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Abstract

A central computational problem in the realm of automata
theory is the problem of determining whether a finite automa-
ton A has a synchronizing word. This problem has found ap-
plications in a variety of subfields of artificial intelligence,
including planning, robotics, and multi-agent systems. In this
work, we study this problem within the framework of diver-
sity of solutions, an up-and-coming trend in the field of arti-
ficial intelligence where the goal is to compute a set of solu-
tions that are sufficiently distinct from one another.

We define a notion of diversity of solutions that is suitable
for contexts were solutions are strings that may have distinct
lengths. Using our notion of diversity, we show that for each
fixed r € N, each fixed finite automaton A, and each finite
automaton B given at the input, the problem of determining
the existence of a diverse set {w1,wa,...,wr} C L(B) of
words that are synchronizing for A can be solved in polyno-
mial time. Finally, we generalize this result to the realm of
conformant planning, where the goal is to devise plans that
achieve a goal irrespectively of initial conditions and of non-
determinism that may occur during their execution.

1 Introduction

A word w is said to be synchronizing for a determinis-
tic finite automaton (DFA) A if there is some state ¢ of
A such that any state ¢’ is sent to ¢ by w. This concept
has found numerous applications across several subfields
of computer science and artificial intelligence, such as cir-
cuit testing (Hennie 1964; Kohavi and Jha 2009; Sandberg
2005), multi-agent systems (Chapman and Mesbahi 2014;
Chevalier, Hendrickx, and Jungers 2015), robotics (Natara-
jan 1986), game theory (Maubert 2009), among others.

The most central problem in the field of synchronization
is the one to determine whether a given DFA has a synchro-
nizing word. Note that this problem can be decided in poly-
nomial time (Starke 1966). Nevertheless, in several applica-
tions, one is interested in finding a synchronizing word satis-
fying certain additional constraints (Fernau et al. 2019; Wolf
2020; Tiirker and Yenigiin 2015). Here, the complexity land-
scape of the problem changes drastically: even the problem
of determining the existence of a synchronizing word sat-
isfying certain additional regularity constraints is NP-hard.
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For instance, it is NP-hard to determine whether a given
DFA A has a synchronizing word that belongs to the reg-
ular language ab*a (Fernau et al. 2019), or whose length is
bounded by a given integer (Rystsov 1980; Eppstein 1990).
Diversity of solutions is a trend that has been calling
substantial attention of the artificial intelligence community
during the past years (Hebrard et al. 2005; Baste et al. 2019;
Petit and Trapp 2019; Baste et al. 2020; Fomin et al. 2020;
Ingmar et al. 2020; Arrighi et al. 2021). The goal is to find
not a single solution to a given combinatorial problem, but
rather a small set of solutions being sufficiently diverse from
each other. One of the motivations for this framework is that
it can be applied in situations where certain side constraints
are difficult, or even impossible to formalize. In this case,
the user can select a solution that she deems to be best for
her application at hand. Intuitively, the diversity requirement
tells us that the solutions that are given as an output are a rea-
sonable representative of the space of solutions.! Also, small
sets of solutions make sense because one does not want to
overwhelm the user with an excessive number of solutions.
While for many combinatorial problems, notions of solu-
tion diversity based on the Hamming distance between pairs
of solutions are sufficient, in the context of synchronization,
these notions are not so appropriate. First, distinct solutions
may have distinct length, and it is not clear how positions
should be aligned in order to define an appropriate notion of
Hamming distance. Additionally, even strings of the same
size that are very similar to each other may have very large
Hamming distance. For instance, the Hamming distance be-
tween the string w = abab...ab = (ab)™ and the string
w’ = baba...ba = (ba)™ is 2n, while w can be transformed
into w’ with two modifications: first delete the first symbol
of w and then append the symbol a to the resulting string.
We circumvent this issue by basing our diversity measure
on the notion of string edit distance (Wagner and Fischer
1974; Levenshtein 1966). This is a well studied metric for
strings with nice properties and applications in a wide va-
riety of fields (Bunke and Csirik 1995; Lyras, Sgarbas, and
Fakotakis 2007; Chua, Marsland, and Guesgen 2011).
Another issue is that sets of solutions in which any two of
them are far apart from each other may still not capture solu-
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tion diversity in the context of synchronization. The problem
is that if w is a synchronizing word, then any superword of w
is also synchronizing. Therefore, any sequence of super-
words wy, ws, ..., wy of w of substantially distinct lengths
would have large diversity if only edit distance were taken
into consideration. To circumvent this issue, we require that
each word in the set of solutions is subsequence-minimal
with respect to the synchronization requirement. The sub-
sequence minimality requirement combined with edit dis-
tance not only guarantees that solutions in any given sub-
set are genuinely distinct, but also provides a way of tack-
ling diverse synchronization problems using the machin-
ery of finite automata theory. On the one hand, Higman’s
lemma (Higman 1952) (see Lemma 6), a classical tool in au-
tomata theory, implies that the set of subsequence-minimal
synchronizing words in the language of an automaton is al-
ways finite. On the other hand, the computation of the edit
distance between two words is a process that can be simu-
lated using finite automata. More specifically, it is possible
to construct finite automata accepting a suitable encoding of
pairs of words that are far apart from each other.

