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Abstract

Understanding the informative structures of scenes is essen-
tial for low-level vision tasks. Unfortunately, it is difficult to
obtain a concrete visual definition of the informative struc-
tures because influences of visual features are task-specific.
In this paper, we propose a single general neural network ar-
chitecture for extracting task-specific structure guidance for
scenes. To do this, we first analyze traditional spectral cluster-
ing methods, which computes a set of eigenvectors to model a
segmented graph forming small compact structures on image
domains. We then unfold the traditional graph-partitioning
problem into a learnable network, named Scene Structure
Guidance Network (SSGNet), to represent the task-specific
informative structures. The SSGNet yields a set of coefficients
of eigenvectors that produces explicit feature representations
of image structures. In addition, our SSGNet is light-weight
(56K parameters), and can be used as a plug-and-play module
for off-the-shelf architectures. We optimize the SSGNet with-
out any supervision by proposing two novel training losses
that enforce task-specific scene structure generation during
training. Our main contribution is to show that such a simple
network can achieve state-of-the-art results for several low-
level vision applications including joint upsampling and image
denoising. We also demonstrate that our SSGNet generalizes
well on unseen datasets, compared to existing methods which
use structural embedding frameworks. Our source codes are
available at https://github.com/jsshin98/SSGNet.

1 Introduction
Methods for estimating scene structures have attracted wide
research attention for the past several decades. As an example,
texture representations based on image edges have been ex-
tensively studied with impressive performance on low-level
vision tasks, i.e. image denoising (Tomasi and Manduchi
1998), deblurring (Krishnan and Fergus 2009; Levin et al.
2007), super-resolution (Tai et al. 2010) and inpainting (Naz-
eri et al. 2019; Yang, Qi, and Shi 2020; Guo, Yang, and Huang
2021). Another aspect of scene structures involves inferring
robust object boundaries to quantify uncertainty and refine
initial predictions in visual perception tasks including joint
filtering (He, Sun, and Tang 2012; Guo et al. 2018; Li et al.
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Figure 1: Our SSGNet is a lightweight architecture and can
be applied as a plug-and-play module to improve the perfor-
mance of baseline networks for low-level vision tasks.

2016) and depth completion (Eldesokey et al. 2020). Clearly,
the goodness of scene structures depends on the target ap-
plications, and is defined by either training data or objective
functions.

More recent approaches of extracting informative scene
structures have focused on capturing task-specific features
from various learning frameworks. One interesting work for
joint filtering in (de Lutio et al. 2022) builds graph nodes on
learned features from a guidance image to encode semantic
information, and represents scene structures by segmenting
the graph edges based on objective functions. However, they
have heavy computational burdens and are not implemented
as an end-to-end architecture. To formulate an end-to-end
architecture, edge priors, directly obtained from conventional
edge detection (Irwin et al. 1968; Canny 1986), are used as a
guide. Typically, image edges (or gradients) represent high
frequency features and can be forced to generate fine details
in the prediction results (Fang, Li, and Zeng 2020). Never-
theless, the question of how to effectively exploit structure
guidance information remains unanswered. Tremendous ef-
forts have been made to only generate a single purpose scene
structure with each different architecture.

In this paper, we propose a Scene Structure Guidance Net-
work (SSGNet), a single general neural network architecture
for extracting task-specific structural features of scenes. Our
SSGNet is lightweight in both size and computation, and
is a plug-and-play module that can be applied to any base-
line low-level vision architectures. The SSGNet computes a
set of parameterized eigenvector maps, whose combination
is selectively determined in favor of the target domain. To
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achieve this, we introduce two effective losses: (1) Eigen loss,
motivated by the traditional graph partitioning problem (Shi
and Malik 2000), forms a basis set of scene structures based
on weight graphs on an image grid. (2) Spatial loss enforces
the sparsity of each eigenvector for diverse representations
of scene structures. We note that, without any supervision,
our SSGNet can successfully learn to generate task-specific
and informative structural information as shown in Fig.1.
To demonstrate the wide applicability of our SSGNet, we
conduct extensive experiments on several low-level vision
applications, including joint upsampling and image denois-
ing, and achieve state-of-the-art results, even in cross-dataset
generalization.

