
SharpSSAT: A Witness-Generating Stochastic Boolean Satisfiability Solver

Yu-Wei Fan1, Jie-Hong R. Jiang1,2

1Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan
2Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

{r11943096, jhjiang}@ntu.edu.tw

Abstract

Stochastic Boolean satisfiability (SSAT) is a formalism al-
lowing decision-making for optimization under quantitative
constraints. Although SSAT solvers are under active develop-
ment, existing solvers do not provide Skolem-function wit-
nesses, which are crucial for practical applications. In this
work, we develop a new witness-generating SSAT solver,
SharpSSAT, which integrates techniques, including com-
ponent caching, clause learning, and pure literal detection.
It can generate a set of Skolem functions witnessing the at-
tained satisfying probability of a given SSAT formula. We
also equip the solver ClauSSat with witness generation
capability for comparison. Experimental results show that
SharpSSAT outperforms current state-of-the-art solvers and
can effectively generate compact Skolem-function witnesses.
The new witness-generating solver may broaden the applica-
bility of SSAT to practical applications.

1 Introduction
Efficient solving techniques for Boolean satisfiability (SAT)
problems have led to tremendous success in formal verifica-
tion, synthesis, electronic design automation, and other do-
mains that rely on Boolean reasoning. The growing com-
plexity of verification and variety of applications have moti-
vated researchers to investigate logical formalisms and prob-
lems beyond SAT. Recently, stochastic Boolean satisfiability
(SSAT) has drawn attention from the field of probabilistic
planning (Salmon and Poupart 2019), verification for prob-
abilistic design (Lee and Jiang 2018), and fairness analysis
of machine-learning models (Ghosh, Basu, and Meel 2021).
It provides a convenient language to compactly encode deci-
sion and optimization problems under uncertainty. As more
applications of SSAT emerge, developing effective solving
techniques becomes crucial.

Solving a given SSAT formula involves two impor-
tant tasks: One is to determine the maximum satisfying
probability of the formula. The other is to generate a
Skolem-function witness, i.e., Skolem functions for exis-
tential variables, that witnesses the maximum satisfying
probability. To date, existing SSAT solvers, e.g., DC-SSAT
(Majercik and Boots 2005), Prime (Salmon and Poupart
2019), ClauSSat (Chen, Huang, and Jiang 2021), and

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ElimSSAT (Wang et al. 2022), mostly focus on the first
task. Specifically, DC-SSAT is a divide-and-conquer SSAT
solver that solves an SSAT formula by decomposing it into
smaller sub-problems. Prime exploits model counting tech-
niques, including component analysis and advanced caching
schemes, for SSAT solving. ClauSSat tackles SSAT solv-
ing based on the clause selection (Janota and Marques-
Silva 2015) framework. ElimSSAT proposes a quantifier-
elimination approach to SSAT solving. Regarding the sec-
ond task, the witness can be crucial for practical application.
For example, the witness may correspond to an access con-
trol policy between organizations (Freudenthal and Karam-
cheti 2003), and a feasible plan for planning (Littman, Ma-
jercik, and Pitassi 2001). Unfortunately, none of the exist-
ing SSAT solvers can provide a Skolem-function witness.
We note that although DC-SSAT can maintain solution tree
structures during solving, it still lacks a complete procedure
to generate a full Skolem-function witness.

In this paper, a new SSAT solver, named SharpSSAT, is
developed based on the model counter SharpSAT (Thur-
ley 2006). Different from Prime, in addition to compo-
nent analysis and caching, SharpSSAT further combines
clause learning and pure literal detection. To bridge the
gap between SSAT solving and witness genreration, we
propose two different witness generation algorithms under
SharpSSAT and ClauSSat. To the best of our knowl-
edge, it is the first time that witness generation is supported
for SSAT solvers. Experiments on various benchmarks show
the superiority in performance SharpSSAT to state-of-
the-art solvers, including DC-SSAT, Prime, ClauSSat,
and ElimSSAT. The witness generation overhead and
witness quality are compared between SharpSSAT and
ClauSSat. The results suggest that SharpSSAT can gen-
erate more compact strategies with less run-time but more
memory overhead than ClauSSat.

The rest of this paper is organized as follows. The required
preliminaries are provided in Section 2 The SSAT solving
and witness generation algorithms of SharpSSAT are de-
tailed in Section 3 and Section 4, respectively. Section 5
elaborates the witness generation algorithm for ClauSSat.
Section 6 evaluates SharpSSAT with experimental results.
Section 7 concludes this work and outline some future work.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

3949

2 Preliminaries
We use the symbols “⊤” and “⊥” to represent Boolean val-
ues TRUE and FALSE, respectively. Symbols “¬,” “∨,” “∧,”
and “≡” denote Boolean connectives negation, disjunction,
conjunction, and equivalence, respectively. For brevity, in a
formula, a conjunction ∧ is sometimes omitted, and a nega-
tion is sometimes denoted with an overline. A literal l of a
variable x is either a positive-phase literal x or a negative-
phase literal ¬x. We denote the variable corresponding to l
by var(l). A clause is a disjunction of literals. A cube is a
conjunction of literals. A Boolean formula f is in the con-
junctive normal form (CNF) if it is a conjunction of a set
clauses.

For a CNF formula ϕ, we use Vars(ϕ) and Cls(ϕ) to de-
note the set of variables and clauses appear in f . A Boolean
function f over variables X is a mapping f : B|X| → B.
An assignment τ is a mapping τ : X → B. The induced
formula over an assignment τ , denoted as f |τ , is obtained
by replacing each variable with its value mapped by τ . The
onset of a Boolean function f , denoted as f+, is the set of
assignments {τ | f |τ = ⊤}. The offset of f , denoted as f−,
is the set of assignments {τ | f |τ = ⊥}.