Note that subsequence-minimal synchronization prob-
lems involving a single DFA A are already hard. First,
subsequence-minimal synchronizing words for a DFA A
may have exponential length on the number of states of A
(Proposition 20). Second, determining if a given word w
is subsequence-minimal among all synchronizing words in
the language of a DFA A is cONP-hard (Theorem 19).
Third, determining if a DFA A has two distinct subsequence-
minimal synchronizing words is NP-hard (Theorem 23). Fi-
nally, the problem of enumerating the set of subsequence-
minimal synchronizing words is #P-hard (Theorem 24).

In order to cope with the inherent intractability of syn-
chronization problems, we leverage on the framework of pa-
rameterized complexity theory (Downey and Fellows 1999).
In particular, we show that for each fixed value of r, inter-
esting computational problems requiring a diverse set with r
subsequence-minimal synchronizing words can be solved in
time that is fixed-parameter tractable with respect to the size
of the synchronizing automaton A. Previously, algorithms
with an FPT dependence in |A| were unknown even for
r = 2! Using our approach, we also show that given a
DFA A with state set (Q over an alphabet > and a word
w € Y¥*, one can determine in time O(f(|X],|Q]) - |w|),
for some function f, if some subsequence-minimal synchro-
nizing word for A is a subsequence of w, and we can con-
struct such a subsequence in case the answer is affirmative
(Theorem 15). As mentioned above, the unparameterized
version of this problems is already CONP-hard. Our main
result (Theorem 16) states that given numbers r, k € N,
a DFA A, and an possibly nondeterministic finite automa-
ton B over an alphabet Y, the problem of computing a subset
{wi,...,w,} C L(B) of subsequence-minimal synchro-
nizing words for A, with pairwise edit distance of at least k,
can be solved in time O(f4(r, k) - |B|" log(|B])) for some
suitable function f depending only on A, r and k. Intuitively,
the automaton A is a specification of a system which we
want to synchronize (or reset), and B is a specification of
the set of words that are allowed to be used as synchronizing
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sequences. As stated in the beginning of this section, the un-
parameterized version of this problem is NP-hard even if we
are interested in finding a single solution and the language
of the automaton B is as simple as ab*a. As a consequence
of our main result, given a word w € X*, the problem of de-
termining whether there exist r subsequence-minimal syn-
chronizing words for A that are subsequences of w and that
are at least k apart from each other can be solved in time
O(fa(r, k) - |w|" log(|w|)) (Corollary 17).

It turns out that our notion of diversity of solutions is
general enough to be applied in other contexts where so-
lutions are strings whose sizes may have to vary. In partic-
ular, we generalize our framework to the realm of confor-
mant planning (Theorem 28), where the goal is to design
plans that achieve goals irrespectively of initial conditions
and of nondeterminism that may occur during the execution
of these plans (Anders 2019; Bonet 2010; Cimatti, Roveri,
and Bertoli 2004; Palacios and Geffner 2009).

Further Applications. In the full version of this work (see
https://doi.org/10.5281/zenodo.7384348), we discuss appli-
cations of our main results to several subdomains of artifi-
cial intelligence, such as multi-agent systems, robotics, se-
cret sharing, and others. The intuition is that synchronizing
words may be viewed as a way of resetting agents whose be-
havior are modeled by finite automata, while diversity may
be interpreted as a way of achieving resilience (if one syn-
chronizing word fails, we may still use another one), dis-
tributivity (multiple synchronizing words may be distributed
among distinct parties), or security (multiple synchronizing
words may be used to define secret-sharing protocols).

2 Preliminaries

Let N denote the set of non-negative integers, while N+ is
the set of positive integers. For an integer k£ € N, we denote
by [k] the set {1,2,...,k}. Hence, [0] = 0. Forn € N, X"
denotes the set of all words of length n. We denote X
Unen., X" and * = X+ U{e}, where ¢ denotes the empty
word. Hence, ¥* is the groundset of the free monoid gener-
ated by 3; its binary operation is known as concatenation,
often denoted by juxtaposition, but sometimes highlighted
by explicitly writing -. Given a word w € X*, we let |w|
denote the length of w. Foreach i € 1,. .., |w|, we let w[i]
denote the i-th symbol of w. For i,5 € 1,...,|w|, we let
wli..j] denote the infix wilw[i + 1] ... w[j].

A deterministic finite automaton (DFA) A is a tuple A =
(Q,%,9,q0, F), where @ is a finite set of states, 3 is a fi-
nite alphabet, §: @@ x X — (@ is a total function called
the transition function of A, qo € @ is the start state, and
F C @ is a set of final states. For synchronization prob-
lems, we sometimes omit start and final states of DFAs.
When speaking about the complexity of algorithms involv-
ing a DFA A, we sometimes use |A| to denote the num-
ber of bits needed to specify A; for convenience, let |A| =
|Q] |2| log(|Q]) (for DFAs). Often, | Q] is sufficient as a size
estimate. We generalize ¢ to words by setting d(g,&) = ¢
and 6(q,w) = 6(6(q, w[1]), w[2..]w|]). We further general-
ize § to sets of states S C @ and sets of input letters I' C .



as 0(S,T") = {d(s,v) | s € S,y € T}, or to words w as
§(S,w) = {d(s,w) | s € S}. We say aword w € ¥* isa
synchronizing word for A if |6(Q, w)| = 1.

