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Abstract
As textual attributes like font are core design elements of doc-
ument format and page style, automatic attributes recogni-
tion favor comprehensive practical applications. Existing ap-
proaches already yield satisfactory performance in differenti-
ating disparate attributes, but they still suffer in distinguishing
similar attributes with only subtle difference. Moreover, their
performance drop severely in real-world scenarios where un-
expected and obvious imaging distortions appear. In this pa-
per, we aim to tackle these problems by proposing TaCo, a
contrastive framework for textual attribute recognition tai-
lored toward the most common document scenes. Specifi-
cally, TaCo leverages contrastive learning to dispel the am-
biguity trap arising from vague and open-ended attributes. To
realize this goal, we design the learning paradigm from three
perspectives: 1) generating attribute views, 2) extracting sub-
tle but crucial details, and 3) exploiting valued view pairs for
learning, to fully unlock the pre-training potential. Extensive
experiments show that TaCo surpasses the supervised coun-
terparts and advances the state-of-the-art remarkably on mul-
tiple attribute recognition tasks. Online services of TaCo will
be made available.

Introduction
Textual attributes are fundamental in graphic design and also
play a key role in forming document styles. For example, in
the case of converting a document image into editable for-
mats like Microsoft Word (Wilson and Wilson 2014), retain-
ing the original textual attributes is crucial for user experi-
ence. Moreover, graphic designers are keenly interested in
identifying attractive styles, like word arts in the wild (Wang
et al. 2015). To achieve this goal, they may take photos of
the target and turn to experts. However, even for profession-
als, identifying the correct attributes from a combination of
more than 1) 1000+ fonts (Chen et al. 2014), 2) open-ended
colors, and 3) other features is error-prone. Hence, an accu-
rate textual attribute recognition (TAR) system is expected
to boost versatile applications, as shown in Fig.1.

The design of TAR system is not a trivial task. The rea-
son is mainly twofold: 1) Unlimited attributes with subtle
details. Using the font attribute as an example, it is com-
mon to see that the basic difference between pairwise fonts
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Figure 1: (Left) Precious textual attributes benefit practical
applications like document understanding and style trans-
fer. (Right) Semantic spaces obtained from different learning
paradigms. Our TaCo system yields aligned attribute repre-
sentations (red circle) for input with the same attributes be-
yond supervised approaches and vanilla self-supervised sys-
tems, which are constrained by label ambiguity (blue circle).

reflected in subtle traits such as letter ending, weight, and
slope (Dai et al. 2021), as shown in Fig. 2(a). As fonts
are open-ended and ever-increasing through time, the con-
tinuously added new types intensified the recognition chal-
lenge (Chen et al. 2014). 2) Disparite attributes with similar
appearance. What is worse, the real-world input may not be
ideal: even scanned PDFs and photographs may contain un-
expected distortion that further blur the subtle traits. As the
consequence, the missing traits made the different attributes
visually similar. Existing methods (Wang et al. 2015; Chen
et al. 2021) suffer in these complex scenarios, as shown in
Fig. 2(b). To mitigate these gaps, we propose TaCo, the first
contrastive framework for textual attributes recognition.

Technical Preview and Contributions. TaCo harnesses
contrastive learning with elaborate pretext tasks to fulfill
pre-training, allowing the model to learn comprehensive at-
tribute representations over label-free samples. The pretext
tasks help to provide better attribute representation, espe-
cially for input with subtle changes and noises. To further
force the model to focus on local details, we introduce a
masked attributes enhancement module (MAEM), which is
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Figure 2: Challenges in textual attribute recognition. (a) Font attributes are rich and the distinction usually lies in local glyphs
(red dashed boxes). (b) Existing approaches yield satisfactory result when inputted attributes are distinctive. However, real-
world input introduces unexpected noises and makes it difficult for discrimination. Best viewed in color.

achieved by dynamic feature masking operations together
with a self-attentive mechanism. MAEM also guides to learn
from adjacent characters if existed, which built upon the fact
that the attributes of adjacent characters are usually con-
sistent. Finally, we introduce a paired-view scoring mod-
ule (PSM) to guide the model to learn from high-quality
attribute view pairs. Using the generated comprehensive at-
tribute representation as the backbone, we construct a recog-
nition network to yield word-level and even character-level
attribute recognition in complex real-world scenarios. The
contributions of this paper are summarized as follows:

• We propose a contrastive framework termed TaCo for
textual attributes recognition. TaCo is the first textual at-
tribute recognition that supports multiple features at a
time: 1) font, 2) color, 3) bold, 4) italic, 5) underline, and
6) strike. The system could be easily extended to support
incoming attributes.

