks. In this study, we
identify outlier tasks by comparing the magnitude of the L2-
norm of the task coefficients. As shown in Figure 2 (same
experimental setup as in Experiment part), LTS and FTS av-
erage all tasks, and seem to have a trend, but extremely lim-
ited, to capture the outlier task (4-th task). It means even
only one outlier task will destroy the entire performance of
the MTL models based on TS. Hence, how to detect outlier
tasks while chasing the temporal smoothness assumption is
a particularly important and challenging problem in models
based on TS.

Our motivation comes from an intuitive idea that outlier
tasks arise since there is not only the information of tem-
poral smoothness among tasks, but also other information
that depends on specific domain knowledge. The outlier
task is determined by the domain information, rather than
by the noise in data. These outlier tasks also contain a lot of
valuable information, that can not be ignored. To implement
this idea, we propose two Robust Temporal Smoothness
(RoTS) frameworks. Mathematically, we write each task
model wi(i ∈ Nm) as wi = pi + ri (hence the model
coefficient matrix W = P +R). The temporal part pi satis-
fies the temporal smoothness pi ≈ pi+1. The discriminative
part ri represents the difference beyond the temporal rela-
tion among tasks. If ri is “large”, simple temporal smooth-
ness is not suitable, since ri ̸≈ ri+1 ⇒ wi ̸≈ wi+1, i.e.,
the difference beyond temporal relation among tasks can not
be ignored. And the i-th task is regarded as an outlier task.

It is worth noting that it is difficult to give an explicit def-
inition of outlier task, since it depends on the specific case
and is governed by the combined effect of the temporal part
P and discriminative part R. Traditionally, an outlier is an
observation that “lies an abnormal distance from other val-
ues in a random sample from a population”, where it has
significant differences with errors. However, in many practi-
cal applications, the outlier may occur randomly and reg-
ularly, associating with the definition of tasks. Therefore,
through defining different tasks, the threshold in temporal
smoothness might be able to classify some errors into out-
liers, and vice versa. For instance, taking an example of pre-
dicting the monthly amount of suitable fertilizers with AI
models over historical data, the outliers will differ if we set
a 6-month or 12-month task of fertilization over a year. In
practice, both of these circumstances are possible and varied
with farms. Here, we need to consider outliers associated
with tasks, which is an important and common phenomenon
facing practical long-term prediction cases.

Specifically, we propose the first RoTS framework,
Laplacian based RoTS (LRoTS), which utilizes LTS to
chase the temporal smoothness among pi and L2-norm to
measure the “quantity” of ri. The number of outlier tasks is
assumed to be small, so we employ the group Lasso (Meier,

Figure 2: The comparison on S2 dataset. Both LTS and FTS
only have a limited trend to capture the outlier (4th) task.

Van De Geer, and Bühlmann 2008) on column groups of
discriminative matrix R to detect outlier tasks. Whereas,
LTS only focuses on the smoothness of the prediction mod-
els across different time points. Inspired by (Zhou et al.
2022, 2012), we would like to incorporate feature smooth-
ness rather than only task smoothness, so we use FTS to
replace LTS to propose the second framework, Fused Lasso
based RoTS (FRoTS), which captures the temporal smooth-
ness not only on task level but also on feature level. In ad-
dition, this kind of temporal smoothness based on the ex-
tension of fused Lasso has another attractive property, i.e.,
sparsity continuity (Tibshirani et al. 2005), which is impor-
tant for us to derive detailed theoretical analyses.

The main contributions of this work include:

• Our work highlights the importance of outlier tasks in
MTL methods and discovers its relationship with tempo-
ral smoothness in many real-world applications. We are
the first to point out that all MTL models based on TS
could not effectively deal with outlier tasks.

• We propose a RoTS assumption to fully utilize both the
temporal information between tasks and the specific do-
main information in outlier tasks. We accomplish this by
decomposing the task coefficient and then present two
frameworks based on RoTS. Comparing to the model
based on TS, our robust frameworks have no additional
computational complexity

• Through detailed theoretical analysis and experimental
results, we verify the superiority and effectiveness of two
RoTS frameworks compared to the TS methods. We dis-
cuss several possible specific applications and extensions
of our frameworks in broader fields.