2 Related Work
Our work is closely related to scene structure embedding for
low-level vision tasks.

2.1 Low-Level Vision Tasks
The goal of low-level vision tasks such as denoising, super-
resolution, deblurring and inpainting is to recover a sharp
latent image from an input image that has been degraded by
the inherent limitations of the acquisition systems (i.e. sensor
size, depth of field or light efficiency). In the past decade,
there have been significant improvements in low-level vi-
sion tasks, and recently deep learning-based techniques have
especially proven to be powerful systems.

With the help of inductive bias (Cohen and Shashua 2017),
convolutional neural networks (CNNs) with a pixel-wise
photo consistency loss (Li et al. 2016; Zhang and Sabuncu
2018; Zhong et al. 2021) are adopted. To mitigate the issue
on inter-pixel consistency on CNNs, generative adversar-
ial networks (GANs) (Goodfellow et al. 2014; Zhu et al.
2017; Karras, Laine, and Aila 2019; Liu et al. 2021a; Wang
et al. 2021)-based methods are proposed to produce visually
pleasing results with perceptual losses (Johnson, Alahi, and
Fei-Fei 2016; Fuoli, Van Gool, and Timofte 2021; Suvorov
et al. 2022) based on high-level semantic features. Nowa-
days, a vision transformer (ViT) (Dosovitskiy et al. 2021; Liu
et al. 2021b; Caron et al. 2021; Chen et al. 2021) has been
used to capture both local and global image information by
leveraging the ability to model long-range context.

Such approaches have shown good progress with structural
details. For regularization, adding robust penalties to objec-
tive functions (Tibshirani 1996; Xu et al. 2010; Loshchilov
and Hutter 2019; de Lutio et al. 2022) suppresses high-
frequency components, and hence the results usually provide
a smooth plausible reconstruction. However, those constraints
often suffer from severe overfitting to noisy labels and are
sensitive to hyperparameters, which leads to a lack of model
generality.

2.2 Structural Information
Extensive studies on low-level vision have verified the feasi-
bility and necessity of the image prior including image edges
and gradients. One of the representative works involves joint
image filters which leverage a guidance image as a prior

and transfer its structural details to a target image for edge-
preserved smoothing (Tomasi and Manduchi 1998; He, Sun,
and Tang 2012; Zhang et al. 2014).

Such structure information can be defined in practice, de-
pending on the tasks. Both super-resolution (Pickup, Roberts,
and Zisserman 2003; Sun, Xu, and Shum 2008; Xie, Feris,
and Sun 2015; Fang, Li, and Zeng 2020) and image denoising
(Liu et al. 2020), which utilize a patch similarity, generate gra-
dient maps to reconstruct high frequency details or suppress
image noises. Works in (Gu et al. 2017; Jin et al. 2020) infer
object boundaries to refine initial predictions in visual per-
ception tasks, including depth estimation/completion. Also,
image inpainting (Nazeri et al. 2019; Yang, Qi, and Shi 2020;
Guo, Yang, and Huang 2021; Cao and Fu 2021), filling in
missing parts of corrupted scenes, adopt edge maps from
traditional method like Canny edge detector (Canny 1986) to
hallucinate their own scene structures.

In spite of promising results from the state-of-the-art meth-
ods learning meaningful details for each task, they require
a high modeling capacity with numerous parameters and
ground-truth structure maps for training. In contrast, our
SSGNet, a very small network generating scene structures
without any supervision, has advantages for various low-level
vision tasks, simply by embedding as an additional module.

3 Methodology
Motivated by spectral graph theory (Shi and Malik 2000;
Levin, Rav-Acha, and Lischinski 2008; Levin, Lischinski,
and Weiss 2007), a set of basis represents scene configura-
tions as a linear combination of the basis. Such parameteri-
zation provides a restrictive solution space to accommodate
semantic entities like textures and object boundaries. Follow-
ing the works in (Tang and Tan 2019; Bloesch et al. 2018),
we begin with an introduction to spectral methods, and then
parameterize scene structures which can be used as guidance
for various vision tasks.

3.1 Motivation
Let us set a weighted undirected graph G = (V,E) in an
arbitrary feature space with a set of nodes V, and a set of
edges E, whose weight can be represented as an N × N
non-negative adjacency matrix W = {w(i, j) : (i, j) ∈ E}
where i, j denote graph nodes. The Laplacian matrix L of
this graph is then obtained by L = D − W, where D is a
diagonal matrix with the row-wise sum of W on its diagonal.
Since the Laplacian matrix is a positive semidefinite matrix,
for every N dimensional vector y from the matrix Y which
consists of a set of vectors, it holds that

yT Ly =
∑

(i,j)∈E

w(i, j){y(i)− y(j)}2 ≥ 0. (1)

To minimize the Eq.(1), the indicator vector y should take
similar values for nodes i and j. When the adjacent value
w(i, j) is high, the two nodes are more tightly coupled.