We assume basic knowledge of automata theory on side
of the reader. In particular, the product automata construc-
tion for finite automata should be known. Also, we make use
of nondeterministic finite automata (or NFA for short) with-
out a precise formal definition. Recall that with NFAs, the
transition function is replaced by a transition relation 4. Due
to the well-known powerset automaton construction, we can
(still) view ¢ as mapping (S, w) to T, where S, T are sets of
states, and w is a word over the input alphabet.

We will discuss several partial orderings on X* now.
See (Birget 1993) for a review of these and other concepts.
In particular, x is a prefix of y, written x C y, if y € X,
x is a suffix of y if y € ¥*x and z is an infix of y, writ-
ten z =X y, if y € X*zX*. We say that x is a subsequence
of y, written x < y,2 if there exists a sequence of indices
i1 < iy < ... < |y such that for each j € [[z]], y;;, = ;.
If we add the word proper, we exclude the possibility that
x = y in each of the previous definitions. In our notations,
we then write [, <, or <, respectively. A non-empty word
x can be split into the prefix x[1] of length 1 and the suffix
of length |z| — 1 that we call (reminiscent of Prolog) the rail
of z, denoting it by tail(z). Hence, z = z[1]tail(x).

Let 3 be some alphabet not containing the symbol [J that
we will now use as a blank symbol. For k& € Ny , define
(Cu{OH** = (Su{OH*\{(@,...,0)} as a new al-
phabet with (|| + 1)* — 1 many symbols that we also call
compound characters, consisting of k letters. Of particular
importance will be the case £ = 2. For this, we now define
a specific construction, called convolution, that takes two
words u, v € ¥X* and constructs a unique word w = u ® v
over the alphabet (X U {{J})*?, in a recursive fashion as
follows.

ifu=v=c¢
£), ifu#ev=c¢
(0,v[1]) - (¢ @ tail(v)), ifu=cv+#e
(u[l],v[1]) - (tail(u) ® tail(v)), if u # e,v # ¢
For instance, the convolution of word v = ababa with v =
abb is the word u ® v = (a, a)(b,b)(a,b)(b,0)(a, D). This
operation can be generalized to the convolution of £ > 2
words in a straightforward manner.

&

wey — d (@[] D) - (tail(w) @

Lemma 1. The language of all words over the alphabet (XU
{O})** that can be obtained as the convolution of k words
over Y can be accepted by a DFA with 2F many states.

The previous construction can be integrated into the clas-
sical product automaton construction to give the following
result.

Corollary 2. Let A = (Q,%,6,qo, F) be a DFA. Let A"
be a DFA accepting the set of all strings of the form u; ®
Uy ® -+ - @ ug, where for eachl € [k], u; € L(A). Then, A
needs to have no more than (2|Q|)* many states. A similar
statement holds for NFAs.

2In the literature, the naming of these relations is rather con-
fusing. Infixes are known as factors or subwords, subsequences are
also called (scattered) subwords.
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3 Diversity in Synchronization

We will base our notion of diversity on the notion of edit
distance between strings, as it provides a suitable way of
measuring dissimilarity between strings with possibly dis-
tinct lengths. Let u u[l]u[2] ... u[n] be a string in X.
We define the following elementary edit operations on u;
see (Levenshtein 1966; Wagner and Fischer 1974).

1.

Insertion: for i € {0,...,n}, insert letter a € ¥ after

position 4, yielding u[1..7] a u[i + 1..n].

Deletion: fori € {1,...,n}, delete the entry u[i] from w,

resulting in u[l..s — 1] ufi + 1..n].

. Replacement: for i € {1,...,n}, replace u[i] with some
a € X\ {uld]}, getting u[l..i — 1] auli + 1..n].

We say that a string v € X* can be edited to a string
w € X* in s steps if there is some sequence ug, U1, ..., Us
of strings in ¥* such that for each j € [r|, u; is obtained
from u;_; by the application of one of the three elementary
edit operations above and u = ug, W = us.

Definition 3 (Edit Distance). The edit distance between u
and w, denoted by A(u,w), is defined as the minimum s
such that u can be edited to w in s steps.

2.

Intuitively, the edit distance between » and w is the mini-
mum number of insertions, deletions and replacements nec-
essary to transform u into w. By classical results, this dis-
tance (and related ones) can be computed efficiently; see
(Wagner and Fischer 1974; Wagner 1975).

As discussed in the introduction, each word containing a
synchronizing word as an infix is also synchronizing. Hence,
in order to get a diverse set of synchronizing words, we
need to demand minimality with respect to the subsequence
order.> A word w is a subsequence-minimal synchronizing
word for a DFA A if w is synchronizing for A and no proper
subsequence w’ of w is synchronizing for A. On the one
hand, one can ensure that the set of subsequence-minimal
synchronizing words for a DFA is finite (see Sec. 4). On the
other hand, subsequence minimality imposes a higher level
of dissimilarity between two words in a prospective sub-
set W of solutions, increasing the representativeness of 1.