Notations: Denote Nm = {1, · · · ,m}. xi a=nd xij de-
note the i-th entry of a vector x and the (i, j)-th entry of a
matrix X . xi (xi) denotes the i-th row (column) of a ma-
trix X . ∥X∥p,q = (

∑n
j=1(

∑m
i=1 |xij |p)q/p)1/q . N(µ, σ2)

denotes a normal distribution with mean µ and standard de-
viation σ. x(i)

jk and x
(i)
j denote the (j, k)-th entry and the

j-th column of a matrix Xi. For the implementation code
and Appendix, please refer to https://github.com/menghui-
zhou/RoTS.
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The Proposed Frameworks
Assume that we are given a sequence of time points, the
number of which is m. Each time point concerns a task.
The training data is {(X1,y1), · · · , (Xm,ym))}, where
Xi ∈ Rd×ni is the data matrix of the i-th task with each
column as a sample; yi ∈ Rni is the response of the i-
th task (yi has continuous values for regression and dis-
crete values for classification); d is the data dimension;
ni is the number of samples for the i-th task. Denot-
ing W = [w1, · · · ,wm] ∈ Rd×m as the weight matrix
to be estimated, the empirical risk is given by L(W ) =
1
m

∑m
i=1

1
ni

∑ni

j=1 l((x
(i)
j )Twi, (yi)j), where the loss func-

tion l(·, ·) is squared loss for regression problem and logistic
loss for binary classification problem. To learn the m tasks
simultaneously, we minimize L(W ) + Ω(W ), where Ω is
the regularization term that encodes the prior knowledge.

Laplacian Based Robust Temporal Smoothness
For our RoTS frameworks setting, we decompose the weight
matrix W = P +R, i.e, wi = pi+ri. The temporal part pi

satisfies the temporal smoothness pi ≈ pi+1. The discrimi-
native part ri represents the difference beyond the temporal
relation among tasks. To capture the temporal smoothness,
we introduce a regularization term that penalizes large devi-
ations of predictions at neighboring time points; to identify
the outlier tasks, we use the group Lasso l2,1-norm regular-
ization term. Formally, our first framework is formulated as

min
P,R

L(P +R) + λ1

m−1∑
i=1

∥pi − pi+1∥22 + λ2∥R∥2,1,

where λ1 and λ2 are regularization parameters. For simple
notation, we use the following formulation:

min
P,R

L(P +R) + λ1∥PH∥2F + λ2∥R∥2,1, (1)

where H ∈ Rm×(m−1) is defined as: hij = 1 if i = j,
hij = −1 if i = j + 1, and hij = 0 otherwise. The
regularization term ∥PH∥2F is also called Laplacian term
(Zhou et al. 2011), so we call (1) Laplacian based Robust
Temporal Smoothness framework (LRoTS).

Fused Lasso Based Robust Temporal Smoothness
Since Laplacian term is differentiable, LRoTS avoids the
computational difficulty. However, LRoTS only encourages
the smoothness between adjacent tasks. We emphasize that
decoupling P into row vectors is usually meaningful. For
example, in modeling disease progression scenarios (Zhou
et al. 2012; Emrani, McGuirk, and Xiao 2017; Zhou et al.
2022), it is more natural that a feature has similar weights at
adjacent time points. So we propose the second framework
termed Fused Lasso based Robust Temporal Smoothness
(FRoTS) associated with the following formulation:

min
P,R

L(P +R) + λ1∥FPT ∥1,1 + λ2∥R∥2,1, (2)

where ∥FPT ∥1,1 =
∑d

i=1

∑m−1
j=1 |pi,j − pi,j+1| and F =

HT . The term ∥FPT ∥1,1 is an extension of fused Lasso

(Tibshirani et al. 2005) in multi-task setting, that is where the
name FRoTS comes from. Compared with LRoTS, FRoTS
has another advantage: FPoTS encourages each row of P to
get a sparse solution, where sparsity refers to the first differ-
ence |pi,j−pi,j+1|. It is attractive property for interpretation
while LRoTS fails to have. Note that this sparsity property
is necessary for us to derive theoretical analyses.