Spectral graph theory in (Fiedler 1973; Shi and Malik
2000) proves that the eigenvectors of the graph Laplacian
yield minimum-energy graph partitions, and each smallest
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Figure 2: An overview of SSGNet. LN, GeLU, and
LeakyReLU denote the layer normalization, GeLU activation,
and LeakyReLU activation, respectively. The eigenvectors
are integrated via the attention layer, and then embedded to
any baseline network.

eigenvector, like the indicator vector y, partitions the graph
into soft-segments based on its adjacent matrix.

In the image domain, a reference pixel and its similarity to
neighboring pixels can be interpreted as a node and edges in
a graph (Boykov, Veksler, and Zabih 2001), respectively. In
general, affinity is defined by appearance similarities (i.e. the
absolute of intensity differences). With this motivation, im-
ages can be decomposed into soft image clusters from a
pre-computed affinity matrix. In addition, scene configura-
tions in images can be described as a set of eigenvectors
whose smallest eigenvalues indicate connected components
on the affinity matrix.

3.2 Scene Structure Guidance Network
In this work, our goal is to train the proposed network, SS-
GNet, without any supervision because it is infeasible to
define a unique objective function for a task-specific struc-
ture guidance. To accomplish this, we devise a learnable and
parametric way of efficiently representing scene structures.

Given single color images I ∈ Rh×w×3, our SSGNet σ
yields a set of eigenvectors Y ∈ Rh×w×n, where n denotes
the number of eigenvectors and is empirically set to 3:

Y = σ(I). (2)

As illustrated in Fig.2, SSGNet takes a simple encoder-
decoder architecture (∼ 56K), consisting of two 3×3 con-
volutional layers and three 3×3 deconvolutional layers with
layer normalizations (Ba, Kiros, and Hinton 2016) and gelu
activations (Hendrycks and Gimpel 2016) after each layer
except for the last softmax layer. The output of our SSGNet
is associated with learnable weights that will be finetuned in
accordance with an objective function of target applications.

To optimize SSGNet in an unsupervised manner, we define
a loss function Lssg which is a linear combination of two
loss terms as follows:
Eigen Loss The main objective of SSGNet is to obtain a set
of smallest eigenvectors Y of the graph Laplacian L, inspired
by the spectral graph theory (Fiedler 1973; Shi and Malik
2000; Levin, Rav-Acha, and Lischinski 2008).

To generate the graph Laplacian L, we trace back all the
way down to some traditional similarity matrix methods.
Since an image is segmented based on a constructed affin-
ity matrix in spectral graph theory, the form of the matrix
depends on the pixel-level similarity encoding (Levin, Rav-
Acha, and Lischinski 2008; Levin, Lischinski, and Weiss

2007; Chen, Li, and Tang 2013). In this work, we adopt the
sparse KNN-matting matrix (Chen, Li, and Tang 2013). To
be specific, we first collect nonlocal neighborhoods j of a
pixel i by the k-nearest neighbor algorithm (KNN) (Cover
and Hart 1967). Then, we define the feature vector φ(i) at a
given pixel i as follows:

φ(i) = (r, g, b, dx, dy)i, (3)

where (r, g, b) denotes each color channel, and (dx, dy) is a
weighted spatial coordinate for the x- and y-axes. We follow
the KNN kernel function KNN(i) to construct the sparse
affinity matrix W based on feature vectors φ:

W(i, j) =

{
1− ∥ φ(i)− φ(j) ∥, j ∈ KNN(i)
0, otherwise, (4)

where j ∈ KNN(i) are the k-nearest neighbors of i based
on the distance defined by φ. Using the sparse KNN-matting
matrix, we can take account of both spatial distance and color
information with less computational cost than a traditional
similarity matrix. The graph Laplacian L is finally obtained
by L = D − W as the same manner, described in Sec.3.1.