• By observing and leveraging the attribute-specific na-
tures, we rigorously design the learning paradigm in re-
spect of 1) generating attribute views, 2) extracting subtle
but crucial details, and 3) automatically selecting valued
view pairs for learning to ensure the effectiveness of pre-
training.

• Experimental results show the superiority of TaCo, which
remarkably advances the state-of-the-art of multiple at-
tributes recognition tasks. Online services of TaCo will
be publicly released soon to assist relevant researchers
and designers.

Related Work
Textual Attribute Recognition
Textual attribute recognition is essentially a fine-grained
multi-tagging task, and plays a vital role in many scenar-
ios. Unlike other typical text and entity categorization tasks,
attributes rely less on language-specific semantics or layout
knowledge, and more on the local details of words (Wang

et al. 2015; Huang et al. 2018; Xie et al. 2021). Several tra-
ditional methods (Chen et al. 2014; Tao et al. 2015) distin-
guish attribute classes heavily based on human-customized
local feature descriptors and template annotation data, with-
out generality and scalability for commercial applications.
Recently, the upsurge of deep learning has dramatically ad-
vanced the development of TAR. DeepFont (Wang et al.
2015) firstly exploits CNN for font recognition and obtains
favorable results. Moreover, Wang et al. (2018b) introduced
transfer learning to address the domain mismatch problem
between synthetic and real-world text images, as the preva-
lent of labeled attributes data scarcity. Chen et al. (2021) de-
signed a local enhancement module that automatically hides
the most discriminative features during training to force the
network to consider other subtle details. Unfortunately, ex-
isting supervised methods remain unsound in real-world sce-
narios since they failed to tackle label ambiguity and inter-
class conflicts brought by image distortion.

Self-Supervised Learning
The self-supervised learning (SSL) allows the model to yield
desirable representations from annotation-free data while re-
lieving the burden of labeling (Chen et al. 2020). Conse-
quently, pre-training based on joint multi-modal information
has become the common practice for general-purpose doc-
ument models. For example, the LayoutLM series (Huang
et al. 2022) are pre-trained on the IIT-CDIP dataset contain-
ing 42 million images, which performs better than routinely
training from scratch models. As is well known, the core
of SSL involves designing proper pretext tasks and adopting
the right evaluation criteria, e.g., masked signal recovery and
visual token prediction in Visual-Language model (Huang
et al. 2022), and representation consistency of crafted views
in contrastive methods (Chen et al. 2020; Chen and He
2021). Nevertheless, empirical evidence suggests (Li et al.
2022) that existing models that learn from the whole docu-
ments are prone to capture global structured patterns without
desired fine-grained stylistic features, thus inappropriate for
attributes recognition tasks.
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Figure 3: System overview of TaCo. The pre-training pipeline of TaCo is built upon the SimSiam framework and consists of
three key designs: 1) generation of augmented attribute views, 2) MAEM-guided feature enhancement, and 3) paired-view
scoring module (PSM). g(·) and h(·) are an MLP head and a prediction MLP head, respectively. For the recognition branch,
an optional character detection module is introduced to provide character-level attribute recognition. Otherwise, TaCo outputs
text-segments-level attributes by default.

Approach

Pre-training

We adopt contrastive learning as the pre-training framework,
which learns attribute information implicitly by compar-
ing representations of pairwise positive views. As shown in
Fig. 3, the TaCo system is built upon the SimSiam frame-
work (Chen and He 2021) and encapsulates three design re-
finements: 1) pretext task design, 2) masked attributes en-
hancement module (MAEM), and 3) paired-view scoring
module (PSM). The input of the pre-training system are im-
ages of text segments. Text segments are a set of words
with random length, which guarantee the sufficient con-
text compared with a single character. With this pre-training
paradigm, TaCo is still able to recognizing attribute of a sin-
gle character accurately, as shown in Section 3.2.

Pretext Task Design. The pretext task design (a.k.a. data
augmentation) is to construct suitable positive pairs of at-
tributes. For the attribute recognition tasks, they require nei-
ther semantic context nor rely on the global visual structure
of the inputted images. Hence, popular pre-training tasks in-
cluding Masked Visual Language Modeling (Xu et al. 2020)
and Gaussian blurring (Chen et al. 2020) are not suitable.
The former intends to learn from semantic while the latter
affects the subtle and crucial feature of attributes. We judi-
ciously design the pretext tasks according to the nature of
textual attributes.