Optimization Algorithm
In this section, we show how to solve the two RoTS frame-
works efficiently using the accelerated proximal gradient
method (APM) (Li, Fang, and Lin 2020). Denote

L(P,R) =
m∑
i=1

1

ni

ni∑
j=1

l((X
(i)
j )T (pi + ri), (yi)j), (3)

Ω(P,R) = λ1Ω(P ) + λ2Ω(R), (4)

where Ω(P ) = ∥PH∥2F in (1) and ∥FPT ∥1,1 in (2),
Ω(R) = ∥R∥2,1. The objective function of two RoTS frame-
works is a composite function of a differential term L(P,R)
and a non-differential term Ω(P,R). Denote

TQ,S,η(P,R) = L(Q,S) +

〈
∂L(Q,S)

∂Q
, P −Q

〉
+

η

2
∥P −Q∥2F +

〈
∂L(Q,S)

∂S
,R− S

〉
+

η

2
∥R− S∥2F ,

(P k, Rk) = argmin
P,R

TQk,Sk,ηk
L(P,R) + Ω(P,R), (5)

where Q1 = P 0, S1 = R0 and Qk = P k + αk(P
k −

P k−1), Sk = Rk+αk(R
k−Rk−1) for (k ≥ 1); the value of

ηk and αk applies the strategy in (Beck and Teboulle 2009).
According to the theoretical analysis in (Beck and Teboulle
2009; Chen, Zhou, and Ye 2011), we present the following
convergence result for our two RoTS frameworks:
Theorem 1 Let (P k, Rk) be generated by (5) where ηk sat-
isfies the strategy in (Beck and Teboulle 2009). Then for any
k ≥ 1, f(·, ·) and (P ⋆, R⋆) are respectively the objective
functions and the optimal solutions of two RoTS formula-
tions (1) (2), we have the optimal convergence rate among
the first-order methods:

f(P k, Rk)− f(P ⋆, R⋆) = O
(

1

k2

)
.

Computing the Proximal Operator
A key building block of APM is computing the proximal
operator of non-smooth term Ω(P,R) efficiently. Due to the
decomposable property of (5), we cast (5) into the following
two separate proximal operator problems:

P =argmin
P

1

2
∥P − U∥2F +

λ1

ηk
Ω(P ),

U = Qk − 1

ηk

∂L(Qk, Sk)

∂Q
), (6)

R =argmin
R

1

2
∥R− V ∥2F +

λ2

ηk
Ω(R),

V = Sk − 1

ηk

∂L(Qk, Sk)

∂S
. (7)
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If Ω(P ) = ∥PH∥2F , (6) admits an analytical solu-
tion using matrix inverse, but with expensive complex-
ity of O(max(m3, dm2)). We emphasize the matrix (I +
2λ1

ηk
HHT ) ∈ Rm×m is tridiagonal and non-singular, this

special structure makes us to use the chasing method (Golub
and Van Loan 2013) to reduce the complexity to O(dm).
When Ω(P ) = ∥FPT ∥1,1, (6) no longer admits an an-
alytical solution, however, it can be solved efficiently us-
ing FLSA (Fused Lasso Signal Approximation) proposed
in (Liu, Yuan, and Ye 2010). It is shown to be scalable to
the large-size problem. For updating R, (7) admits closed
form solution with the complexity of O(dm) (Liu, Ji, and
Ye 2012). It is concluded that both two frameworks are scal-
able to large scale datasets using our proposed optimization
algorithm.

Theoretical Analysis
Since LTS does not induce the sparsity pattern of the first
difference |pi,j − pi,j+1|, we do not discuss LRoTS. Here
we provide the theoretical analysis of FRoTS.

