
Tight Inapproximability for Graphical Games
Argyrios Deligkas1, John Fearnley2, Alexandros Hollender3, Themistoklis Melissourgos4

1Royal Holloway, United Kingdom
2University of Liverpool, United Kingdom

3EPFL, Switzerland
4University of Essex, United Kingdom

argyrios.deligkas@rhul.ac.uk, john.fearnley@liverpool.ac.uk, alexandros.hollender@epfl.ch,
themistoklis.melissourgos@essex.ac.uk

Abstract

We provide a complete characterization for the computational
complexity of finding approximate equilibria in two-action
graphical games. We consider the two most well-studied ap-
proximation notions: ε-Nash equilibria (ε-NE) and ε-well-
supported Nash equilibria (ε-WSNE), where ε ∈ [0, 1]. We
prove that computing an ε-NE is PPAD-complete for any con-
stant ε < 1/2, while a very simple algorithm (namely, letting
all players mix uniformly between their two actions) yields
a 1/2-NE. On the other hand, we show that computing an
ε-WSNE is PPAD-complete for any constant ε < 1, while a
1-WSNE is trivial to achieve, because any strategy profile is a
1-WSNE. All of our lower bounds immediately also apply to
graphical games with more than two actions per player.

Introduction
Graphical games were introduced more than twenty years
ago by Kearns, Littman, and Singh (Kearns, Littman, and
Singh 2001) as a succinct model of a multi-player game.
These games have found a wide variety of applications. On
the theoretical side, they have served as a fundamental tool
for showing seminal PPAD-completeness results in algorith-
mic game theory (Daskalakis, Goldberg, and Papadimitriou
2009; Chen, Deng, and Teng 2009). Practically, graphical
games have been used as a foundation for the game theoretic
analysis of networks (Galeotti et al. 2010; Jackson and Zenou
2015), social networks, and multi-agent systems (Kearns
2007; Jackson 2011).

A graphical game is specified by a directed graph with
n vertices. Each vertex represents a player, and each player
has m distinct actions. The edges of the graph specify the
interactions between the players: the payoff to player i is
determined entirely by the actions chosen by player i and the
in-neighbours of player i. Formally, the payoffs for a player
are given by a payoff tensor, which maps the actions chosen
by that player and their in-neighbours to a payoff in [0, 1].

Graphical games are more succinct than standard normal
form games when the maximum in-degree d is constant. An
n-player m-action game requires n ·mn payoffs to be written
down, which becomes infeasibly large as n grows. On the
other hand, each tensor in a graphical game has md+1 payoff

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

entries, giving n·md+1 payoffs in total, which provides much
more reasonable scaling as n grows when d is constant.

The complexity of finding equilibria. Unfortunately it is
known that finding a Nash equilibrium in a graphical game is
a PPAD-hard problem (Daskalakis, Goldberg, and Papadim-
itriou 2009) and thus considered to be intractable. This has
left open the question of finding approximate Nash equilibria,
and two notions of approximate equilibrium have been stud-
ied in the literature. An ε-Nash equilibrium (ε-NE) requires
that no player can improve their payoff by more than ε by uni-
laterally changing their strategy, while an ε-well-supported
Nash equilibrium (ε-WSNE) requires that all players only
place positive probability on actions that are ε-best responses.
Every ε-WSNE is also an ε-NE, but the reverse is not true.

In this paper we make the standard assumption that all
payoffs lie in the range [0, 1], which then gives us a scale on
which we can measure the additive approximation factor ε. A
0-NE or 0-WSNE is an exact Nash equilibrium, while a 1-NE
or 1-WSNE can be trivially obtained, since the requirements
will be satisfied no matter what strategies the players use.

For many years, the best known lower bounds for ap-
proximate equilibria in graphical games were given by Ru-
binstein (Rubinstein 2018), who proved that there is some
unspecified small constant ε for which finding an ε-NE is
PPAD-complete, and there is a different but still unknown
small constant ε′ for which finding an ε′-WSNE is PPAD-
complete. In fact, Rubinstein’s result applies to games that
are simultaneously graphical games of constant degree and
also polymatrix games, namely in which each edge represents
a two-player game and a player’s payoff is the sum of payoffs
from these games against her in-neighbours.