Given an input image x, two separate operators t1, t2 ran-
domly sampled from the augmentation family T are applied
to x to construct views x̃i = ti(x), x̃j = tj(x). For a min-
imal sufficient1 encoder f(·), the optimal T is supported to

1An optimal solution of argminf I(f(x̃i); x̃i) is defined as
the minimal sufficient encoder f∗(·) if I(x̃i; x̃j) = I(f∗(x̃i); x̃j)
holds (Tian et al. 2020). We use this definition for better problem
formation.

minimize

Eti,tj∼T ,x

[ ∣∣∣∣∣∣I(f(x̃i); f(x̃j)
)
− I(x̃i; x̃j)

∣∣∣∣∣∣︸ ︷︷ ︸
#1

+ d
(
f(x), f(x̃i)

)
+ d

(
f(x), f(x̃j)

)︸ ︷︷ ︸
#2

+ I(x̃i; x̃j)−H(x̃i, x̃j)︸ ︷︷ ︸
#3

] (1)

for ∀ ti, tj ∈ T and x. Where d(·) denotes certain met-
rics, e.g., ℓ1 norm. The first term #1 in the expectation in-
tends to reduce the noisy task-irrelevant mutual-information,
and the remaining terms, #2 and #3, maximize the diver-
sity of views with minimal task-relevant information. Hence,
we empirically define pretext tasks consisting of three parts:
1) Random Cropping and Scaling to take advantage of the
content-dependent feature of attributes. The experiments re-
veal that making the views include varied textual content,
or notably task-irrelevant information, is crucial for pre-
training. 2) Color Jittering is employed to prevent the net-
work from learning trivial task solutions, such as color his-
togram features. 3) Random reordering of characters to pre-
vent the model from learning contextual semantic infor-
mation. This task is achieved by using synthetic training
data introduced in Section 4.1. The synthetic character-level
bounding box enables this augmentation.

Masked Attributes Enhancement Module. The Masked
Attributes Enhancement Module (MAEM) is designed to
achieve better attribute feature fusion in the encoder fθ(·).
The motivation of MAEM is that adjacent characters in
one word share the same attributes with a higher proba-
bility. Basing on this observation, MAEM incorporates dy-
namic masking operations and non-local attention mecha-
nisms (Wang et al. 2018), as shown in Fig. 4. Given a feature
tensor F ∈ RH×W×C , it is partitioned into non-overlapping
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Figure 4: By feature masking and self-attention design,
Masked Attributes Enhancement Module (MAEM) guides
to learn local details for better attributes feature representa-
tion. The attention maps are acquired using Grad-CAM (Sel-
varaju et al. 2017). Best viewed in color and zoomed in.

patches and randomly masked with probability p ∼ U(0, δ),
where δ is experimentally set as 0.2. This step is performed
towards the feature map rather than the input signal, and
the masked position varies along the channel dimension. In
contrast to dropout (Gao, Yao, and Chen 2021), we pre-
serve the spatial continuity of unmasked patches, allowing
the network to focus on details rather than global texture
information. The mask operation is removed from the infer-
ence phase. Next, we utilize multiple convolutional blocks
(1 × 1 Conv → BN → ReLU ) to avoid sharp edges
caused by mask operations, and incorporate patchify opera-
tion2 (Split+Reshape) to obtain the inputs, K,Q,V ∈
Rh×HW

P2 ×CP2

h , of the self-attention mechanism. The final
output feature tensor G ∈ RH×W×C can be computed by:

G = ||hl=1

(
ℏP (Softmax(

QlKT
l√

CP 2/h
)Vl)

)
, (2)

where || denotes concatenation of h attention heads, ℏp
means recovering feature maps from a sequence of patches
of size P × P . We embed the MAEM module behind each
Conv stage in the encoder fθ(·) to make it more focused on
local and contextual information.