Basic Assumption
We begin by outlining some fundamental assumptions for
the subsequent theoretical analyses. Assume features are
normalized, all diagonal elements of the matrix XiX

T
i equal

1, i.e.,
∑ni

k=1((x
(i)
jk )

2 = 1, ∀j ∈ Nd. Assume that the linear
predictive function associated with the i-th task satisfies

yji = f⋆
i (x

(i)
j ) + δji = (x

(i)
j )Tw⋆

i + δji,

where i ∈ Nm, j ∈ Nn, the noise δi = [δ1i, · · · , δni]T ∈
Rn, δji ∼ N(0, σ2); Xi = [x

(i)
1 , · · · ,x(i)

n ]T ∈ Rd×n,yi =

[y1i, · · · , yni]T ∈ Rn are the training data and responses
of the i-th task; W ⋆ is the true weight matrix, decomposed
as the sum of two underlying true components P ⋆ and R⋆,
i.e., W ⋆ = [w⋆

1 , · · · ,w⋆
m] = P ⋆ + R⋆ ∈ Rd×m. The true

evaluation is
f⋆
i = XT

i w
⋆
i = [f⋆

i (x
(i)
1 ), · · · , f⋆

i (x
(i)
n )]T ∈ Rn. (8)

Thus, we have yi = f⋆
i + σi, i ∈ Nm. We also define the

index set Q and J for sparsity pattern as
Q(A) = {(i, j)|aij ̸= 0},Q⊥(A) = {(i, j)|aij = 0}, (9)

J (A) = {i|ai ̸= 0},J⊥(A) = {i|ai = 0}. (10)
For the sake of simplicity, we assume that the training

sample sizes are the same for all tasks; however, the anal-
ysis that follows can be easily modified to account for the
situation where the training sample sizes differ for various
tasks. For notation simplicity, let X ∈ Rdm×nm be a block
diagonal matrix with Xi ∈ Rd×n(i ∈ Nm) as the i-th block
and vec(A) ≜ [a1

T , · · · ,am
T ]T , A ∈ Rd×m.

Theoretical Analysis for FRoTS
Theorem 2 Let (P̂ , R̂) be an optimal solution of (2) for
m ≥ 2 and n, d ≥ 1. Let Xi and yi satisfy the above as-
sumptions. Take the regularization parameters λ1 and λ2 as

√
2λ1(m− 1), λ2 ≥ α, α =

2σ

mn

√
dm+ t, (11)

where t > 0 is a universal constant. Then with probability of
at least 1− exp(− 1

2 (t− dm log(1 + 1
dm ))), for any P,R ∈

Rd×m, we have

1

mn

m∑
i=1

∥XT
i (p̂i + r̂i)− f⋆

i ∥
2

≤ 1

mn

m∑
i=1

∥XT
i (pi + ri)− f⋆

i ∥
2

+ 2
√
2λ1(m− 1)∥(P − P̂ )T ∥2,1

+ 2λ2∥(R̂−R)J (R)∥2,1. (12)

Then (12) can be written as

1

mn
∥XT vec(P̂ + R̂)− vec(F ⋆)∥2

≤ 1

mn
∥XT vec(P +R)− vec(F ⋆)∥2

+ 2
√
2λ1(m− 1)∥(P − P̂ )T ∥2,1

+ 2λ2∥(R̂−R)J (R)∥2,1 (13)

where F ⋆ = [f⋆
1 , · · · ,f⋆

m] ∈ Rn×m. We make the follow-
ing assumption about training data and the weight matrix.