We can finally obtain a set of eigenvectors Y by minimiz-
ing the quadratic form of L, Leigen, as below:

Leigen =
∑
k

YT
k LYk. (5)

However, we observe that SSGNet sometimes produces
undesirable results during the training phase because of the
degenerate case, where the rank of Y may be lower, and needs
an additional loss term to regularize it.
Spatial Loss Since our SSGNet uses a softmax function
in the last layer to prevent the eigenvectors from converging
to zero vectors, we only need to handle the degenerate case,
where all eigenvectors have the same value. Our spatial loss
Lspatial considers the sparsity of each eigenvector to enforce
diverse representations of scene structure, defined as below:

Lspatial =
∑
k

(|Yk|γ + |1− Yk|γ)− 1, (6)

where | · | indicates an absolute value, and the hyperparameter
γ is set to 0.9 in our implementation. We can intuitively figure
out that Lspatial has a minimum value when Yk is either 0 or
1 for each pixel. With the Lspatial and the softmax operation
together, we show that if a pixel of one eigenvector converges
near to 1, the pixel of other eigenvectors should go to 0. This
makes each pixel across the eigenvectors have different value
due to the sparsity penalty, which produces diverse feature
representations of image structures.

In total, the final loss function for SSGNet is defined as:

Lssg = Leigen + λLspatial (7)

where λ is the hyper-parameter, and is empirically set to 40.
Our SSGNet is pretrained on a single dataset and can be

embedded in various baseline networks after passing through
an additional single convolution layer which acts as an at-
tention module. In favor of the target domain on each task,
this layer produces adaptive structural information of input
scenes by linearly combining the set of eigenvectors.
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Figure 3: Visualization of the sets of eigenvectors according
to λ = 0, 40, and 1000.

3.3 Analysis
To the best of our knowledge, the SSGNet is the first to unfold
the eigen-decomposition problem into a learnable network.
To validate its effectiveness, we provide a series of analyses
on SSGNet.

First, we analyze our loss function in Eq.(7) by tuning
the hyper-parameter λ used as a balancing term between
Lspatial and Leigen. In our experiment, the best performance
is obtained with λ = 40. In Fig.3, we show the visualization
results for three different λ values, including λ = 0, 40, and
1000. When λ is set to 0, Lspatial is not forced enough to
give a sparsity penalty across eigenvectors, which leads to
the degenerate case. Otherwise, if λ is set to 1000, the image
is not well-segmented because the overwhelming majority
of Lspatial causes undesirable seams on the image. From
this, we can see that the absence of either one leads to an
undesirable situation, which emphasizes the role of each of
the two terms in our loss functions.

Next, we demonstrate that our SSGNet yields task-specific
structural guidance features. As we highlighted, the SSGNet
can be embedded in baseline networks. When the pretrained
SSGNet is attached to baseline networks, the network pa-
rameters on SSGNet are finetuned to produce guidance fea-
tures suitable for each task as the training proceeds. In Fig.4,
we visualize how the eigenvectors from SSGNet change at
each iteration during finetuning, including joint depth upsam-
pling (Dong et al. 2022) and single image denoising (Zhang
et al. 2022).

The joint depth upsampling needs accurate object bound-
aries as a prior (Li et al. 2014). For obvious reasons, an
objective function in the joint depth upsampling encourages a
greater focus on reconstructing object boundaries. As shown
in Fig.4(a), our SSGNet generates attentive features on them
during fine-tuning. In addition, for image denoising, it is es-
sential to preserve fine detailed textures. In Fig.4(b), with the
meaningful scene structures from our SSGNet, the plausible
result is inferred as well. We claim that it is possible for
our SSGNet to capture informative and task-specific struc-
tures through gradient updates from backpropagation (LeCun
et al. 1989). We will describe the experimental details and
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Figure 4: Examples of task-specific scene structures: intial,
intermediate and final results from SSGNet for (a) joint depth
upsampling and (b) image denoising.
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Figure 5: Illustrations of SSGNet for low-level vision tasks.
The yellow colored networks indicate our SSGNet that out-
puts informative task-specific structure guidances.

SSGNet’s quantitative benefits on each task in Sec.4.

3.4 Training Scheme
We implement the proposed framework using a public Py-
torch (Paszke et al. 2019), and utilize the Adam (Kingma
and Ba 2014) optimizer with β1 = 0.9 and, β2 = 0.999.
The learning rate and the batch size are set to 0.0001 and 4
on SSGNet, respectively. We train the proposed framework
on images with a 256×256 resolution. Since the proposed
framework consists of fully convolutional layers, images with
higher resolutions than that used in the training phase are
available in inference. The training on SSGNet took about 40
hours on two NVIDIA Tesla v100 GPUs.