Paired-view Scoring Module. We design a Paired-view
Scoring Module (PSM) to unleash the learning effectiveness
of TaCo, which is parameter-free. The motivation of PSM is
that, owing to the randomness of sampling operations and in-
puts, the generated view pairs are not always guaranteed fa-
vorable, and low-quality views will impair the performance.
For example, the view produced by random cropping may
contain no words or only punctuation with incomplete at-
tributes. In (Peng et al. 2022), authors craft good positive
pairs using the heat-map of a network to locate the regions
of interest, but this relies on post-processing and handcrafted

2The patchify operation was initially designed to exploit the
non-local self-correlation properties of infrared images (Gao et al.
2013), and has recently been deployed in vision transformer and
MLP architecture designs.

settings. For an original input image, PSM discriminates the
quality of crafted pairs simultaneously during the whole pre-
training process.

Formally, given a batch of input images {xl}Nl=1, each
sample is processed by three randomly sampled data oper-
ators {tli, tlj , tlk} ∼ T and the associated augmented views
x̃l
i, x̃

l
j , and x̃l

k are obtained. Note that tlk involves only color
jittering to maintain view integrity. Then, a parametric func-
tion fθ(·) (e.g., ResNet-50) and a projection MLP head g(·)
transform the views, that is zli = g(fθ(t

l
i)), and feed their

representations {zli, zlj , zlk} into PSM. The computational
flow can be presented as:

Stage I : p̃l =
1

2

(
d(zlk, z

l
i) + d(zlk, h(z

l
j))

)
Stage II : pl = −|p̃l −

1

N

N∑
l=1

p̃l|

P = Softmax({pl/τ)}Nl=1),

(3)

where τ is a tuning temperature parameter, h(·) is a predic-
tion MLP, and d(·, ·) denotes the negative cosine similarity
defined as d(x, y) = − x

||x||2 ·
y

||y||2 . On stage I , for each sam-
ple, we calculate the similarity of the intact view’s feature
zkl with the two others. Clearly, when encoder fθ(·) is suf-
ficient and the cropped views contain adequate or excessive
task-relevant information, p̃l up to a scale of 2. On stage II ,
We zero-meaned p̃l within a batch and take the negative of
its absolute value to measure the validity of each pair, where
a smaller pl is better. In this way, the scoring mechanism
forces the model to learn from pairs of moderate difficulty
rather than those with excessively overlapping or incomplete
content views. Then, a softmax function is applied to nor-
malize pl and output the pairs scores.

In parallel, as shown in Fig. 3, the contrastive branch
leverage a prediction MLP h(·) to transform the features of
one view, and matches it to another one. The view-invariance
of the system is reached by minimizing the negative cosine
similarity of the pair representations, and a scored symmet-
ric loss can be formulated as:

Lcos =
1

2

∑
l

Pl

(
d(zli, h(z

l
j)) + d(zlj , h(z

l
i))

)
, (4)

where Pl is ith element of P in (3). Note that an impor-
tant operation stop-gradient is applied to zi, zj before the
gradient propagation. We introduce an additional Kullback-
Leibler divergence loss to ensure the stability of pre-training,
and the final optimization objective is derived as follows

L = Lcos + λ
KL(R||P)

logN
, (5)

where λ is a trade-off constant, R denotes the expected uni-
form distribution of P . The minimum possible value of L
is λ − 1. The whole framework is trained in an end-to-end
manner.
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Crop Color Shuffle Pre. (%) Rec. (%) F1 (%)
✓ ✓ 36.34 33.05 34.62

✓ ✓ 53.40 56.19 54.76
✓ ✓ 85.67 90.22 87.89
✓ ✓ ✓ 87.89 90.28 89.07

Table 1: Linear evaluation under composition of data aug-
mentations. “Shuffle” refers to reordering the words, “Crop”
means whether the generated views are a local region or
full image, and “Color” represents color jittering. “Pre.” and
“Rec.” indicate average precision and recall.

TaCo: Attribute Recognition
The final attribute recognition is built upon the backbone de-
rived from pre-training. Specifically, we train a multi-head
linear classifier upon the backbone and apply it to recognize
different attributes separately. Now TaCo supports six tex-
tual attributes, namely 1) font, 2) color, 3) bold, 4) italic,
5) underline, and 6) strike. More attribute types could be
easily extended. The loss function is the sum of the cross
entropy between the prediction and ground truth of all at-
tributes, where the weight for font is set as 5 and others as
1, for font attribute learning is more difficult compared with
other tasks. Experimental results show that the TaCo system
outperforms its counterparts by a large margin.