Assumption 1 For a matrix pair ΓP ∈ Rd×m and ΓR ∈
Rd×m, let r and c (1 ≤ r ≤ d(m − 1), 1 ≤ c ≤ m) be the
upper bounds of |Q(FP ⋆T )| and |J (R⋆)|, respectively. Let
β be positive scalars. Given XXT is positive definite. There
exist positive scalars k1(r) and k2(c) such that

k1(r) ≜ min
ΓP ,ΓR∈R(r,c)

∥XT vec(ΓP + ΓR)∥√
mn∥F∥F ∥ΓP ∥F

, (14)

k2(c) ≜ min
ΓP ,ΓR∈R(r,c)

∥XT vec(ΓP + ΓR)∥√
mn∥(ΓR)J (R)∥F

, (15)

where the set R(r, c) is defined as

R(r, c) ={ΓP ,ΓR ∈ Rd×m|ΓP ̸= 0,ΓR ̸= 0,

|Q(FPT )| ≤ r, |J (R)| ≤ c,

∥(ΓR)
J⊥(R)∥2,1 ≤ β∥(ΓR)

J (R)∥2,1}, (16)

the notations |J | and |Q| denote the number of elements in
the sets J and Q respectively.

Note that Assumption 1 is connected to the restricted
eigenvalue assumption, which is essential to (Bickel, Ritov,
and Tsybakov 2009). Similar assumptions have also been
used in some earlier studies on multi-task learning (Gong,
Ye, and Zhang 2012; Chen, Zhou, and Ye 2011; Lounici
et al. 2009). The following theorem for performance bounds
is a concise statement of our main theoretical finding.

Theorem 3 Let (P̂ , R̂) be an optimal solution of (2) for
m ≥ 2 and n, d ≥ 1. Take the regularization parameters
λ1 and λ2 as in (11). Then under Assumption 1, the follow-
ing result hold with probability of at least 1 − exp(− 1

2 (t −
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dm log(1 + 1
dm ))), t > 0:

1

mn
∥XT vec(P̂ + R̂)− vec(F ⋆)∥2

≤

(
2λ1

√
(m− 1)

k1(r)
+

2λ2
√
c

k2(c)

)2

, (17)

∥R̂−R⋆∥2,1

≤
√
c(β + 1)

k2(c)

(
2λ1

√
(m− 1)

k1(r)
+

2λ2
√
c

k2(c)

)
. (18)

Theorem 4 Based on Theorem 3, let

b =

√
c(β + 1)

k2(c)

(
2λ1

√
(m− 1)

k1(r)
+

2λ2
√
c

k2(c)

)
,

if the following condition are true:

min
j∈J (R⋆)

∥r⋆j ∥ > 2b. (19)

Define

Ĵ = {j | ∥r̂j∥ > b}. (20)

Then with the same probability, Ĵ estimate the true sparsity
pattern J (R⋆). That is Ĵ = J (R⋆).

Theorem 3 gives an essential theoretical guarantee for
FRoTS. To be specific, these bounds assess how well FRoTS
can approximate the real evaluation values F ⋆ as well as
the real outlier tasks r⋆i , i ∈ Nm. Furthermore, we can es-
timate the true sparsity patterns J (R⋆) with high probabil-
ity, i.e., at least (1 − exp(− 1

2 (t − dm log(1 + 1
dm )))), if

the underlying true weights are above the noise level, i.e,

minj∈J (R⋆) ∥r⋆j ∥ > 2
√
c(β+1)
k2(c)

(
2λ1

√
(m−1)

k1(r)
+ 2λ2

√
c

k2(c)

)
.

Experiments
To demonstrate the competitiveness of the proposed ap-
proaches, we compare them with Laplacian based tempo-
ral similarity (LTS) and fused Lasso based temporal sim-
ilarity (FTS). The implementation code of all these com-
petitive methods is in the supplementary material. For
all the methods, the hyperparameters are selected by grid
search and 3-fold cross validation. For each dataset, the
experiments on different methods are repeated 5 times
by splitting data set randomly, and the mean and stan-
dard deviation of the results are reported. Note that for
numerical accuracy consideration, we solve the involved
formulations with their objective function multiplied by∑m

i=1 ni. The search range of the regularization parameters
is [0.1, 1, 10, 50, 100, 200, 500, 1000, 2500, 5000]. The root
mean square error (rMSE) is used to evaluate the perfor-
mance of involved methods as used in multi-task learning
literature (Yao, Cao, and Chen 2019). We stop the iterative
procedure of the algorithms if the change of the objective
values in two consecutive iterations is smaller than 10−4.
The training ratio is 0.5, defined as the ratio of the training
set over the data set.