Model Counting
Given a CNF formula ϕ, the unweighted model counting
problem is to find the number of satisfying assignments of
ϕ, denoted as #(ϕ). The weighted model counting problem
can be easily extended from the unweighted model counting
by assigning each literal a weight. The weight of an assign-
ment is the product of the weight of the literals that appear
in the assignment. The weighted model counting is to find
the summation of the weight of the assignments.

Stochastic Boolean Satisfiability
An SSAT formula Φ over variablesX = X1∪X2∪· · ·∪Xn

with Xi ̸= ∅ and Xi ∩ Xj = ∅ for i ̸= j and i, j ∈
{1, · · · , n}, can be expressed in the prenex conjunctive nor-
mal form (PCNF)

Q1X1, · · · , QnXn.φ (1)

where Q1X1, · · · , QnXn is called the prefix, for Qi ∈
{∃,

R

} being either an existential quantifier ∃ or a random-
ized quantifier

R

, and φ being a CNF formula is called
the matrix. The quantification level of a variable x, de-
noted by qlev(x), is i if x ∈ Xi. We refer to the set
X∃ = {x ∈ Xi |Qi = ∃} as the existential variables and the
set X R= {x ∈ Xi |Qi =

R

} as the randomized variables.
When a variable x is quantified by randomized quantifierRpx , it means that x is assigned to ⊤ (resp. ⊥) with proba-
bility px (resp. 1 − px). Given a variable x at the outermost
quantifier, the satisfying probability of the SSAT formula Φ
is computed by the following rules.

1. Pr[⊤] = 1,
2. Pr[⊥] = 0,
3. Pr[Φ] = max{ Pr[Φ|¬x], Pr[Φ|x] } if x ∈ X∃,
4. Pr[Φ] = (1− px) Pr[Φ|¬x] + px Pr[Φ|x] if x ∈ X R

In solving an SSAT formula, we aim to compute its max-
imum satisfying probability. On the other hand, for witness
generation, the objective is to derive Skolem functions for the
existential variables to attain the claimed satisfying proba-
bility. Formally, given an SSAT formula Φ in the form of
Eq. (1), we say the set of Skolem functions F = {fx |x ∈
X∃}, for fx depending on the set of randomized variables
Yx = {y | y ∈ X R, qlev(y) < qlev(x)}, is a witness for
probability p if the SSAT formula Φ′ obtained from Φ by
substituting each existential variable x in the matrix of Φ
with fx has satisfying probability Pr[Φ′] = p.

Example 1. Consider the SSAT formula

R0.4x1, ∃y1,

R0.3x2, ∃y2.
(ȳ1 ∨ x1)(y1 ∨ x̄1)︸ ︷︷ ︸

y1≡x1

(ȳ2 ∨ x1)(ȳ2 ∨ x̄2)(y2 ∨ x̄1 ∨ x2)︸ ︷︷ ︸
y2≡(x1∧x̄2)

.

The Skolem functions F = {fy1
(x1) = ⊤, fy2

(x1, x2) =
x1∧ x̄2} is a witness for probability 0.4 since by substituting
y1 with⊤ and y2 with x1∧ x̄2, the matrix becomes (x1), and
Pr[

R0.4x1. (x1)] = 0.4. We note that, in fact, the maximum
satisfying probability of this formula is 1.

For an SSAT formula Φ, a witness is associated with a
probability p. Because p is not necessarily equal to the max-
imum satisfying probability Pr[Φ], a witness may not be
strong enough to certify the maximum satisfying probability.
However, it certifies a lower bound of Pr[Φ]. In this work,
when a solver concludes a probability p for an SSAT for-
mula, we are concerned with deriving the witness for the
claimed probability p.

3 SSAT Solving via Component Analysis and
Clause Learning

We demonstrate the SSAT solving algorithm incorporating
advanced model counting techniques as shown in Algo-
rithm 1. The algorithm differs from Prime (Salmon and
Poupart 2019) in the highlighted lines. Algorithm 1 takes
an SSAT formula Φ as input and returns the satisfying prob-
ability pret. It starts with a Boolean constraint propagation
on the formula in Line 1. After that, it decomposes the cur-
rent formula into several sub-components in Line 2. For each
sub-component Φi, it first checks if the component is in the
cache. If the current component is in the cache, it will up-
date pret with the cached probability and continue to the
next component. Otherwise, it chooses a branching literal
x that appears in Φi and then performs constant propaga-
tion to simplify the positive cofactor Φi|x and the negative
cofactor Φi|¬x. In Lines 11 and 12, it recursively calls the
procedure to get the satisfying probabilities, p0 and p1, of
the two branches. According to the quantifier of the branch-
ing literal, it concludes that the satisfying probability of Φi

is either the maximum or weighted sum of p0 and p1. Upon
solving the probability of Φi, it updates the return probabil-
ity pret accordingly. When all the sub-components are pro-
cessed, it adds the cache entry (Φ, pret) to the cache to avoid
re-computation.