As the default input of TaCo’s pre-training and recogni-
tion is text-segments-level, it could be easily extended to
character-level with a preposition character detection mod-
ule. TaCo applies to complex cases with query images that
present with totally different textual features. For example,
for word “TaCo”, character “T” maybe “T” and character
“a” maybe “a”. In this case, character-level attribute detec-
tion and classification is needed. We leverage deformable
DETR (Zhu et al. 2020) as the detection framework, which
outputs the bounding boxes and attributes for each character
inside a query image. We take the last three stages outputs of
the backbone as the input to the transformer head and fine-
tune the whole network end-to-end until convergence.

Experiments
Datasets. Now there exist no publicly available datasets
for textual attributes. We constructed a large-scale synthetic
dataset (SynAttr) comprising one million images of text seg-
ments for system pre-training and fine-tuning. One-tenth of
the data contains words with more than two varying at-
tributes for character-level attribute detection. For each sam-
ple, it contains words labeled with a bounding box and six
attributes: font, color, italics, bold, underline, and strike. For
validation, we manually annotated a dataset Attr-5k com-
prising 5k individual sentence images, which is cropped
from 200 document images with various layouts and page
styles collected from real-world scenes. More details of the
datasets are given in the supplement.
Implementation. The pre-training of our system is based on
the SimSiam framework, with a backbone of vanilla ResNet-
50 (He et al. 2016). The standard SGD optimizer with a
learning rate of 0.1 is used for optimization. We train for 100
epochs (taking∼26 hours) and adjust the learning rate using

Methods Pre. (%) Rec. (%) F1 (%) #Params.
ResNet-50 (vanilla) 85.35 84.21 84.78 23.60 M
+ SE (r = 16) 85.93 86.33 86.13 25.42 M
+ CBAM (r = 16) 86.62 86.94 86.78 25.63 M
+ MAEM (δ = 0) 86.69 87.35 87.02 23.81 M
+ MAEM (δ = 0.2) 87.57 87.96 87.76 23.81 M
+ MAEM (δ = 0.4) 86.88 86.36 86.62 23.81 M
+ MAEM (δ = 0.6) 85.47 86.46 85.96 23.81 M

Table 2: Ablation study of the plug and play MAEM and
comparison with two renowned attention modules. Each
model is a single run from scratch.

Methods Pre. (%) Rec. (%) F1 (%)
Random init. 18.57 18.41 18.49
SimSiam (vanilla) 87.89 90.28 89.07
∼ with PSM (λ = 0) 87.18 90.24 88.68
∼ with PSM (λ = 0.2) 88.46 91.28 89.85
∼ with PSM (λ = 2) 89.52 91.34 90.42
∼ with PSM (λ = 10) 88.11 91.01 89.53

Table 3: Linear evaluation of the scoring module. “Random
init.” represents random initialization of model parameters
instead of loading from pre-training.

a Cosine Annealing strategy. The patch size P and the num-
ber of attention heads of MAEM are set to 4. For data aug-
mentation, our pretext tasks include: 1) randomly reorder-
ing the words with a probability of 0.5, 2) randomly crop-
ping views from the original image by ratio range (0.8∼1,
0.6∼1, then rescaling and padding them to a fixed size of
(32, 256) without changing its aspect ratio, and 3) color jit-
tering alters the brightness, contrast, saturation and hue of
an image with an offset degree of (0.4, 0.4, 0.4, 0.1) with a
probability of 0.8. In fine-tuning, we remove the data aug-
mentations and retrain the whole network or multiple linear
classifiers on frozen features until convergence. Moreover,
we build a character detector upon backbone, which training
follows the routine setup (Zhu et al. 2020; Li et al. 2022). All
experiments are implemented on a platform with 8 Nvidia
V100 GPUs.

Ablation Study and Analysis
In this study, we conduct experiments on Attr-5k to inves-
tigate the contribution of individual components in our sys-
tem. The font attribute is selected for ablation because its
recognition is more difficult compared with others. We take
the precision, recall, and F1 score as the evaluation criteria.