T1 T2 T3 T4 T5

True Task

LTS

FTS

LRoTS

FRoTS

M
o
d
e
l

0.919

0.9

0.919

0.899

0.904

0.915

0.919

0.923

0.919

0.948

0.948

0.945

0.946

0.889

0.878

0.944

0.947

0.934

0.945

0.947

0.88

0.9

0.92

0.94

Figure 3: Correlation coefficient with true task on S1.

Figure 4: The L2-norm of task coefficient on S3.

Synthetic Data Sets and Experimental Results
To validate the effectiveness of the proposed approaches in
terms of robustness against outlier tasks, we first evaluate
our approach on the following three synthetic data sets:

S1: We have 5 tasks (m = 5), set w1 = w2 = 2
3w3 =

w4 = w5 ∼ N(0, 1), hence the 3th task is set as an outlier
task. The input data are generated from Xi ∼ N(0, 1) with
feature dimensionality d = 100, ni = 100(i ∈ N5), and the
output of the i-th task is obtained by yi = XT

i wi+N(0, 1).
S2: Denote 1 as a vector whose elements are all one. We

set 7 tasks (m = 7), ni = 20(i ∈ N7), dimensionality
d = 20,W1 = [1, · · · ,1] ∈ R10×m, W2 = 5 · [1,1,1, 3 ·
1,1,1,1] ∈ R10×m, W = [W1;W2]. Actually, 4-th task
w4 is regarded as an outlier task.

S3: This dataset is similar to S2, but
with 18 tasks (m = 18). W2 = 5 ·
[1,1,1, α11,1,1,1, α21,1,1,1, α31,1,1,1, α41,1,1].
α1, α2, α3, α4 are generated from a uniform distribution
with the range of [0.3, 0.8]. It means the 4th, 8th, 12th, and
16th tasks are outliers.

We verify the performance of different methods on S1
dataset, and we calculate the correlation coefficients be-
tween the model parameters learned by different methods
and the real model. As shown in Figure 3, the correlation co-
efficient associated with the 3th task is generally lower than
the others, which indicates that the influence of the outlier
task is obvious. Note that the correlation coefficients cor-
responding to LRoTS, and FRoTS are significantly better
than those of LTS and FTS, which shows the effectiveness
of our proposed methods. However, there is no clear illustra-
tion to show how well our methods capture the outlier tasks.
To more intuitively analyze the differences between the var-
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ious methods, we design the two datasets S2 and S3. Note
that if we only look at W1, there is no outlier task. This set-
ting is designed to analyze the difference between the two
ways, LTS and FTS, of chasing the temporal information.
Since LTS focuses on the task level, and FTS focuses on
the feature level (every entry of task coefficient). As shown
in Figure 2 and 4, two RoTS frameworks are significantly
better than LTS and FTS in detecting outlier tasks, and also
better than LTS and FTS in terms of fitting non-outlier tasks.
This also indicates that we can not simply average all tasks
to chase the temporal information, and both LTS and FTS
are too strict.

Real Datasets and Experimental Results
Here we introduce the two used datasets in this work.

SmartFert Dataset The dataset is designed for global soil
health assessment. The data are collected from 354 geo-
graphic sites from 42 countries. It includes many factors de-
scribing agriculture, such as climate, soil type, yield, and
fertilization. After data preprocessing, the SmartFert dataset
has available data of four farms with same standard and 12
features. The corresponding label is the amount of fertilizer
applied for the months of the year, including nitrogen, phos-
phorus, and potash content. We emphasize that in the Smart-
Fert dataset, heavy fertilization is only applied in the 6th,
7th, 8th, and 9th months. Some farms apply additional fertil-
ization in 11th months. From the perspective of our proposed
methods, the 6th, 7th, 8th, and 9th month can be regarded as
outlier time points, since the amount of fertilization in these
months is extremely different from other months.