3950

Algorithm 1: solveSSAT
Input: An SSAT formula Φ
Output: satisfying probability pret

1: bcp(Φ)
2: componentAnalysis(Φ)
3: pureElimination(Φ)
4: pret ← 1
5: for Φi ∈ Components(Φ) do
6: p← 0
7: if inCache(Φi) then
8: pret ← pret· getProbFromCache(Φi)
9: continue

10: x← chooseBranchLit(Φi)
11: p0 ← solveSSAT(Φi|x)
12: p1 ← solveSSAT(Φi|¬x)
13: if x ∈ X∃ then
14: p← max(p0, p1)
15: else
16: p← Pr[x] · p0 + Pr[¬x] · p1
17: if p = 0 then
18: removePollutedCache(Φi)
19: addLearnedClause()
20: pret ← 0
21: break
22: pret ← pret · p
23: addToCache(Φ, pret)
24: return pret

Component Analysis and Caching
Component analysis is a technique that is widely used
in search-based model counter (Thurley 2006; Sang et al.
2004). It sees a formula Φ as a connectivity graph and ap-
plies breadth-first search to identify connected components,
say Φ1,Φ2, . . . ,Φn, such that Vars(Φi) ∩ Vars(Φj) = ∅.
Then the model count #(Φ) of Φ equals the products of the
model counts of its components, i.e.,

#(Φ) =
n∏

i=1

#(Φi). (2)

Salmon and Poupart observe that such a property also holds
in SSAT:

Theorem 1. Given an SSAT formula Φ in the form of
Eq. (1), if φ = φ1 ∧ φ2 ∧ · · · ∧ φk such that Vars(φi) ∩
Vars(φj) = ∅, and let Φi = Q1X1 · · ·QnXn, φi, then
Pr[Φ] =

∏k
i=1 Pr[Φi].

Hence, by Theorem 1, we can solve the original SSAT
formula Φ by decomposing it into smaller sub-components
Φ1,Φ2, · · · ,Φn and solve each of them independently.

Caching is another technique that records the previously
solved sub-problems to avoid solving the same sub-problem
repetitively (Sang et al. 2004). It has been shown that dif-
ferent coding of the component will significantly affect the
cache miss rate and memory usage (Thurley 2006). In our
implementation, we use the hybrid-coding scheme proposed
in (Thurley 2006).

Clause Learning
Clause learning records the conflict information as a
learned clause to effectively prune the UNSAT search space
(Marques-Silva and Sakallah 1999). Adding learned clauses
to the original formula can strengthen the power of Boolean
constraint propagation. In SharpSSAT, the learned clause
would be added to the matrix of the SSAT formula when-
ever a conflict occurs. However, as pointed out by (Sang
et al. 2004), we may cache some components with the wrong
model count when encountering an UNSAT component in
model counting. The same problem occurs in SSAT solv-
ing. Therefore, when a sub-component Φi is UNSAT, all the
cached sub-components derived from Φ1 to Φi−1 need to be
removed from the cache. In Algorithm 1, the function re-
movePollutedCache does this job in Line 18.

Pure Literal Detection
A literal l is called pure in the formula Φ if l appears in
Φ but not ¬l. If l is pure and var(l) ∈ X∃, we can im-
mediately assign l to ⊤ and eliminate all the clauses con-
taining l, called the occurrence clauses. In QBF solving, the
detection of pure literal is commonly implemented using a
clause-watching data structure (Gent et al. 2003) as it does
not need to be updated during backtrack. In SharpSSAT,
we observe that pure literals can be detected during compo-
nent analysis since all literals appearing in the formula will
be visited once without the clause-watching data structure.
Although more pure literals may appear and can be detected
by iteratively applying component analysis after eliminat-
ing the clauses involving a detected pure literal, the extra
component analysis steps can be too costly. Therefore, we
implement the detection and elimination in one pass. Empir-
ical results show that such implementation is still effective
and introduces little run-time overhead.

Early Return at Existential Quantifier
With the component analysis scheme, the update of satis-
fying probability is monotonically decreasing since pret is
multiplied by a probability, which is smaller than 1, in ev-
ery sub-component iteration (Line 22 in Algorithm 1). Since
at existential quantifier the returned probability is the max-
imum among the two branches, given the probability of the
first branch Pr[Φ|¬v], whenever an update makes the prob-
ability of the current branch pret ≤ Pr[Φ|¬v], SharpSSAT
will immediately conclude Pr[Φ] = Pr[Φ|¬v] without solv-
ing the remaining sub-components.
Example 2. Consider the SSAT formula Φ:

R0.4x1,

R0.5x2, x3, ∃y1, y2, y3,

R0.6x4.
(x1 ∨ ȳ1)(ȳ1 ∨ ȳ2 ∨ y3)(y1 ∨ ȳ2 ∨ x̄4)(ȳ2 ∨ ȳ3)
(y2 ∨ y3 ∨ x̄4)(y3 ∨ x4)(x2 ∨ x3),

Algorithm 1 starts from the x1 branch. Φ|x1 is then de-
composed into Φ1 = (ȳ1 ∨ ȳ2 ∨ y3)(y1 ∨ ȳ2 ∨ x̄4)(ȳ2 ∨
ȳ3)(y2 ∨ y3 ∨ x̄4)(y3 ∨ x4) and Φ2 = (x2 ∨ x3). Now Φ1 is
solved first. At the ȳ1y2 branch, since Φ1|ȳ1y2 is UNSAT, a
learned clause (y1 ∨ ȳ2) is added to the matrix. At the ȳ1ȳ2
branch, where Φ1|ȳ1ȳ2

= (y3∨ x̄4)(y3∨x4), literal y3 is de-
tected as pure and Pr[Φ1|ȳ1ȳ2

] is concluded to be 1. Since y2

3951

is existential, Pr[Φ1|ȳ1]= max(0, 1) = 1. As Pr[Φ1|ȳ1]= 1,
Pr[Φ1] is directly concluded to be 1 without solving Φ1|y1 .
Similarly, Pr[Φ2] is valuated to 0.75 and Pr[Φx1]= 1 ·
0.75 = 0.75. Algorithm 1 then explores the x̄1 branch,
where Φ|x̄1

= (y3 ∨ x̄4)(y3 ∨ x4)(x2 ∨ x3). After a com-
ponent analysis, two cache hits occur for (y3 ∨ x̄4)(y3 ∨x4)
and (x2∨x3). Pr[Φx̄1

] equals 0.75. Since x1 is randomized,
the returned probability Pr[Φ]= 0.4·0.75+0.6·0.75 = 0.75.