Definition 4 (Synchronization Diversity). Letr A

(Q,X,0) be a DFA. We say that a set of words {wy, . .., w,}

has synchronization diversity k if the following holds.

1. Foreachi,j € {1,....,r} withi # j, A(w;,w;) > k.

2. For each i € {1,...,r}, w; is a subsequence-minimal
synchronizing word for A.

4 Subsequence Minimality

The next well-known lemma, whose proof can be found
in (Gruber, Holzer, and Kutrib 2007, Corollary 18), states
that, given an NFA A, one can construct a finite automaton
Subseq(A) accepting precisely the subsequences of words
in L(A). As shown in (Gruber, Holzer, and Kutrib 2007,
Lemma 19), this bound cannot be improved in general.

30One is tempted to require infix minimality instead, but as the
infix order is not a well-ordering, the set of infix-minimal synchro-
nizing words of an automaton can be infinite, which make it diffi-
cult to find good representatives for the space of solutions.



Lemma 5 (Subsequence Automaton). Let A = (Q,X,0)
be an NFA. One can construct in time O(|A]) an NFA
Subseq(A) with |Q| states with L(Subseq(A)) = {u
Jw € L(A), u < w}. If A has a trap state, Subseq(A) has
|Q| — 1 states.

A classic result in partial order theory, known as Higman’s
Lemma, states that for each finite set X, the set ¥* of fi-
nite words over X is well-ordered under the subsequence
order (Higman 1952). An interesting consequence of this
lemma is the fact that for each language L C X*, the set
of subsequence-minimal words in L is finite. For a more
language-theoretic treatment, refer to (Haines 1969).

Lemma 6 (Higman’s Lemma). Let ¥ be an alphabet and
L C ¥*. There is a unique finite set S C L satisfying the
following properties.

1. For each word w € L, some word w € S is a subse-
quence of w.
2. Each word u € S is subsequence-minimal for L.

It is worth noting that Lemma 6 holds with respect to any
language L C X*, irrespectively of whether L is regular or
not. Nevertheless, if we are given a DFA A accepting L, then
we can construct a DFA MinSubseq(A) accepting the set of
subsequence-minimal words for L.

Lemma 7 (Subsequence-Minimal Words, Theorem 2.1(3)
of (Birget 1993)). Let A = (Q,X, ) be a DFA. One can
construct in time O(2!9! . |A|) a DFA MinSubseq(A) with
at most |Q| - 2121 many states accepting the language
L(MinSubseq(A)) =
{v : we L(A) AVw € L(A),w £ u}.

Interestingly, the exponential blow-up in the number of
states of the input automaton A is unavoidable, even if one
allows MinSubset(A) to be an NFA. Here, we refer to Ex-
ample 3.18, Facts 3.19 and 3.20 in (Birget 1993).

The next lemma states that given an automaton A, one can
construct a DFA Sync(A) accepting precisely the words in
37* that are synchronizing for A. This is shown by using the
classical subset construction, now on a DFA A; see (Sand-
berg 2005; Volkov 2008).

Lemma 8 (Synchronizing Words). Let A = (Q,X,0) be a
DFA. One can construct in time O(2!?!-| A|) a DFA Sync(A)
with at most 219! states such that

L(Sync(A)) = {u :

This exponential blow-up is necessary, as recently
proven in (Hoffmann 2021). By combining Lemma 8 with
Lemma 7, we have the following corollary stating that, given
a DFA A, one can construct a DFA SyncMinSubseq(A)
of state complexity at most double-exponential in the state
complexity of A accepting the set of subsequence-minimal
synchronizing words for A. It is an interesting open question
if this double-exponential blow-up is necessary.

Corollary 9. Let A = (Q,%,8) be a DFA. One can con-
struct in time 0(22@‘ - 2l41) @ DFA SyncMinSubseq(A)
with at most 22/ +1Q| many states accepting the language
L(SyncMinSubseq(A)) ={u: uisa
subsequence-minimal synchronizing word for A}.

w is synchronizing for A}.
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5 Edit Distance vs Diversity of Solutions

In (Wagner and Fischer 1974), a dynamic-programming al-
gorithm is given that efficiently computes the edit distance
between two given strings. Edit distance questions are an ac-
tive area of study, as exemplified by (Bringmann et al. 2019).
Ignoring technicalities, the next lemma can be seen as an
automata-theoretic counterpart of such computations.

Lemma 10. Let 3 be an alphabet and k € N~ . There is an
NFA Edit < (X, k) with 20 %198 [21) many states that accepts

L(Edit<(2,k) = {u@w : A(u,w) <k} (1)

As a corollary of Lemma 10, by first determinizing the au-
tomaton of the previous lemma and then (basically) comple-
menting final states, plus checking (by a product automaton
construction) that words come from convolutions of words,
using Lemma 1, we get the following result.