4 Experiments
We conduct a variety of experiments on low-level vision tasks,
including self-supervised joint depth upsampling (Sec.4.1)
and unsupervised single image denoising (Sec.4.2), to demon-
strate the effectiveness of our SSGNet. Moreover, we provide
an extensive ablation study (Sec.4.3) to precisely describe the
effects of each component in SSGNet. Note that the higher
resolution version of experimental results is reported in our
supplementary material.
Baselines with SSGNet In this section, our goal is to val-
idate a wide applicability of SSGNet. To do this, we incor-
porate SSGNet into existing CNN architectures for the joint
depth upsampling and the unsupervised image denoising by
simply embedding scene structures from ours to the models.
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Supervised Self-Supervised
Dataset Scale DKN FDKN FDSR P2P MMSR Ours

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

2005 ×4 1.103 0.275 0.964 0.222 0.886 0.211 1.288 0.273 0.708 0.239 0.612 0.188
×8 1.182 0.288 1.629 0.339 1.043 0.333 1.177 0.280 1.043 0.319 0.830 0.245

2006 ×4 1.623 0.297 1.337 0.222 1.198 0.198 2.604 0.413 0.555 0.232 0.504 0.201
×8 1.790 0.307 1.883 0.305 1.170 0.267 2.684 0.300 0.723 0.261 0.648 0.225

2014 ×4 2.878 0.739 2.593 0.659 3.217 0.595 4.019 0.822 1.953 0.573 1.819 0.451
×8 3.642 0.775 3.510 0.871 3.606 0.885 3.894 0.920 2.765 0.785 2.714 0.675

Table 1: Quantitative results on joint depth upsampling tasks. The best and the second best results are marked as bold and
underlined, respectively. (unit:cm)

DKN FDKN FDSR OursMMSR

Baseline

DKN FDKN FDSR OursMMSR

Baseline

Guidance Source GT Scene  
Structure

0.0

1.0
(a) Predicted Depth Map 

(b) Predicted Error Map 

Figure 6: Comparison results on the joint depth upsampling
with a resolution factor of 8 on the Middlebury 2005 dataset.
We visualize the predictions and their corresponding error
maps of competitive methods and ours.

Prior to the evaluations, we train our SSGNet on a well-
known NYUv2 dataset (Silberman and Fergus 2011), consist-
ing of 1,000 training images and 449 test images. With the
pre-trained weight of SSGNet, we embed it to the baseline
networks and finetune on each task. As mentioned above, we
do not need any supervision for training SSGNet. We note
that NYUv2 dataset is not used for evaluations, to validate
the zero-shot generalization across various datasets.

4.1 Joint Depth Upsampling
Joint depth upsampling leverages the explicit structure detail
of the input image as a guidance and transfers it to the target
low-resolution depth map for enhancing spatial resolution.
With this application, we demonstrate the synergy of the
structure details from clean input images and the proposed
learnable scene structure from SSGNet.

For this experiment, we choose MMSR (Dong et al. 2022)
as a baseline depth upsampling network. MMSR introduces
a mutual modulation strategy with the cross-domain adaptive
filtering and adopts a cycle consistency loss to train the model
in a fully self-supervised manner. Instead of directly using
the input image as the guidance, we employ the structure
guidance from the pretrained SSGNet in Fig.5(a), and follow
the training scheme of MMSR for fair comparisons such that

all the supervised methods are trained on NYUv2 dataset.
We also follow the evaluation protocol described in (Dong

et al. 2022) to quantitatively measure the root mean square
error (RMSE) and the mean absolute error (MAE). To be spe-
cific, we use the Middlebury stereo dataset 2005 (Scharstein
and Pal 2007), 2006 (Hirschmuller and Scharstein 2007), and
2014 (Scharstein et al. 2014)1, and augment them, which pro-
vides 40, 72, and 308 image-depth pairs, respectively, using
a public code2.