4 SharpSSAT Witness Generation
In this section, we focus on witness generation for
SharpSSAT.

The algorithm for SharpSSAT witness generation pro-
ceeds in two phases: It first records a trace corresponding to
the solving steps and second constructs a Skolem-function
witness from the trace.

Trace Representation
A trace is represented as a single-source directed-acyclic
graph (DAG). Each node n corresponds to a formula n.f .
We use Parents(n) and Children(n) to denote the set of the
parents and children of n, respectively. A trace has two con-
stant sink nodes, the zero-node and the one-node with the
associated formula⊥ and⊤, respectively. On the other hand,
there are two different types of non-leaf nodes: the decision-
node and the and-node, which correspond to a branching
step and a component analysis step, respectively, during
SSAT solving. Each decision-node n is associated with a de-
cision variable n.v and has exactly two children, a positive
one and a negative one with respect to their parents n. Note
that for a non-root node, it can be a negative child of a par-
ent and, at the same time, a positive one of another parent.
For a decision-node n with its variable n.v, the formula of
its positive child and negative child are n.f |v and n.f |¬v ,
respectively, where n.f |v and n.f |¬v can be obtained from
n.f by constant propagation replacing variable n.v with ⊤
and ⊥, respectively. For each decision SharpSSAT made,
the corresponding decision-node and the existential literals
implied by BCP due to the decision are recorded for later
witness extraction. On the other hand, an and-node corre-
sponds to a component analysis step and can have one or
more children, each representing one sub-component.

Consider the case where an and-node n has exactly one
child, meaning that n.f itself is a connected component.
Such and-node is redundant as its formula is identical to its
child’s, and thus can be omitted by connecting its parents to
its child. Given an and-node n and its children Children(n),
the relationship of their corresponding formulas is

n.f =
∧

c∈Children(n)

c.f.

Also, the children of an and-node must be decision-nodes.
With the above definition, a trace can characterize the solv-
ing steps of the SharpSSAT procedure for witness extrac-
tion.
Example 3. Consider the SSAT formula in Example 2. The
resulting trace can be constructed as shown in Fig. 1. The

x1

Φ = (x1 ∨ ȳ1)(ȳ1 ∨ ȳ2 ∨ y3) (y1 ∨ ȳ2 ∨ x̄4)
(ȳ2 ∨ ȳ3)(y2 ∨ y3 ∨ x̄4)(y3 ∨ x4)(x2 ∨ x3)

AND

Φ|x1

y1Φ1

y2
(ȳ2 ∨ x̄4)(ȳ2 ∨ ȳ3)

(y2 ∨ y3 ∨ x̄4)(y3 ∨ x4)

x2

Φ2

AND

Φ|x̄1

x3

(x3)

y3 (y3 ∨ x̄4)(y3 ∨ x4)

zero one

Figure 1: The trace in Example 3

rectangular nodes are the constant sink nodes, the circular
nodes are decision-nodes, and the elliptic nodes are and-
nodes. We note that the multiple incoming edges of nodes x2
and y3 are due to caching. To support caching, we extend the
hybrid-code mentioned in the previous section with an extra
pointer pointing to the node representing the cached compo-
nent. When there is a cache hit, the trace can be updated by
adding an edge from the current node to the cached node.

Unfortunately, a naive implementation of the above-
mentioned trace becomes impractical regarding memory us-
age when a solving procedure includes hundreds of thou-
sands of decisions. In our implementation, we observe that
any and-node in the trace can be eliminated by directly con-
necting its parent to its child and marking these children
negative (positive) if this and-node is a negative (positive)
child of its parent. The resulting trace consists of decision-
nodes only. On the other hand, recall that the descendants
of the current node, corresponding to the current solving
steps, would be removed from the trace when the function
removePollutedCache is called. To reuse the memory occu-
pied by those removed nodes, we maintain a reference count
for each node and periodically free those nodes with zero
reference count.

Witness Extraction from Trace
Upon the solving procedure is completed, we then extract a
Skolem-function witness from the trace. The witness is con-
structed by traversing the trace once in topological order.
The procedure is shown in Algorithm 2. We assumed that the
Skolem function fx for each existential variable x is globally
accessible. For each node n, the formula n.τ is maintained to
characterize the precondition (in terms of randomized vari-
ables) when this decision is made. When a node n is visited,
its precondition is the disjunction over all the preconditions
of Parents(n) (Line 5). Suppose the decision variable x is
existential. In that case, it will update the Skolem functions
with λ by the function updteSkolemFunction shown in Algo-
rithm 3, according to the decision branch (n.maxBranch)
that leads to a greater satisfying probability and the implied

3952

Algorithm 2: extractStrategyFromTrace
Input: a trace
Output: {fx |x ∈ X∃}

1: for each node n ∈ trace do
2: n.τ ← ⊤
3: for x ∈ X∃ do
4: fx ← ⊥
5: for each node n ∈ trace in topological order do
6: x← n.v
7: λ←

∨
p∈Parents(n)

p.τ

8: if x ∈ X∃ then
9: if n.maxBranch = ⊤ then

10: L← exist. literals implied by x
11: updateSkolemFunction(L ∪ {x}, λ)
12: else
13: L← exist. literals implied by ¬x
14: updateSkolemFunction(L ∪ {¬x}, λ)
15: n.τ ← λ
16: else
17: for d ∈ Children(n) do
18: if d is positive then
19: λ← λ ∧ x
20: L← exist. literals implied by x
21: updateSkolemFunction(L, λ)
22: else
23: λ← λ ∧ ¬x
24: L← exist. literals implied by ¬x
25: updateSkolemFunction(L, λ)
26: d.τ ← λ
27: return {fx |x ∈ X∃}

Algorithm 3: updateSkolemFunction
Input: a set of literals L, the precondition λ
Output: void

1: for l ∈ L do
2: x← var(l)
3: if l is positive then
4: f+x ← f+x ∨ λ
5: else
6: f−x ← f−x ∨ λ
7: return

existential literals L. For the case when x is randomized, the
Skolem functions are constructed similarly, except that the
decision of x must be included in the precondition.