Pretext Tasks. We analyze the impact of each pretext task
on performance. As shown in Table 1, we observe that
removing “Crop” augmentation reduces precision, recall,
and F1-score of font recognition by 51.55%, 57.23%, and
54.45%, respectively. This concurs with the observation
in (Chen et al. 2020). As per predefined guidelines (Section
3.1), we argue that the “Crop” enables pair views to con-
tain different content, thus reducing task-irrelevant mutual-
information. For color jittering and words reordering, re-
moval causes a decrease in the precision of 34.63% and
2.22%, respectively, which reflects the importance of view
diversity. Overall, incorporating the three tasks yields favor-
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Methods Font Color Italic Bold Underline Strike Average # Params. # FLOPs

Baselines

ResNet-50 (He et al. 2016) 86.71 95.78 98.72 90.40 87.10 99.15 92.98 23.60 M 1.34 G
ResNeXt-101 (Xie et al. 2017) 87.33 94.10 98.01 90.62 86.95 98.63 92.61 42.22 M 2.62 G
EfficientNet-b4 (Tan and Le 2019) 88.69 97.43 98.83 91.00 89.91 98.95 94.12 28.43 M 0.81 G
Swin-s (Liu et al. 2021) 85.64 97.39 97.51 86.06 84.73 97.62 91.50 48.75 M 8.51 G
CoAtNet-1 (Dai et al. 2021) 87.39 96.15 97.96 87.84 84.31 98.72 92.06 33.05 M 6.81 G

Variants
DeepFont (Wang et al. 2015) 88.07 96.09 98.28 90.44 86.26 98.99 93.02 23.60 M 1.34 G
DropRegion (Huang et al. 2018) 88.42 96.29 98.18 91.12 88.68 98.95 93.61 37.88 M 6.45 G
HENet (Chen et al. 2021) 87.90 95.68 98.48 89.67 88.30 99.03 93.18 23.60 M 1.38 G

Ours TaCo w/o MAEM 93.25 97.22 99.01 95.18 90.51 99.13 95.72 23.60 M 1.34 G
TaCo 94.28 97.06 99.15 96.45 89.45 99.35 95.96 23.81 M 1.55 G

Table 4: Comparison with state-of-the-art recognition approaches. “w/o MAEM” is short for “without using the MAEM”. We
achieved the best recognition performance over other baselines and variants.

Figure 5: t-SNE visualization of features obtained by super-
vised learning (left) and TaCo (right). For visualization, we
randomly selected 20 fonts from 2k random training images.

able performance and guarantees the pre-training validity.
The t-SNE results in Fig. 5 show that the attribute represen-
tation shares better aggregation compared with supervised
counterpart.

Effect of MAEM. As the MAEM is a component in back-
bone, it could be used in both supervised learning and SSL
(Tables 2 and 4). In the forward stage, the mask ratio of fea-
tures at random is limited by a hyper-parameter δ. In Ta-
ble 2, the system equipped with MAEM brings a 2.98 F1-
score gain when δ = 0.2, which introduces only 0.21M
parameters. Furthermore, even if we set δ = 0, the non-
local operation raises the recall by 3.14, showing the neces-
sity to aggregate contextual information. We also compare
MAEM with the reputed SE (Hu, Shen, and Sun 2018) and
CBAM module (Woo et al. 2018). Empirical results show
that MAEM brings significant improvement with little mem-
ory overhead. We choose δ = 0.2 in the subsequent experi-
ments.

Effect of PSM. We conduct linear classification to show the
benefit of the scoring module, in which the baseline Sim-
Siam is aligned with Table 1. As shown in Table 3, our sys-
tem obtained varying magnitudes of improvements on the
F1-score for different λ > 0 settings. Notice that when
λ = 0, there is a slight drop in performance, which is prob-
ably attributed to the scoring trend shifting toward unsound
samples. Notably, for λ = 2, a precision gain of 1.63% is
obtained compared to the vanilla SimSiam, making a better
trade-off between the scoring mechanism and the diversity
of the learning samples.

Methods Pre. (%) Rec. (%)
Char-Cls (He et al. 2016) 77.5 78.8
∼ with pre-training 89.2 88.6

Deformable DETR (Zhu et al. 2020) 90.8 86.4
∼ EfficientNet-b4 (Tan and Le 2019) 91.4 89.8
∼ RegNet (Radosavovic et al. 2020) 92.1 90.4

TaCo (Ours) 96.9 93.6

Table 5: Comparison with state-of-the-art methods on
character-level font recognition. “Char-Cls” refers to the cat-
egorization of each word region individually.