We compare with various state-of-the-art models, in-
cluding supervised, DKN (Kim, Ponce, and Ham 2021),
FDKN (Kim, Ponce, and Ham 2021) and FDSR (He et al.
2021), and self-supervised manners, P2P (Lutio et al. 2019)
and MMSR (Dong et al. 2022). As shown in Tab.1, MMSR
with our SSGNet embedded achieves the best performance in
almost datasets over the comparison methods. Our SSGNet
brings the performance gain over the second best method is
about 10.4% and 11.8% with respect to RMSE and MAE,
respectively. It is also noticeable that the scene structure con-
tributes to reducing the errors in the star-like object boundary
and the inside surface, visualized in Fig.6. We highlight that
the result demonstrates the strong generalization capabilities
of our SSGNet on unseen data again.

4.2 Image Denoising
We treat single image denoising to check the effectiveness of
our SSGNet if the scene structure in the input image is cor-
rupted by noise. For this experiment, we use IDR (Zhang et al.
2022) as a baseline image denoising network. IDR suppresses
the image noise in a self-supervised manner by proposing an
iterative data refinement scheme. The key of IDR is to reduce
a data bias between synthetic-real noisy images and ideal
noisy-clean images. To embed the scene structure to IDR, we
simply concatenate it from our pretrained SSGNet with the
noisy input image in Fig.5(b). As the rounds go on iteratively,
our SSGNet focuses more on texture information of input
scenes by ignoring the image noise, as already displayed in
Fig.4.

To validate the applicability to the image denoising task
as well, we compare our results with various state-of-the-
art self-supervised models, including BM3D (Mäkinen,

1Since Middlebury 2003 provides neither depth maps nor camera
parameters, we could not use it in this evaluation.

2Downloaded from https://rb.gy/bxyqgi
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Kodak BSD300 BSD68
Method σ = 25 σ = 50 σ = 25 σ = 50 σ = 25 σ = 50

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
BM3D 31.88 0.869 28.64 0.772 30.47 0.863 27.14 0.745 28.55 0.782 25.59 0.670
N2V 31.63 0.869 28.57 0.776 30.72 0.874 27.60 0.775 27.64 0.781 25.46 0.681
Nr2n 31.96 0.869 28.73 0.770 29.57 0.815 26.18 0.684 N/A N/A N/A N/A

DBSN 32.07 0.875 28.81 0.783 31.12 0.881 27.87 0.782 28.81 0.818 25.95 0.703
N2N 32.39 0.886 29.23 0.803 31.39 0.889 28.17 0.799 29.15 0.831 26.23 0.725
IDR 32.36 0.884 29.27 0.803 31.48 0.890 28.25 0.802 29.20 0.835 26.25 0.726
Ours 32.39 0.885 29.34 0.806 31.52 0.891 28.33 0.805 29.25 0.835 26.36 0.731

Table 2: Quantitative results on single image denoising.

DBSNNoisy(𝜎 = 50)
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IDR(baseline)

N2NBSD300: 2092
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14.69dB
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15.91dB 29.68dB 31.29dB
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Figure 7: Examples of the single image denoising. For
the noisy level σ = 50, we visualize the results from
IDR+SSGNet as well as the state-of-the-art methods.

Azzari, and Foi 2019) N2V (Krull, Buchholz, and Jug
2019), Nr2n (Moran et al. 2020) DBSN (Wu et al. 2020),
N2N (Lehtinen et al. 2018), and IDR (Zhang et al. 2022).
For the evaluation, we strictly follow the experimental setup
in (Zhang et al. 2022). We quantitatively measure PSNR and
SSIM on Kodak (Kodak 1993), BSD300 (Movahedi and El-
der 2010) and BSD68 (Martin et al. 2001) datasets for the
zero-shot generalization. The models are trained on Gaussian
noise with the continuous noise level σ = [0, 50] and tested
on σ = 25 and 50.

As shown in Tab.2, IDR with our SSGNet embedded
achieves the best performance among all the competitive
methods regardless of the noise levels. We emphasize that the
performance gain by our SSGNet is about 0.58dB on average.
Considering the performance difference between the second
and the third best methods is about 0.26dB achieved by the
paradigm shift from a statistical reasoning of image restora-
tion (Lehtinen et al. 2018) to the iterative refinement (Zhang
et al. 2022), SSGNet makes meaningful contribution. Fig.7
shows some example results. With the powerful capability
of IDR on the noise suppression, our SSGNet preserves the
scene texture of the objects well.