Proposition 1. Algorithm 2 generates a set of Skolem func-
tions as a witness to the satisfying probability p returned by
SharpSSAT.

The correctness of the proposition can be established by
induction on the structure of the trace. We consider Propo-
sition 1 on the associated formula of a node and process the
nodes in reverse topological order. The induction starts from
the base case, the decision nodes with two constant children.
The induction hypothesis assumes that the proposition holds
at the k-th visited node. Now we consider the k+1-th visited

node n. Where n.v is existential, the Skolem functions of its
descendants remain unchanged, while the Skolem function
of n.v is ⊤ or ⊥ depending on the decision that leads to a
greater probability. Otherwise, the Skolem functions of the
descendants of its positive child and negative child have to
be strengthened by conjunction with n.v or ¬n.v depending
on the decision branch. It can be checked that with this up-
date, the resulting Skolem functions are the same as those
generated by Algorithm 2. Finally, by induction, the propo-
sition holds in the last processed node, which is the only
source node in the trace.

5 ClauSSat Witness Generation
In addition to witnessing the probability returned by
SharpSSAT, we develop the witness generation algorithm
for ClauSSat. We first give some background about the
clause selection mechanism of ClauSsat before elaborat-
ing the witness generation procedure as follows.

Clause Selection
The solver ClauSSat (Chen, Huang, and Jiang 2021) ex-
tends the clause selection technique of quantified Boolean
formula (QBF) (Janota and Marques-Silva 2015) to SSAT.
It introduces local and global selection variables for each
clause to track the satisfaction of clauses in each quantifi-
cation level. We follow the notation used in (Chen, Huang,
and Jiang 2021). Given an SSAT formula of Eq. (1), where
φ = C1 ∧C2 ∧ · · · ∧Cn, the subclause of Ci with respect to
some quantification level j, denoted by C▷◁j

i , is the set of lit-
erals {l | l ∈ Ci, qlev(l) ▷◁ j}, where ▷◁ ∈ {<,>,≤,≥,=}.
In the sequel, the “=” inC=j

i is omitted asCj
i for simplicity.

The local selection variable and global selection variable
can be defined as follows.

Definition 5.1 (Local and global selection variable). The lo-
cal selection variable tji for clause Ci at quantification level
j is defined and constrained by

tji ≡
∧
¬Cj

i .

The global selection variable for clause Ci at quantification
level j is defined and constrained by

sji ≡
∧
¬C≤j

i .

A clause Ci is said to be locally selected (resp. locally de-
selected) at quantification level k if tkj is evaluated ⊤ (resp.
⊥). Similarly, a clause is said to be globally selected (resp.
globally deselected) at quantification level k if skj is evalu-
ated ⊤ (resp. ⊥).

The global selection variables describe the selection sta-
tus up to the current quantification level, i.e., which clauses
are already satisfied and which are not. The local selection
variables further characterize that the clauses are satisfied at
which quantification levels. The reader is referred to (Chen,
Huang, and Jiang 2021) for detailed information of clause
selection.

3953

Algorithm 4: solveSSAT-

R

(Chen, Huang, and Jiang 2021)
Input: Φ =

R

Xj · · ·QnXn.ϕ
Output: p : satisfying probability

1: p← 0
2: τ ← ∅
3: CL ← ∅
4: if j = n then
5: if SAT(ϕ) = ⊤ then
6: p← WeightedModelCount(

R

Xn.ϕ)
7: else
8: V ← ∅
9: ψj(X1, T1)←

∧
Ci∈ϕ

(tji ≡ ¬C1
i)

10: ψj+1(X2, T2)←
∧

Ci∈ϕ

(tj+1
i ≡ ¬C1

i)

11: while SAT(ψ1 = ⊤) do
12: τj ← the found model of ψj for Xj

13: (p, τj+1)← SolveSSAT-∃(Φ|τj)
14: τ ′j+1 ← MaximalPruning(ψj |τj , ψj+1, τj+1)
15: cTj

← PruneSelection(ψj |τj , ψj+1|τ ′
j+2

)

16: V.CollectProbabilitySelectionCubesPair(p, cTj)
17: CL ← ¬cTj

18: ψ1 ← ψ1 ∧ CL

19: if p = 0 then
20: AddLearntClausesToPriorLevels(CL)
21: else
22: ConstructWitness(CL, τj+1, j)
23: p← ComputeProbabiity(V)
24: return p

Algorithm 5: constructWitness
Input: CL, τmax, j
Output: {fx |x ∈ Xj+1}

1: λ← ¬CL

2: if j ≥ 1 then
3: λ← λ ∧

∧
sj−1
i =⊤

sj−1
i ∧

∧
sj−1
i =⊥

¬sj−1
i

4: for l ∈ τmax do
5: x← var(l)
6: if sign(l) then
7: f−x ← f−x ∨ λ
8: else
9: f+x ← f+x ∨ λ

10: return {fx |x ∈ Xj+1}

Witness Generation
Witness generation under ClauSSat is shown in Algo-

rithm 5. Algorithm 5 takes three arguments returned: the
learned clause CL, the maximum assignment τmax, and the
quantification level j. Considering an induced SSAT for-
mula

R

Xj∃Xj+1 · · ·QnXn.ϕ, Algorithm 5 is invoked by
SolveSSAT-

R

(Chen, Huang, and Jiang 2021) shown in Al-
gorithm 4 (line 22) at quantification level j whenever the
assignment τmax is returned by SolveSSAT-∃ (Chen, Huang,
and Jiang 2021). Under the clause selection framework, CL

consists of disjunctions of local selection literals. Several

pruning techniques are dedicated to improve the quality of
CL since the performance of ClauSSat largely depends
on the length of CL. Here we assume that CL is the fi-
nal learned clause strengthened by those techniques. Algo-
rithm 5 can be interpreted as follows. Given the global se-
lection status Sj−1 at level j − 1, the maximum probability
can be achieved by τmax, which is an assignment over Xj+1

under the assumption of the Boolean space blocked by CL.
By adding Sj−1 ∧ ¬CL into the onset/offset of the existen-
tial variables according to τmax, Algorithm 5 can correctly
construct the Skolem functions for Xj+1.