Lemma 11. Let 3 be an alphabet and k € N+ . There is a

DFA Edit> (X, k) with 920 R D oy tes accepting
L(Edit= (2, k) = {fu®w : Alu,w) >k}, ()

Let W C X* be a finite set of strings. The min-diversity
of W, denoted by MinDiv(W) is defined as the minimum
edit distance among any pair of strings in W.

MinDiv(W) = mir%}v Au,w) 3)
u,we

Next, we state that given DFA A, one can construct a DFA
MinDiv(A, r, k) whose language is a suitable encoding of

all r-tuples of words from L(A) with diversity at least k.
Lemma 12. Let A = (Q, %, 0, qo, F') be DFA over . For
each v,k € NT, one can construct a DFA MinDiv(A4,r, k)
with 27720 D |Q|" many states for the language of all
compound words u1 ® -+ @ u, € (XU {O})*" that satisfy

Vi € [r](u; € L(A)) A MinDiv({uy,...,u.}) > k.

. 2 50 (klog |2)) .
Its construction takes O (2’" 2T \A|T) time.

Proof. Let ([g]) ={{i,5} : i,j € [r],i # j}. Foreach pair
{i,j} € ([g]), let Editfj(E, k) be the automaton that ac-
cepts all strings of the form u1 ®uo ®- - - ®@u, where for each
l€[r],u € £* and A(u;,u;) > k, based on Lemma 11.
Let A" be the automaton accepting the set of all strings of the
form u; ® ug ® - - - ® u, where foreach ! € [r], u; € L(A).
Then, MinDiv (A, r, k) can be defined as the automaton that
accepts the intersection of the languages L(A") with the lan-
guages L(EditZ; (%, k)) for {i, j} € (“]). This implies that
the number of states in MinDiv (A, r, k) is at most the prod-
uct of the number of states of A" with the number of states of
Editfj(Z7 k)) for {i,j} € (1)). According to Corollary 2,
the DFA A" has at most (2|Q|)” + 1 states. Its construc-
tion costs O(|A|") time. We claim below that one can define
Editiz’j(il7 k)) in such a way that it has at most 920k tos XD
states. As a consequence, one can construct MinDiv (A, r, k)
in such a way that it has 27°:2°""**"""". |Q|" states. Its con-

struction takes O(27 27" "**""" | A|") time.



Let p; Xk
each tuple (ai,as,..

— Y*2 be the map that sends

.,ar) to the pair (a;,a;). Then,
the automaton Editfj(E,k) can be defined as the au-
tomaton that accepts the inverse homomorphic image of
L(Edit=(%, k)) under p; ;. More specifically, the automa-
ton Editfj(E,k) is constructed from Edit= (X, k) by re-
placing each transition (g, (a,b),q") with the set of transi-
tions {(q, (a1,...,a,),q) (a1,...,a;) € X7 qa;
a, a; = b}. Note that since no new states are created, the
number of states in Editiz,j(Z, k) is equal to the number of

states in EditZ(E, k), that is, 920 (klox 1= (Lemma 11). O

6 Algorithmic Results

In this section, we state and prove our main results, starting
with two preparatory observations.

Proposition 13 (Single-Word Automaton). Let w € ¥* and
A(w) be the minimal deterministic finite automaton accept-
ing {w}. Then, A(w) has |w| + 2 states.

In combination with Lemma 5, we obtain the following.

Corollary 14. Let w € X*. Then, the NFA Subseq(A(w))
has |w| 4 1 states.

Let us move on to questions that are more directly related
to our discussions on diversity in synchronization. The next
algorithmic result is interesting, as we prove intractability of
the corresponding decision problem in Theorem 19 below.

Theorem 15. Let A = (Q, X, 6, qo, F') be a DFA. Given a
word w € X, one can determine in O(219! - |w| - (|A] +
log |w|)) time whether w has a subsequence that is synchro-
nizing for A. If yes, in time O(2/@!-|w|?- (| A| +1log |w])), or
alternatively, in time O(QQ‘Q‘ 2141w - log(|w))), one can
even construct a subsequence-minimal synchronizing word
for A that is a subsequence of w.

Proof. Let Subseq(A(w)) be the NFA of Corollary 14 with
|w| + 1 states accepting all subsequences of w. Let Sync(A)
be the automaton accepting all words that are synchro-
nizing for A. By Lemma 8, this DFA has O(2/9!) states
and can be constructed in time O(2/%!|A|). Then, w has
some subsequence that is synchronizing for A if and only
if L(Subseq(A(w))) N L(Sync(A)) # 0, a condition that
can be verified in time O(2!9!|w|(|A| + log|w|)) by first
constructing a product automaton (here, an NFA), and then
by performing a reachability test. In the same time bound,
we can find some u € L(Subseq(A(w))) N L(Sync(A)) Gf
it exists).

For the last part, suppose that the intersection above is
non-empty. Then, w also contains a subsequence-minimal
synchronizing word for A. Using Lemma 7, we can con-
struct an automaton MinSync(A) that accepts the language
of all synchronizing words of A that do not contain any sub-
sequence that is also synchronizing for A. This construc-

tion takes time O(22'°" - |Sync(A)|) = 0(22'°" - 2141). Ob-
serve that MinSync(A) has at most O(22|QI - 2@ states.