4.3 Ablation Study
An extensive ablation study is conducted to examine the
effect of each component on SSGNet: the hyper-parameter

λ in our loss function and the number of eigenvectors. We
additionally test alternative scene structures computed from
Canny Edge (Canny 1986) with different thresholds. For
this ablation study, we measure RMSE and MAE on the
Middlebury 2005 dataset for the joint depth upsampling (×8),
and PSNR and SSIM on the Kodak dataset for the single
image denoising (σ = 50), whose results and examples are
reported in Tab.3 and Fig.8, respectively.
Choice of Hyper-parameter λ Since our loss function
requires the selection of a hyper-parameter λ, it is important
to study the sensitivity of the performances to the choice of λ.
We carry out this experiment for six different values: 0.001,
0.1, 1, 100 and 1000 as well as 40 in our setting.

As a result, SSGNet’s performance is insensitive to the
choice of λ. In the joint depth upsampling, the performance
difference according to λ is very marginal in that RMSE and
MAE are at most 0.02cm and 0.001cm off the optimal values.
In contrast, the performance gain for the image denoising
when using λ = 40 is relatively large. Compared to λ = 1000
which shows the second best performance, the improvement
from 0.08dB in PSNR when using λ = 40 brings more
benefits for the comparisons with the state-of-the-art methods.
In total, we find the optimal trade-off between these two tasks.
The Number of Eigenvectors The number of eigenvectors
to represent scene structures is closely related to the number
of learnable parameters in SSGNet. It is important for us to
determine the optimal trade-off parameter in consideration
of both the minimum number and the performances on these
two tasks.

We investigate the performances of SSGNet with two, five,
seven and ten as well as three eigenvectors. Interestingly,
we observe the similar phenomenon just as above. The per-
formance degradation on the joint depth upsampling is very
small (about 0.02cm in RMSE and 0.003 in MAE), and the
performance gain by 0.07dB in PSNR over the second best
value on the image denoising is achieved. For the same rea-
son, we set the number of eigenvectors to 3.
Comparison with Hand-crafted Structure Prior Hand-
crafted edge detection is widely used for representing scene
structures, even in recent models for low-level vision i.e. in-
painting (Guo, Yang, and Huang 2021; Dong, Cao, and
Fu 2022) and super-resolution (Nazeri, Thasarathan, and
Ebrahimi 2019). We employ one of the representative hand-
crafted edge map detection methods, Canny edge.
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Task Depth Upsampling Denoising
RMSE MAE PSNR SSIM

Ours 0.83 0.245 29.34 0.806
Hyper-parameter λ

0.001 0.84 0.246 29.17 0.801
0.1 0.83 0.245 29.15 0.800
1 0.82 0.244 29.13 0.800

100 0.81 0.244 29.16 0.801
1000 0.84 0.248 29.26 0.803

# of eigenvectors
2 0.84 0.272 29.15 0.800
5 0.81 0.242 29.16 0.800
7 0.82 0.242 29.17 0.800
10 0.82 0.244 29.27 0.804

Canny Edge
ψ={0.6, 0.9, 1.4} 0.90 0.298 24.86 0.510
ψ={1.0, 2.0, 3.0} 0.90 0.282 24.37 0.489

Table 3: Ablation study for the effects of each component of
SSGNet. We use the Middlebury 2005 with ×8 for the joint
depth upsampling, and the Kodak with a noise level σ=50 for
the single image denoising.

For fair comparison, we generate a set of edge maps with
various thresholds for image gradients ψ, and embed it into
the baseline networks. We note that the edge maps are used
as input of our attention layer for the networks to selectively
choose informative scene structures during the training phase.
Here, we set two types of thresholds ψ to {0.6, 1.5, 2.4}
and {1.0, 2.0, 3.0} that we manually find the best settings to
configure image textures and object boundaries.

As shown in Tab.3, the interesting fact is that the perfor-
mance drop of the joint depth upsampling is not huge when
using the hand-crafted edge maps (within 0.07cm in RMSE
and 0.037cm in MAE). On the other hand, there is the large
performance gap between ours and the Canny edge maps
(about 4dB in PSNR and 0.3 in SSIM).

Two possible reasons why the Canny edge fails to generate
task-specific scene representations are: (1) The edge maps
are not affected by back-propagation in training phase. (2)
Based on the experimental results for the image denoising,
the Canny edge is sensitive to image noise, which may corrupt
the estimated scene structures and eventually not work as a
prior. On the other hand, as displayed in Fig.8, our SSGNet
returns the sharpest images, enabling the contents to be read.
We thus argue that this experiment demonstrates the efficacy
of our learnable structure guidance.