Proposition 2. ClauSSat with Algorithm 5 generates a
set of Skolem functions as a witness of the obtained satisfy-
ing probability.

The validity of Proposition 2 is explained as follows. To
generate the Skolem functions, Algorithm 5 has to ensure
that the Boolean space that the Skolem functions already de-
fined on must be the same as that explored by ClauSSat
during solving. For two-level SSAT formula with random-
exist prefix, ¬CL exactly characterizes the newly explored
Boolean space at the randomized quantification (Line 1). For
general SSAT formula, the Boolean space has to be strength-
ened by conjunction with the assumptions (the selection sta-
tus at the previous level, Sj−1) that lead to the current in-
duced formula as shown in line 3. With the newly explored
Boolean space λ, the onset or offset of the Skolem functions
can be updated by conjunction with λ (Lnes 6 – 9) according
to the phase of each literal appearing in τmax.

6 Experimental Evaluation
We implemented the SSAT solver, named SharpSSAT1 ,
in C++ based on the model counter SharpSAT (Thurley
2006). The witness generation algorithms were integrated
into SharpSSAT and ClauSSat. All experiments were
conducted on a Linux machine with 2.2GHz Intel Xeon
CPU and 128GB RAM. A time limit of 1000 seconds and a
64GB memory limit were imposed on solving an instance.

We compared our solver with the state-of-the-art SSAT
solvers DC-SSAT, ClauSSat, Prime, and ElimSSAT.
The benchmark set used in ClauSSat, with 20 families
in total of 357 SSAT instances available at https://github.
com/NTU-ALComLab/ClauSSat, was taken for evaluation.
Among the 20 families (listed in Table 1), 8 of them are two-
level quantified formulas (listed in the lower part of Table 1)
and the other 12 are multi-level quantified instances (listed
in the upper part of Table 1). The detailed descriptions and
statistics of the benchmarks are omitted and can be found
in (Chen, Huang, and Jiang 2021). Except for SharpSSAT,
we turned on all the optimization options for all the other
solvers. We let the default option of SharpSSAT con-
tain component analysis, caching, pure-literal detection, and
clause learning, and use -p and -l options to disable pure-
literal detection and disable clause learning, respectively.
The cactus plot of SharpSSAT and other solvers is shown
in Fig. 2.

1Available at https://github.com/NTU-ALComLab/SharpSSAT

3954

SharpSSAT
Prime DC-SSAT ClauSSat ElimSSATFamily total -pl -l default

tlc 13 13 13 13 13 13 13 13
gttt 3x3 9 9 9 9 9 9 9 0

ev-pr-4x4 7 7 7 7 4 0 1 1
arbiter 10 0 0 0 0 0 0 0
Tree 14 14 14 14 14 14 14 14

Robot 10 3 4 5 4 3 10 5
Planning-CTE 18 0 0 0 0 0 0 2

Counter 8 6 8 8 6 4 4 8
Connect2 16 16 16 16 9 16 11 2

Adder 6 4 5 5 5 4 5 4
k branch n 10 10 10 10 3 2 1 2

k ph p 4 4 4 4 3 3 2 4
conformant 24 2 2 3 2 2 1 6

Tiger 5 5 5 5 4 5 2 5
ToiletA 77 59 63 64 59 42 47 77

sand-castle 25 23 23 23 20 24 11 14
MaxCount 25 10 11 11 9 4 1 10

MPEC 8 4 4 4 4 4 1 8
PEC 8 3 4 4 3 0 3 7

stracomp 60 16 16 28 14 28 60 44
all 357 208 218 232 186 177 196 226

Table 1: Performance comparison in the number of solved instances.

Figure 2: Number of solved instances within run-time limit.

Evaluation of Solver Performance
In the first experiment, we examine the number of solved
instances in each family. The statistics are listed in Ta-
ble 1. The largest number of solved instances in each row
is marked in bold. By comparing SharpSSAT -p (solving
218 in total) with SharpSSAT -pl (solving 208), the ef-
fectiveness of clause learning is seen as it improves in solv-
ing several families. By comparing SharpSSAT (solving
232) with SharpSSAT -p, the effectiveness of pure-literal
detection is especially significant in family stracomp,
where there are several long clauses containing only one ran-
domized literal and other positive-phase existential literals,
and these clauses can be eliminated when the existential lit-

erals are detected as pure.
By comparing SharpSSAT with other DPLL-based

solvers, Prime and DC-SSAT, it is seen that SharpSSAT
solves the most instances in almost all families, except for
the sand-castle family. The superiority of SharpSSAT
to Prime is expected as Prime, which only applies
component analysis and caching, neglects the implication
power strengthened by clause learning. We also noticed
that Prime selects the branch-literal blindly, i.e., it always
chooses the first occurred literal in the component to branch.
This strategy might be one of the reasons to blame for
its sub-optimal performance as the design of the branch-
ing heuristic has a great impact on the performance of such
DPLL-based solvers (Sang, Beame, and Kautz 2005). On the
other hand, although DC-SSAT can deal with general SSAT
formulas, it is originally designed for probabilistic planning
problems. From the results, we see that SharpSSAT out-
performs DC-SSAT in those families that are not planning
problems. For the planning families, such as stracomp,
sand-castle, and Tiger, SharpSSAT exhibits quite
similar strength to DC-SSAT, suggesting that the decom-
posability of the planning problem exploited by DC-SSAT
can also be detected through component analysis.