This was recently improved by a result of Deligkas et
al. (Deligkas et al. 2022a). They showed that it is PPAD-
complete to find a 1/48-NE of a two-action polymatrix game,
and it is PPAD-complete to find an ε-WSNE of a two-action
polymatrix game for all ε < 1/3 (the latter result being tight).
Since these hardness results hold even for constant-degree
polymatrix games, they also apply to graphical games.1

On the other hand, only trivial upper bounds are known
for approximate equilibria in graphical games, even when
the players only have two actions. For ε-WSNE the upper

1A polymatrix game of constant degree can be turned into its
graphical game representation in polynomial time.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

5600

bound is 1, since any strategy profile is a 1-WSNE. For ε-NE,
the upper bound is 1/2 in two-action games and is achieved
when all players uniformly mix over their two actions; the
upper bound simply follows from the fact that every player
plays their best response with probability at least 0.5 and that
the maximum payoff is bounded by 1.

Our Contribution. In this paper we show that the afore-
mentioned trivial upper bounds are in fact the best possible,
by providing matching lower bounds for finding approximate
equilibria in graphical games.

For the problem of finding an ε-WSNE, we show that it is
PPAD-complete to find an ε-WSNE in a two-action graphical
game for every constant ε < 1. Since finding a 1-WSNE is
trivial, we obtain a striking characterization for constant ε:
no polynomial-time algorithm can find a non-trivial WSNE
of a graphical game unless PPAD = P.

In fact, we present a more fine-grained analysis that pro-
vides a complete dichotomy of the complexity of finding a
WSNE in a two-action graphical game of maximum in-degree
d:

• a
(
1− 2

2d+1

)
-WSNE can be found in polynomial time;

• for any ε < 1− 2
2d+1

, it is PPAD-complete to compute a
ε-WSNE.

Thus, for any constant ε < 1 there exists a sufficiently
large constant in-degree d, such that the problem becomes
intractable.

For ε-NE we show that it is PPAD-complete to find an ε-
NE of a two-action graphical game for any constant ε < 0.5;
this complements the straightforward algorithm for finding
a 0.5-NE in a two-action graphical game. We note that our
lower bounds, both for ε-WSNE and ε-NE, also hold for
graphical games with more than two actions.2

All of our lower bounds are shown via reductions from
the PURE-CIRCUIT problem that was recently introduced by
Deligkas et al. (Deligkas et al. 2022a). In that paper, PURE-
CIRCUIT was used to show the aforementioned lower bounds
for polymatrix games. We show that PURE-CIRCUIT can
likewise be used to show stronger and tight lower bounds for
graphical games.

Due to space restrictions, some proofs are omitted and can
be found in the full version (Deligkas et al. 2022b).

Further Related Work. The class PPAD was defined
by Papadimitriou (Papadimitriou 1994). Many years later,
Daskalakis, Goldberg, and Papadimitriou (Daskalakis, Gold-
berg, and Papadimitriou 2009) proved that finding an ε-NE in
graphical games and 3-player normal form games is PPAD-
complete for an exponentially small ε. These results were
further extended to polynomially small ε for 2-player games
and two-action polymatrix games with bipartite underlying
graph by Chen, Deng, and Teng (Chen, Deng, and Teng
2009).

On the positive side, Elkind, Goldberg, and Gold-
berg (Elkind, Goldberg, and Goldberg 2006) derived a
polynomial-time algorithm on two-action graphical games

2We can simply add additional “dummy” actions that are just
copies of the original two actions.

on paths and cycles, and Ortiz and Irfan (Ortiz and Irfan
2017) derived an approximation scheme for constant-action
graphical games on trees. For polymatrix games, Barman,
Ligett, and Piliouras (Barman, Ligett, and Piliouras 2015) de-
rived a quasi-PTAS on trees, and Deligkas, Fearnley, and
Savani (Deligkas, Fearnley, and Savani 2017) derived a
quasi-PTAS for constant-action games on bounded treewidth
graphs. These results where complemented by the same au-
thors (Deligkas, Fearnley, and Savani 2020) who showed that
finding an exact NE is PPAD-complete for polymatrix games
on trees when every player has 20 actions.