Hence, it is enough to output any word in the language
L(MinSync(A)) N L(Subseq(A(w))). Since MinSync(A)
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has O(QQ‘Q‘ - 21Q1) states and A(w) has |w| + 1 states, we
have that one can find a word in the intersection of the lan-
guages accepted by these automata in time 0(22‘@ -2lel.
|w]log([w])).

Alternatively, we can obtain an algorithm running in
time O(219! - |w|? - (|A] + log|w])) as follows. Above,
we described how to test whether L(Subseq(A(w))) N
L(Sync(A)) is non-empty. If the intersection is empty, then
w has no subsequence that is synchronizing for A. In the
other case, such a subsequence exists. Let wb = wll.i—
Hwli + 1..Jwl|]. If L(Subseq(A(w*?))) N L(Sync(A)) = 0
for every i € [|w]], then we know that w is a subsequence-
minimal synchronizing word for A. Otherwise, if this inter-
section is non-empty for some 4, we know that w*’ contains
a subsequence-minimal synchronizing word for A. We then
update w to w'*, and repeat the process described in this
paragraph. The algorithm runs in time O(2/%! - |w|? - (|A| +
log |w|)), since we need to delete at most |w| letters, and at
each deletion, one needs O(2!%!-|w|-(] A|+log |w])) steps to
determine if L(Subseq(A(w*?))) N L(Sync(A4)) #0. O

Next, we deal with the problem of finding a sufficiently
diverse set W of subsequence-minimal synchronizing words
for an automaton A that satisfy an additional constraint.
More specifically, we require that each word in W belongs
to the language of an automaton B given at the input. In this
setting, A may be regarded as the specification of a system
(say a robot) that interacts with an environment. Here, B
models the set of all sequences of actions that are legal in
the environment. The requirement W C L(B) ensures that
the synchronizing words under consideration correspond to
sequences of actions that are legal in the environment. Note
that it makes sense to assume that A is fixed (say, a robot of
a certain model), and that the environment may vary (e.g.,
the environment where the robot will be deployed). The next
theorem analyzes the computational complexity of this prob-
lem parameterized by the diversity parameters r and k. As
A is assumed to be fixed, in the statement of the theorem we
hide the dependencies on the DFA A in the function f 4.

Theorem 16. Let A = (Q,X,0) be a DFA and B
(Q,X,0,Q0, F') be an NFA. One can determine in time
O(fa(r,k)-1Q'|" log(|Q’))) if there is a set W C L(B) with
r strings such that each word in W' is subsequence-minimal
synchronizing for A and MinDiv(W) > k.

Proof. By combining Corollary 9 with Lemma 12, we can
construct a DFA A’ accepting the language of all compound
words u1 ® -+ ® u, € (X U {0})*" such that for each
i € [r], u; is a subsequence-minimal synchronizing word
for A, and MinDiv({u1,...,u,}) > k. The DFA A’ has
gr?-20s =D 91Q1 many states and can be constructed
in time 2727 0. (2191.]%]-|Q|)". Conversely, again by
an (r + 1)-fold product automaton construction, also using
Lemma 1 and Corollary 2, an NFA B’ with (2|Q’])" + 1
many states can be constructed that accepts the language

{u1 @ug - Qu, : Vi € [r](u; € L(B))}.

Checking if the product automaton C' of A’ and B’ ac-
cepts any compound words solves the proposed problem.



This final check takes time linear in the size of C, which
SO (2,{_2.(|Q|+2O(k»10g\2\)> ) |Q,|T log(IQ’|)) . O

The previous result can be viewed as a diversity result
concerning synchronization under regular constraints, intro-
duced in (Fernau et al. 2019). This variation of the classi-
cal synchronization theme comes with a constraint automa-
ton B; with L(B) = X*, we get back to the classical theme.

Furthermore, as a direct consequence of Theorem 16 and
Corollary 14 in combination with Lemma 5, we have that the
problem of finding a set of sufficiently diverse subsequences
of a word w that are subsequence-minimal synchronizing
words for A can be solved by an algorithm with an FPT
dependency on the parameters A (i.e., |Q| and |X|) and &
and an XP dependency on the parameter .

Corollary 17. Let A = (Q, %, 0) be a DFA and w be a word
in *. One can determine in time O(fa(r, k)-|w|" log(Jw]|))
whether there is a set W = {wy, ..., w,} of subsequences

of w such that each word in W is subsequence-minimal syn-
chronizing for A and MinDiv(W) > k.

7 Hardness Results

Below we show that the very problem of determining
whether a given word is subsequence-minimal synchroniz-
ing for a given DFA A is coNP-hard.

Definition 18 (MIN-SUBSEQUENCE-SW).

Given: DFA A = (Q, X, ) and w € ¥* synchronizing A.
Question: Is w a minimal synchronizing word with respect
to the subsequence order?

Theorem 19. MIN-SUBSEQUENCE-SW is coNP-
complete, even for DFAs over a binary input alphabet.