Next, we compare SharpSSAT with the abstraction-
based solver ClauSSat. SharpSSAT can solve 75 cases
that are not solvable by ClauSSat and ClauSSat can
solve 38 cases that are not solvable by SharpSSAT. When
inspecting the number of solved instances in each family,
we noticed that SharpSSAT outperforms ClauSSat in
most families, while ClauSSat performs especially well
in the Robot and stracomp families, where both of them
consist of two-level formulas with the random-exist prefix.

3955

Configuration # solved
Random 215
VSIDS 232
VSADS 232

Table 2: Comparison of branching heuristics in SharpSSAT.

It is observed that when a component consists of only ex-
istential literals, called an existential component, the SSAT
problem of such components reduces to an SAT problem.
However, the current implementation of SharpSSAT is not
aware of such existential components, and it will insist on
component analysis instead, which might be too expensive
for an SAT problem. We believe that it would be helpful as
our future work for SharpSSAT to more efficiently solve
these random-exist formulas if the probability of existen-
tial components can be determined more effectively, e.g., by
conflict-driven-clause-learning (CDCL).

Lastly, we compare SharpSSAT with ElimSSAT. Note
that because ElimSSAT requires probability values repre-
sentable in binary fractions, it rewrites SSAT formulas to ap-
proximate probability values with four-bit precision by de-
fault. Therefore, the comparison is not on an equal footing
but for a reference. It can be seen that SharpSSAT per-
forms slightly better than ElimSSAT in the total number of
solved instances. When inspecting by family, we observed
that SharpSSAT outperforms ElimSSAT in most multi-
level quantified families and ElimSSAT solves more in-
stances in the two-level quantified families. The results sug-
gest that SharpSSAT and ElimSSAT exhibit different ca-
pabilities in solving multi-level and two-level quantified for-
mulas.

Evaluation of SharpSSAT Branching Heuristics

Since SharpSSAT is a DPLL-based solver, the branching
heuristics are critical to its performance. In this experiment,
we empirically study the effectiveness of different branching
heuristics on SSAT solving. The default branching heuristics
of SharpSSAT is the variable state aware decaying sum
(VSADS) (Sang, Beame, and Kautz 2005) that the score for
each variable is calculated by

score(VSADS) = p · score(VSIDS) + q · score(DLCS),

where p and q are constants weighting the scores of VSIDS
variable state independent decaying sum (VSIDS) (Maha-
jan, Fu, and Malik 2004) and dynamic largest combined
sum (DLCS) (Sang, Beame, and Kautz 2005). The score
functions of different heuristics can be found in (Sang,
Beame, and Kautz 2005). We tested SharpSSAT with dif-
ferent configurations of branching strategies, namely Ran-
dom (p = 0, q = 0), VSIDS (p = 1, q = 0), and VSADS
(p = 1, q = 1). The results are reported in Table 2. From
Table 2, we observe that the branching heuristics can indeed
play a significant role in SSAT solving by comparing Ran-
dom with VSIDS. On the other hand, we see no significant
impact of the DLCS score on SSAT solving.

Figure 3: Witness size comparison in text file size.

Evaluation of Witness Generation
In this experiment, we evaluate the overhead of witness
generation under SharpSSAT and ClauSSAT and the
quality of the generated witnesses. For both solvers, the
generated witness circuits are written in the BLIF for-
mat (Sentovich et al. 1992). Let -k denote the wit-
ness generation option. SharpSSAT -k solved all the
instances solved by SharpSSAT while ClauSSat -k
solved 10 less instances than ClauSSat. For memory us-
age, SharpSSAT -k typically consumed twice the mem-
ory used by SharpSSAT while ClauSSat -k remained
the same as ClauSSat. We further verify each instance
using Cachet (Sang et al. 2004) under a time limit of
300 seconds. For SharpSSAT -k (resp. ClauSSat -k),
3 (resp. 21) out of the solved instances cannot be verified
within this time limit.

To evaluate the quality of the witness, we synthesized
the generated witness into AIG using ABC (Brayton and
Mishchenko 2010). The synthesized witness is further op-
timized with the ABC command dc2. The witness compari-
son in the BLIF file size and the synthesized AIG size are
shown in Fig. 3 and Fig. 4, respectively. In Fig. 3 (resp.
Fig. 4), the horizontal and vertical 107 (resp. 108) lines cor-
respond to timeouts for SharpSSAT and ClauSSat, re-
spectively.

The horizontal axis corresponds to the file size (in KB)
or the AIG size (in AIG node count) of the witness gener-
ated by ClauSSat -k, and the vertical axis corresponds
to those generated by SharpSSAT -k. As can be seen,
in both figures, most of the spots lie in the bottom right
half-plane, suggesting that SharpSSAT-k tends to produce
smaller witnesses in most cases.

In summary, SharpSSAT -k incurs very little run-
time overhead and tends to generate a witness with higher
quality when compared to ClauSSat -k. On the other
hand, the memory usage of SharpSSAT -k is higher than

3956

Figure 4: Witness size comparison in AIG node count.