Alzheimer’s Disease (AD) Dataset This dataset (Jack Jr
et al. 2008) consists of three subsets, including RAVLT,
MMSE, and ADAS-Cog, ADAS. National Institute of
Health (NIH) in 2003 funded the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) to facilitate the scientific eval-
uation of neuroimaging data including magnetic resonance
imaging (MRI), and clinical and neuropsychological as-
sessments for predicting the onset and progression of mild
cognitive impairment (MRI) and AD. The three data sets
RAVLT, MMSE, and ADAS are all from ADNI (Weiner
et al. 2017). Every dataset has 313 MRI features and cor-
responding six time points.

Evaluation of Performance
We verify our methods on the SmartFert dataset, the results
are shown in Table 1. Note that the variances of the four
methods are all large. The possible reason is the sample
number of the SmartFert dataset is small and we can not
train the model adequately. However, in this scenario with
limited data, both two RoTS frameworks achieve significant
improvements compared to LTS and FTS, with FRoTS per-
forming the best. Compared to LTS, FRoTS reduces rMSE
from 44.26 to 29.22, almost 34% lower. This shows that our
methods have greater potential to achieve good performance
with limited data. To visualize the detection ability and prac-
tical significance of outlier tasks, we compute the l2-norm of
each column of the discriminant matrix R. As shown in Fig-
ure 5, the l2-norm of the 6th, 7th, 8th, 9th, and 11th task is

Figure 5: The L2-norm of each column of the matrix R, gen-
erated by two RoTS frameworks on the SmartFert dataset.

significantly higher than the others and thus can be consid-
ered as outlier tasks. It is consistent with the reality, since
in the SmartFert dataset, heavily fertilization is only applied
in the 6th, 7th, 8th, 9th months. In the 11th month, there is
occasional extra fertilizer.

To analyze the performance of our methods comprehen-
sively, we conduct experiments on AD datasets with train-
ing ratio as 0.2. As shown in Table 1, both RoTS methods
outperform LTS and FTS clearly. Note that the RoTS frame-
works do not improve the baseline on three AD datasets as
much as on SmartFert dataset. Possibly because the cogni-
tive scores of AD patients is a somewhat smooth process
(Zhou et al. 2022). It tells us the limitation of our methods:
The stronger the temporal information is, the more limited
improvement will be achieved by our RoTS frameworks. We
find that in most cases, FRoTS performs better than LRoTS.
This seems to suggest that FRoTS is the better choice of
the two metrics. However, we would like to emphasize that,
although the optimization algorithm we designed has high
efficiency and can be extended to a large-scale dataset, com-
puting the proximal operator of the Fused Lasso penalty is
required in FRoTS, which makes FRoTS more complicated
than LRoTS. We conclude that if more efficiency is needed,
LRoTS is a better option; If better performance is necessary,
FRoTS is the better choice.

We also make visual analysis of the detection of outlier
tasks on the three AD sub datasets. Refer to Figure 6, the
detection result of outlier task on three AD datasets is not
as clear as that on SmartFert dataset. That means the tem-
poral relation on the AD dataset is stronger than on Smart-
Fert dataset. And we also notice that there are big dif-
ferences between the experimental results conducted on the
three datasets. For example, on ADAS dataset , the second
and third tasks are clearly identified as outlier tasks (right
subfigure of Figure 6), but on MMSE dataset, only 2nd task
is an obvious outlier task (middle subfigure of Figure 6); on
the RAVLT dataset, 1st and 3rd are clear outlier tasks. The
reason for this phenomenon may be the differences of the
three datasets themselves. For example, the ADAS dataset
focuses on the analysis of the patient’s language and cog-
nitive ability, the MMSE dataset focuses on the analysis of
the patient’s arithmetic, memory and direction recognition
ability, and the RAVLT dataset focuses on the assessment of
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Data set LTS FTS LRoTS FRoTS
SmartFert 44.26 ± 10.92 40.95 ± 11.72 35.19 ± 6.27 29.22 ± 5.39

RAVLT 4.74 ± 0.22 4.72± 0.25 4.80± 0.51 4.67 ± 0.37

MMSE 5.21 ± 0.41 5.13 ± 0.26 5.01 ± 0.21 5.07± 0.32

ADAS 9.38 ± 0.03 9.39 ± 0.03 9.35± 0.03 9.33± 0.04

Table 1: The comparison of performance in terms of rMSE (‘mean ± std’).