This hardness result (and even more the hardness result
for the counting class #P, our third main result of this sec-
tion below in Theorem 24) explains why we have to de-
velop exponential-time algorithms for the suggested diver-
sity problems. We prove the hardness by a reduction from
HITTING SET (Karp 1972) to the complementary problem
of MIN-SUBSEQUENCE-SW which asks for the existence
of a proper synchronizing subsequence of w.

Recall that above, in Theorem 15 we proved that MIN-
SUBSEQUENCE-SW, parameterized by the number of states
of the input DFA, belongs to FPT.

The following result explains also why the problems that
we consider are computationally hard ones. Note that in
the classical setting, length-minimal synchronizing words
(if existent at all) are of polynomial length only (Volkov
2008). Requiring subsequence-minimality instead of length-
minimality changes the picture drastically: with this prop-
erty, some synchronizing words can be exponentially long.

Proposition 20. Some subsequence-minimal synchronizing
words can be of exponential length, even for DFAs with a
ternary input alphabet.

For binary input alphabets, we do not have such an
example, giving an open question. For unary alphabets,
subsequence-minimality equals length-minimality: lengths
of shortest synchronizing words are polynomially bounded.
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Next, we define two further combinatorial questions,
which are in fact the central problems of our study. Above,
we showed some algorithmic results that can be viewed as
exponential-time algorithms for these problems. The fact
that these algorithms exceed polynomial time is (with hind-
sight) justified by the hardness results proved next.

Definition 21 (DIVERSITY-SYNC).

Given: DFA A = (Q), %, 6) and k € N, encoded in binary.
Question: Is there a set W {wi,wa,...,w.} of
subsequence-minimal synchronizing words for A such that
Dcici<r Alwi, wy) 2 k?

A natural variant of the problem above is obtained when
we ask for a set of subsequence-minimal synchronizing
words of some minimal cardinality and neglect the diversity
of the set. Note that subsequence-minimality already implies
that the words have a pairwise distance greater than one.

Definition 22 (CARD-SYNC).

Given: DFA A = (Q, X, §) and r € N, encoded in binary.
Question: Is there a set W {wy,wa,...,w.} of
subsequence-minimal synchronizing words for A?

With a slight adaption of the proof of Theorem 19, we can
show computational hardness for these problems.

Theorem 23. The problems DIVERSITY-SYNC and CARD-
SYNC are NP-hard.

As we have shown in Theorem 19, verifying the subse-
quence minimality of a synchronizing word is CONP-hard
and hence the problem is unlikely to be contained in NP,
because we cannot use a guess & check approach. Fur-
ther, for binary encoded parameters k& and r, we obtain
CcONP-hardness from the reduction in Theorem 19 and hence
should at least climb to A% in the polynomial-time hierar-
chy for a membership attempt. Note that the NP-hardness
shown below does not require binary parameters k and r,
whereas CONP-hardness does (so far).

Finally, we show in the next theorem that it is #P-hard to
compute the maximal diversity of the set of subsequence-
minimal synchronizing words for a given DFA A.

Theorem 24. Let A be a DFA. Then, on input A, computing
the diversity of the set of all subsequence-minimal synchro-
nizing words of A is #P-hard.

8 Conformant Planning

Conformant planning (Goldman and Boddy 1996; Smith
and Weld 1998) is the task of finding a sequence of ac-
tions for a planning problem that ensures that the goal will
be achieved regardless of the initial state and of the non-
determinism of the planning domain. The essence of many
planning problems can be abstracted using the framework of
automata theory (Cimatti and Roveri 2000; Cimatti, Roveri,
and Bertoli 2004). We will use this point of view to define a
suitable notion of diversity of solutions in the context of con-
formant planning. Apart from some notational differences,
our terminology corresponds to (Cimatti and Roveri 2000).
A planning domain can be abstracted as a 4-tuple D =
(Q,X, 6, P), where Q is a set of states, 3 is a set of actions,
0 C @xXxQ is atransition relation, and P is a function that



assigns a set P(q) of propositions (or beliefs) to each state
q € Q. Intuitively, P(q) is the set of beliefs that are known
to hold at state ¢, and a transition (q,a,q’) € § indicates
that the set of beliefs P(q) should be updated to P(q’) if ac-
tion a is taken from state ¢. Note that that the relation § may
be nondeterministic, meaning that for some state ¢ € () and
some action a € 3, there may be two states ¢’ and ¢’ such
that both (¢, a,q’) and (g, a,q”) belong to §. In this case,
the result of taking the action a at state q is regarded as be-
ing undetermined. A planning problem is a triple (D, I, G)
where D = (Q, 3,4, P) is a planning domain, I C @Q is a
set of initial states, and G C @ is a set of goal states. A word
u € ¥* is called a plan. An action a is said to be applicable
in a state ¢ if there is some state ¢’ such that (¢, a,q’) € 0.
Such an action « is applicable in a set of states S if it is ap-
plicable in every state of S. A plan  is said to be applicable
in a set of states S if either u = € and S is non-empty, or
u = au’ for some action a and some plan v’ € ¥*, a is ap-
plicable on S and v’ is applicable in §(S, a). The key notion
of a conformant plan is defined next.