ClauSSat -k. This is not surprising since the strategy of
ClauSSat -k and SharpSSAT -k are pretty different.
The witness construction of ClauSSat -k is bottom-up
while SharpSSAT-k is more like a top-down approach.
Therefore, SharpSSAT -k can easily prune irrelevant in-
formation, such as the smaller branch of existential vari-
able, while ClauSSat -k can not. We observed that the
redundancy in the witness generated by ClauSSat -k is
the reason why the AIG synthesis step closes the gap be-
tween SharpSSAt -k and ClauSSat -k when com-
paring Fig. 3 with Fig. 4, as the synthesis step may ex-
ploit the redundancy and then produce a smaller witness.
Such difference also leads to the trade-off between run-time
and memory. In order to have global information of wit-
ness, SharpSSAT maintains a trace until the end of solv-
ing, which may significantly increase the memory usage. On
the other hand, with the trace, SharpSSAT can efficiently
construct the witness by traversing the trace once.

7 Conclusions and Future Work
In this work, we have implemented SharpSSAT, a
new SSAT solver extending model counting techniques
to SSAT solving. Also, we have equipped SharpSSAT
and ClauSSat with witness generation capability. Ex-
perimental results have demonstrated the superiority of
SharpSSAT compared to state-of-the-art SSAT solvers.

For future work, we plan to further improve SharpSSAT
with existential component detection and explore tech-
niques in knowledge compilation (Darwiche 2004) to benefit
SharpSSAT.

Acknowledgements
The authors are grateful to Ricardo Salmon for his technical
assistance about using Prime. This work was supported in
part by the National Science and Technology Council of Tai-

wan under Grant 111-2221-E-002-182 and Grant 111-2923-
E-002-013-MY3.

References
Brayton, R.; and Mishchenko, A. 2010. ABC: An Aca-
demic Industrial-Strength Verification Tool. In Proceedings
of International Conference on Computer Aided Verification
(CAV), 24–40.
Chen, P.-W.; Huang, Y.-C.; and Jiang, J.-H. R. 2021. A
Sharp Leap from Quantified Boolean Formula to Stochastic
Boolean Satisfiability Solving. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 3697–3706.
Darwiche, A. 2004. New Advances in Compiling CNF
to Decomposable Negation Normal Form. In Proceedings
of European Conference on Artificial Intelligence (ECAI),
328–332.
Freudenthal, E.; and Karamcheti, V. 2003. QTM: Trust
Management with Quantified Stochastic Attributes. Tech-
nical Report TR 2003-848, CS Department, New York Uni-
versity.
Gent, I.; Giunchiglia, E.; Narizzano, M.; Rowley, A.; and
Tacchella, A. 2003. Watched Data Structures for QBF
Solvers. In Proceedings of International Conference on The-
ory and Applications of Satisfiability Testing (SAT), 25–36.
Ghosh, B.; Basu, D.; and Meel, K. S. 2021. Justicia: A
Stochastic SAT Approach to Formally Verify Fairness. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), 7554–7563.
Janota, M.; and Marques-Silva, J. 2015. Solving QBF by
Clause Selection. In Proceedings of International Joint Con-
ference on Artificial Intelligence (IJCAI), 325–331.
Lee, N.-Z.; and Jiang, J.-H. R. 2018. Towards Formal Eval-
uation and Verification of Probabilistic Design. IEEE Trans-
actions on Computers (TCOMP), 67(8): 1202–1216.
Littman, M. L.; Majercik, S. M.; and Pitassi, T. 2001.
Stochastic Boolean Satisfiability. Journal of Automated Rea-
soning (JAR), 27(3): 251–296.
Mahajan, Y. S.; Fu, Z.; and Malik, S. 2004. Zchaff2004: An
Efficient SAT Solver. In Proceedings of International Con-
ference on Theory and Applications of Satisfiability Testing
(SAT), 360–375.
Majercik, S. M.; and Boots, B. 2005. DC-SSAT: A Divide-
and-Conquer Approach to Solving Stochastic Satisfiability
Problems Efficiently. In Proceedings of National Confer-
ence on Artificial Intelligence (AAAI), 416–422.
Marques-Silva, J. P.; and Sakallah, K. A. 1999. GRASP:
A Search Algorithm for Propositional Satisfiability. IEEE
Transactions on Computers (TCOMP), 48(5): 506–521.
Salmon, R.; and Poupart, P. 2019. On the Relationship
between Stochastic Satisfiability and Partially Observable
Markov Decision Processes. In Proceedings of the Confer-
ence on Uncertainty in Artificial Intelligence (UAI), 1–407.
Sang, T.; Bacchus, F.; Beame, P.; Kautz, H. A.; and Pitassi,
T. 2004. Combining Component Caching and Clause Learn-
ing for Effective Model Counting. In Proceedings of Inter-
national Conference on Theory and Applications of Satisfi-
ability Testing (SAT), 20–28.

3957

Sang, T.; Beame, P.; and Kautz, H. 2005. Heuristics for
Fast Exact Model Counting. In Proceedings of Interna-
tional Conference on Theory and Applications of Satisfia-
bility Testing (SAT), 226–240.
Sentovich, E.; Singh, K.; Lavagno, L.; Moon, C.; Murgai,
R.; Saldanha, A.; Savoj, H.; Stephan, P.; Brayton, R. K.;
and Sangiovanni-Vincentelli, A. L. 1992. SIS: A Sys-
tem for Sequential Circuit Synthesis. Technical Report
UCB/ERL M92/41, EECS Department, University of Cal-
ifornia, Berkeley.
Thurley, M. 2006. sharpSAT–Counting Models with Ad-
vanced Component Caching and Implicit BCP. In Proceed-
ings of International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT), 424–429.
Wang, H.-R.; Tu, K.-H.; Jiang, J.-H. R.; and Scholl, C. 2022.
Quantifier Elimination in Stochastic Boolean Satisfiability.
In Proceedings of International Conference on Theory and
Applications of Satisfiability Testing (SAT), 1–17.

3958