5 Conclusion
In this paper, we present a single general network for repre-
senting task-specific scene structures. We cast the problem
of the acquisition of informative scene structures as a tradi-
tional graph partitioning problem on the image domain, and
solve it using a lightweight CNN framework without any
supervision, Scene Structure Guidance Network (SSGNet).
Our SSGNet computes coefficients of a set of eigenvectors,
enabling to efficiently produce diverse feature representations

Guidance

LR

𝜆=0.001 𝜆=0.1 𝜆=1 𝜆=100 𝜆=1000 Canny2

EV=10EV=7EV=5EV=2 Canny1 Ours

(a) Joint Depth Upsampling
GT 𝜆=0.001 𝜆=0.1 𝜆=1 𝜆=100 𝜆=1000 Canny2

Canny1EV=10EV=7EV=5EV=2Noise
(𝜎 = 50)

Ours
PSNR 26.66dB 26.69dB 26.68dB 26.68dB 26.73dB 23.78dB

26.92dB24.35dB26.65dB26.71dB26.69dB26.68dB16.16dB

(b) Image Denoising

Figure 8: Qualitative comparison for different settings of
SSGNet. EV denotes the number of eigenvectors, and Canny1
and Canny2 mean edge threshold settings such as ψ = {0.6,
0.9, 1.4} and ψ = {1.0, 2.0, 3.0}, respectively. For the joint
depth upsampling, we display the reconstruction results and
the error maps, together.

of a scene with a small number of learnable parameters. With
our proposed two loss terms, the eigen loss and the spatial
loss, SSGNet is first initialized to parameterize the scene
structures. The SSGNet is then embedded into the baseline
networks and the parameters are fine-tuned to learn task-
specific guidance features as the training proceeds. Lastly,
we show the promising performance gains for both the joint
depth upsampling and image denoising, even with the good
cross-dataset generalization capability.
Discussion Although our SSGNet achieves the state-of-the-
art results for the tasks with the simple embedding approach
across the baseline networks, there are still rooms for im-
provements.

To suggest our future directions, we conduct additional
small experiments for image super-resolution and unguided
depth completion tasks which is a dense depth prediction
from a sparse input depth without any guidance image. In
these experiments, the super-resolution only use downsam-
pled input images to extract scene structures, and the depth
completion relies on the pretrained weight of SSGNet to rep-
resent scene configurations. We choose SeaNet (Fang, Li,
and Zeng 2020), a CNN architecture equipped with a sepa-
rate scene texture estimation branch, and pNCNN (Eldesokey
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Scale ×2 ×3 ×4
PSNR SSIM PSNR SSIM PSNR SSIM

SeaNet 38.08 0.9609 34.55 0.9282 32.33 0.8981
SeaNet+ 38.15 0.9611 34.65 0.9290 32.44 0.8981

Ours 38.18 0.9612 34.68 0.9290 32.51 0.8983

Scale KITTI NYU
RMSE MAE RMSE MAE

pNCNN 1013.08 251.53 0.058 0.144
Ours 1009.51 256.06 0.056 0.138

Table 4: Additional experiments on Set5 (Bevilacqua et al. 2012) for image super-resolution with ×2, ×3 and ×4, and
NYUv2 (Silberman et al. 2012) and KITTI (Uhrig et al. 2017) datasets for unguided depth completion. (unit:cm)

Baseline Ours Scene
Structure

GTSparse Point

Figure 9: Comparison results on unguided depth completion
on the NYUv2 dataset with pNCNN. Even no a guidance
image, our SSGNet establishes the scene structure well.

et al. 2020), a lightweight probabilistic CNN (∼ 670K) to
refine initial dense depth predictions based on a statistical
uncertainty measure, for the image super-resolution and the
unguided depth completion, respectively.

Tab.4 reports that we obtain the performance gains with
our SSGNet over the baseline models. Particularly, the syn-
ergy between our SSGNet and pNCNN is noticeable in Fig.9.
Unfortunately, the baseline models with our SSGNet do not
reach the quality of huge size models, a ViT-based image
super-resolution (Liang et al. 2021) and a GAN-based un-
guided depth completion (Lu et al. 2020).

One of the future directions is to devise the best incorpo-
ration scheme of our SSGNet in that their structures are too
tricky to intuitively embed it. Another is that a joint multi-
modality training from heterogeneous data is expected to
represent more informative scene structures and to extend the
applicability of SSGNet.
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