Definition 25 (Conformant Plan). Let (D, I,G) be a plan-
ning problem with domain D = (Q, %, §, P). A planu € ¥*
is conformant for (D, I, G) if the following conditions are
satisfied: (1) w is applicable in I, and (2) 6(I,u) C G.
Intuitively, the two conditions guarantee that a confor-
mant plan u achieves a goal regardless of the initial state,
and of the nondeterministic actions that may occur during
the execution of u. The following lemma, an analogue of
Lemma 8 in the context of conformant planning, gives an
upper bound on the number of states in a DFA accepting all
conformant words for a given planning problem (D, I, G).

Lemma 26 (Conformant Words). Let (D, I, G) be a plan-
ning problem with D = (Q, %, 0, P). One can build in time
|2 - 20URD @ DFA Conf (D, I, G) with 2\ states such that

L(Conf(D,I,G)) ={u : wis conformant for (D,I,QG)}.

Proof. Let Conf (D, I, G) be the DFA A whose set of states
Q is the set of all subsets of @, I is the unique initial state,
and the set of final states F is the set of all non-empty sub-
sets of G. The state ) acts as a trap state of Conf(D, I, G).
The transition function A : Q@ x ¥ — Q sends each pair
(S,a) € QxXtothestate {¢’ : Jq € S, (q,a,q") € d}ifa
is applicable in every state of .S, and to the state (} if @ is not
applicable from some state of .S. The DFA Conf(D, I, G)
has 2/€! states and can be constructed in time || - 20U<D.
Additionally, by construction, we have that a plan u
ayas . . .ay is accepted by Conf(D, I, G) if and only if the
plan w is applicable in [ and § (I, u) C G, or, in other words,
if and only if u is conformant for (D, I, G). O

Let (D, I,G) be a planning problem and u be a confor-
mant plan for (D, I,G); u is subsequence-minimal if no
proper subsequence of « is a conformant plan for (D, I, G).
The following corollary, which is an analogue of Corollary 9
in the realm of conformant planning, states that one can con-
struct an automaton accepting all subsequence-minimal con-
formant plans for a given planning problem (D, I, G). The
proof of this corollary follows directly by plugging the DFA
Conf(D, I, G) of Lemma 26 into Lemma 7.
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Corollary 27. Ler (D, I,G) be a planning problem with
D =(Q,%,6,P). In time O(|X] 22911 e can build a
DFA ConfMinSubseq(A) with < 2214191 many states for

L(ConfMinSubseq(A)) = {u: wis
subsequence-minimal conformant for (D, I,G)}.

The next theorem is an analogue of Theorem 16; we con-
sider the problem of computing a sufficiently diverse set W
of subsequence-minimal conformant plans for a planning
problem (D, I, G), with the property that each word in W
belongs to the language of an NFA B given at the input. We
assume that B is a specification of all legal plans that could
occur in a given environment independent of (D, I, G). The
proof of this theorem is identical to the proof of Theorem 16:
only Corollary 27 is used instead of Corollary 9.

Theorem 28. Let (D,I,G) be a planning problem with
planning domain D = (Q,%, 6, P). Given an NFA B =
(Q,X,0",Q0, F), one can determine in time O(fp(r, k) -
|Q'|" log(|Q'|)) whether there is a set W C L(B) with r
plans such that each plan in W is subsequence-minimal con-
Sformant for (D, I, G) and MinDiv(W) > k.

Diversity in conformant planning is relevant in the setting
where we want to obtain a small set of sufficiently diverse
plans for solving a given task. In settings where resilience
is important, having two plans that are sufficiently distinct
from each other may decrease the chances that both plans
fail at the same time. In settings where variety is important,
such as entertainment, diversity can be used to ensure that
the alternative plans are not simply small variations of each
other.

9 Conclusion

In this work, we have introduced a suitable notion of diver-
sity of solutions in the context of the theory of synchronizing
automata. Using this framework, we showed that for each
r,k € N, each DFA A, and each NFA B over an alphabet ¥,
the problem of computing a subset {w1,...,w,} C L(B)
of subsequence-minimal synchronizing words for A, with
pairwise edit distance of at least k, can be solved in time
O(fa(r,k) - |B|"log(|B|)) for some function f depending
only on A, r and k. Our algorithm has a fixed-parameter
tractable dependency on the parameters |A| and k and an XP
dependency on the parameter r. Therefore, for each fixed r,
our algorithm runs in FPT time when parameterized by | A
and k. The existence of such FPT-algorithms was not clear
even when the number r of solutions was fixed to 2. We
leave the problem of determining whether one can obtain an
algorithm of the form O(f4(r, k) - |B|°(})) as an interest-
ing direction of further research. We have also shown that
similar results hold in the context of conformant planning.

For some simplified versions of our problems, we proved
NP- or cONP-hardness results. Possibly, our main problems
are hard for higher levels of the polynomial hierarchy. Here,
we point to recent papers (Burjons et al. 2019; Frei, Hemas-
paandra, and Rothe 2020) that study hardness and member-
ship of combinatorial problems with a flavor of minimality,
placing them on low levels of this hierarchy.
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