Figure 6: The results of detecting the outlier tasks of LRoTS and FRoTS on RAVLT (left subfigure), MMSE (middle subfigure),
and ADAS (right subfigure) datasets.

the patient’s learning ability. It is worth emphasizing that,
the outlier task mainly appears in the early stages. The pos-
sible reason is in initial stages of the disease, the patient’s
condition is relatively good, but in later stages will deterio-
rate rapidly because of a rapid loss of many cognitive func-
tions. It makes a huge difference between the state of the
patient at the beginning and the state of the patient at other
time points.

Possible Specific Application and Extension
We point out that if temporal smoothness assumption (TS)
is useful in some scenarios, the two RoTS frameworks are
a better option. For instance, (Zhou et al. 2012) proposed
cFSGL based on TS for modeling disease progression. We
can easily extend cFSGL to: L(P + R) + λ1∥PT ∥1,1 +
λ2∥PT ∥2,1 + λ3∥FPT ∥1,1 + λ4∥R∥2,1. It employs the
sparse group Lasso (λ1∥PT ∥1,1+λ2∥PT ∥2,1) (Simon et al.
2013) to conduct simultaneous joint feature selection for all
tasks and selection of a specific set of features for each task.
And the FRoTS term (λ3∥FPT ∥1,1 + λ4∥R∥2,1) is used
to capture the robust temporal smoothness. The decomposi-
tion property of (λ1∥PT ∥1,1+λ2∥PT ∥2,1+λ3∥FPT ∥1,1),
proved in (Zhou et al. 2012), enables to compute the prox-
imal operator efficiently and be scalable to the large size
problem. Similarly, two RoTS frameworks also have a po-
tential extension on temporal survival model (Wang, Shi,
and Reddy 2020).

Our RoTS assumption can be possibly extended to tackle
other kinds of sequence data. Gene expression sequence data
usually shows some order patterns (Robinson, McCarthy,
and Smyth 2010). Tibshirani et al. (Tibshirani et al. 2005)

proposed the famous fused Lasso to encourage the orderly
successive features to be similar. However, they did not con-
sider the outlier features. We may propose the robust Fused
Lasso formulation for tackling it: L(p + r) + λ1∥p∥1 +
λ2∥Fp∥1 + λ3∥r∥1. Another example is spatio sequence
data. Some works (Xu et al. 2016; Gao et al. 2019) utilize
the spatio smoothness assumption, which means the closer
two objects are, the more similar they are. Similar to RoTS
assumption, the robust spatio smoothness assumption is pos-
sibly proposed, which simultaneously captures the spatio
smoothness and detects outliers.

Conclusion
Temporal smoothness assumption is widely used in multi-
task learning setting to simultaneously analyze multiple time
points. However, it treats all tasks equally, without consider-
ing the difference between them, which means ignoring the
negative effect of the outlier tasks. In this paper, we assumed
every task consists of one temporal part and one discrimina-
tive part. Based on it, we proposed two Robust Temporal
Smoothness (RoTS) frameworks that simultaneously chase
the temporal smoothness among tasks and capture the out-
lier tasks, but with no additional computational complexity.
The effectiveness of our approach is demonstrated by ex-
perimental results and theoretical analyses. Finally, we pre-
sented some possible applications in modeling disease pro-
gression, tensor multi-task model, and survival model. We
also discussed the potential extension of our idea of RoTS
frameworks to deal with other kinds of sequence data, like
gene expression data and spatio data. Our future work fo-
cuses on using these frameworks in a broader area.
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