Preliminaries
For every natural number k, let ∆k denote the k-dimensional
simplex, i.e., ∆k := {x ∈ Rk+1 : x ≥ 0,

∑k+1
i=1 xi = 1},

and let [k] := {1, 2, . . . , k}.

Graphical Games
An n-player m-action graphical game is defined by a di-
rected graph G = (V,E), where |V | = n, each node of
G corresponds to a player, and the maximum number of
actions per player is m. We define the in-neigbourhood of
node i to be N−(i) := {j ∈ V : (j, i) ∈ E}, and sim-
ilarly its out-neighbourhood to be N+(i) := {j ∈ V :
(i, j) ∈ E}. We also define the neighbourhood of i as
N(i) := N−(i) ∪ N+(i) ∪ {i}. We include i in its own
neighbourhood for notational convenience.

In a graphical game, each player i participates in a normal
form game Gi whose player set is N(i), but she affects only
the payoffs of her out-neighbours. Player i has mi actions, or
pure strategies, and her payoffs are represented by a function
Ri : [mi] ×

∏
j∈N−(i)[mj] 7→ [0, 1] which will be referred

to as the payoff tensor of i. If the codomain of Ri is {0, 1}
for all i ∈ V , we have a win-lose graphical game.

A mixed strategy si for player i specifies a probabil-
ity distribution over player i’s actions. Thus, the set of
mixed strategies for player i corresponds to the (mi − 1)-
dimensional simplex ∆mi−1. The support of a mixed strat-
egy si = (si(1), si(2), . . . , si(mi)) ∈ ∆mi−1 is given by
supp(si) = {j ∈ [mi] : si(j) > 0}. In other words, it
is the set of pure strategies that are played with non-zero
probability in strategy si.

An action profile a(H) := (ai)i∈H over a player set H
is a tuple of actions, one for each player in H , and so the
set of these action profiles is given by A(H) =

∏
i∈H [mi].

Similarly, a strategy profile s(H) over the same set is a tuple
of mixed strategies, and so the set of these strategy profiles is
given by

∏
i∈H ∆mi−1. We define the partial action profile

a−i to be the tuple of all players’ actions except i’s action,
and similarly we define the partial strategy profile s−i. The
expected payoff of i when she plays action k ∈ [mi], and all
other players play according to s−i is

ui(k, s−i) :=
∑

a∈A(N−(i))

Ri(k;a) ·
∏

j∈N−(i)

sj(aj).

Notice that this depends only on the in-neighbours of i.

5601

The expected payoff to player i under s is therefore

ui(s) :=
∑

k∈[mi]

ui(k, s−i) · si(k).

A pure strategy k is a best response for player i against a
partial strategy profile s−i if it achieves the maximum payoff
over all her pure strategies, that is,

ui(k, s−i) = max
ℓ∈[mi]

ui(ℓ, s−i).

Pure strategy k is an ε-best response if the payoff it yields is
within ε of a best response, meaning that

ui(k, s−i) ≥ max
ℓ∈[mi]

ui(ℓ, s−i)− ε.

Finally, the best response payoff for player i is

bri(s−i) := max
ℓ∈[mi]

ui(ℓ, s−i).

(Approximate) Nash equilibria. A strategy profile s is
a Nash equilibrium if bri(s) = ui(s) for all players i, i.e.,
every player achieves their best response payoff. A strategy
profile s is an ε-Nash equilibrium (ε-NE) if every player’s
payoff is within ε of their best response payoff, meaning
that ui(s) ≥ bri(s) − ε. A strategy profile s is an ε-well
supported Nash equilibrium (ε-WSNE) if every player only
plays strategies that are ε-best responses, that is, for all i we
have that supp(si) contains only ε-best response strategies.

The PURE-CIRCUIT Problem
An instance of the PURE-CIRCUIT problem is given by
a node set V = [n] and a set G of gate-constraints
(or just gates). Each gate g ∈ G is of the form g =
(T, u, v, w) where u, v, w ∈ V are distinct nodes, and
T ∈ {NOT,AND,PURIFY} is the type of the gate, with
the following interpretation.
• If T = NOT, then u is the input of the gate, and v is its

output. (w is unused)
• If T = AND, then u and v are the inputs of the gate, and
w is its output.