Comparison with the State-of-the-Art
Attributes Recognition. We experimentally demonstrate
that the pre-training yields remarkable performance gains
for attributes recognition, especially for font. We fine-tune
the pre-trained encoder and output the recognition results for
six attributes with multiple classifiers. Several strong base-
lines and other modified variants are choosing for compari-
son. The evaluation metric is average recognition accuracy.
For fairness, all models are trained on the same datasets
and settings. Table 4 presents the evaluation results of all
methods on Attr-5k. Specifically, the pre-trained ResNet-50
performs far beyond its peers, including EfficientNet (Tan
and Le 2019) and variant HENet (Chen et al. 2021), with
5.59% and 5.86% advantages in recognition performance for
font. Besides, slight improvements are achieved for other at-
tributes, such as italic and strike. We notice that deeper mod-
els (ResNeXt-101) and vision transformers (Swin-S) do not
have obvious gain. It is perhaps owing to attribute recogni-
tion is focusing more on local details rather than semantic
interactions of different regions. As color jittering is crucial
for other attributes, the slight inferior performance of color
recognition is acceptable for TaCo. Detailed discussion is
listed in the supplement.

Overall, our average recognition accuracy over all at-
tributes improves by 2.98 relative to the vanilla ResNet-50
and outperforms its counterparts significantly. This suggests
the superiority of our pre-training regime. Albeit our sys-
tem is learned in terms of fixed categories, the buildup pre-
training pipeline allows it to scale to the newly designed
classes.
Character-level Attributes Detection. We trained the op-
tional character detector to support character-level attribute
recognition. The same training data and settings are reused.
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Original TaCoGT Deformable DETR

Figure 6: Visualization of character-level font recognition in
ordinary document scenarios.

Table 5 shows the average font recognition precision and
recall towards various approaches, where detection-based
methods are measured with IoU = 0.5. Note that “Char-
Cls” means that words are recognized sequentially based on
available bounding boxes, and the input is a localized single-
word region instead of a whole image. We used deformable
DETR as the benchmark and verified the behavior of dif-
ferent backbones separately. We observe that character-wise
classification yields poor performance, 1.6% precision lower
than the deformable DETR, even with pre-training loaded.
This suggests that contextual information benefits the words
with indistinct features in the lexicon. For single-stage ap-
proaches, our system delivers an accuracy improvement of
5.1% when loading backbone weights, which is more effec-
tive than replacing with a stronger baseline. Fig. 6 visualizes
the font recognition results for two real-world document im-
ages. The TaCo system achieves better accuracy than the su-
pervised counterparts.

Broader Impact of TaCo

Semantic-Entity Labeling in Document. We validate the
benefits of the additional provided textual attributes by TaCo
on the Form Understanding in Noisy Scanned Documents
(FUNSD) dataset (Jaume, Ekenel, and Thiran 2019), which
is a well-known challenging task in document understand-
ing. Specifically, we use TaCo to retrieve the attribute infor-
mation of the text inside an image and embed it into a 512-
dim linear space. Then, we construct a 2D attributes grid and
sum it with stage-2 output features of ResNet-50. As shown
in Fig.7, we can correctly identify entities with the same at-
tributes, such as bolder header and underlined answers, and
improve the precision by 1.49. More details are given in the
supplement.

Font Generation aims to transfer the style of a reference
calligraphy image to ones with different style (Hayashi, Abe,
and Uchida 2019), thereby producing characters of a specific
font. Existing Method like DG-Font (Xie et al. 2021) already

w/o Attr. with Attr.Original

Figure 7: Visualization of document entity recognition. En-
tities of the same classes are correctly identified with the aid
of attribute information (red dashed boxes). “w/o Attr.” is
short for “without using textual attribute modality”.
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Figure 8: Visualization of font generation. The discrimina-
tor of DG-Font with loaded pre-training weights (Right) im-
proves the fidelity of the generated font samples.

yield satisfactory result, and their performance could be fur-
ther boosted by treating TaCo as a friend. We observe that
these adversarial generative approaches require a powerful
discriminator for identifying the font attributes of the syn-
thetic and real samples. Hence, we take the pre-trained en-
coder of TaCo as the discriminator of DG-Font. As shown
in Fig. 8, the generated results of the model with loaded fea-
tures are more realistic.

Conclusion
This paper presents a novel contrastive framework TaCo for
retrieving multiple textual attribute information. By incor-
porating the attribute-specific characteristics, we rigorously
design a pre-training pipeline based on contrastive learning
with customized designs to warrant learning effectiveness.
Experimental results suggest that our TaCo system is able to
learn subtle but crucial features and exhibits superior perfor-
mance against strong baselines. For future research, we plan
to support richer attributes like language classes.
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