• If T = PURIFY, then u is the input of the gate, and v
and w are its outputs.

We require that each node is the output of exactly one gate.
A solution to instance (V,G) is an assignment x : V →

{0, 1,⊥} that satisfies all the gates (see Fig. 1), i.e., for each
gate g = (T, u, v, w) ∈ G we have the following.
• If T = NOT in g = (T, u, v), then x satisfies

x[u] = 0 =⇒ x[v] = 1

x[u] = 1 =⇒ x[v] = 0.

• If T = AND in g = (T, u, v, w), then x satisfies

x[u] = x[v] = 1 =⇒ x[w] = 1

x[u] = 0 ∨ x[v] = 0 =⇒ x[w] = 0.

• If T = PURIFY, then x satisfies

{x[v],x[w]} ∩ {0, 1} ̸= ∅
x[u] ∈ {0, 1} =⇒ x[v] = x[w] = x[u].

The structure of a PURE-CIRCUIT instance is captured by
its interaction graph. This graph is constructed on the vertex
set V = [n] by adding a directed edge from node u to node
v whenever v is the output of a gate with input u. The total
degree of a node is the sum of its in- and out-degrees.

Theorem 1 ((Deligkas et al. 2022a)). PURE-CIRCUIT is
PPAD-complete, even when every node of the interaction
graph has in-degree at most 2 and total degree at most 3.

Well-Supported Nash Equilibria
An easy upper bound. We present a polynomial time al-
gorithm to compute a

(
1− 2

2d+1

)
-WSNE in any two-action

graphical game with maximum in-degree d ≥ 2. The algo-
rithm relies on a simple and natural approach that has been
used for similar problems by Liu et al. (Liu, Li, and Deng
2021) and Deligkas et al. (Deligkas et al. 2022a).

The algorithm proceeds in two steps. In the first step, it
iteratively checks for a player that has an action that is ε-
dominant; an action which, if played with probability 1, will
satisfy the ε-WSNE conditions no matter what strategies the
in-neighbours play. Here, we will set ε = 1− 2

2d+1
, where d

is the maximum in-degree of the graph. If such a player with
an ε-dominant action exists, the algorithm fixes the strategy
of that player, updates the game accordingly, and iterates until
there is no such player left. In the second step, the algorithm
lets all remaining players mix uniformly, i.e., every player
without an ε-dominant action plays each of its two actions
with probability 1/2.

Theorem 2. There is a polynomial-time algorithm that finds
a
(
1− 2

2d+1

)
-WSNE in a two-action graphical game with

maximum in-degree d.

Proof. It is easy to see that the algorithm described above
runs in polynomial time. In particular, we can check if a
player has an ε-dominant action by simply going over all
possible action profiles of its in-neighbours. We will prove
it computes an ε-WSNE for ε = 1 − 2

2d+1
. By definition

of ε-dominance, the players whose actions were fixed in the
first step satisfy the constraints of ε-WSNE. Notice that after
fixing any such player to play an ε-dominant action, we get
a smaller graphical game. Thus, it suffices to consider the
graphical game we obtain after the end of the first step, and
to show that if all (remaining) players mix uniformly, this is
an ε-WSNE.

So, consider a player i in the graphical game we obtain
after the end of the first step, and denote its in-degree by k :=
|N−(i)| ≤ d. Since all in-neighbours of player i are mixing
uniformly, the expected payoff of player i for playing action
0 is

∑
a∈A(N−(i)) Ri(0; a)/2

k, and for playing action 1, it is∑
a∈A(N−(i)) Ri(1; a)/2

k. The constraints of ε-WSNE for
player i are satisfied if both actions are ε-best responses, i.e.,
if∣∣∣∣∣∣

∑
a∈A(N−(i))

Ri(0; a)/2
k −

∑
a∈A(N−(i))

Ri(1; a)/2
k

∣∣∣∣∣∣ ≤ ε.

5602

u v
0 1
1 0
⊥ {0, 1,⊥}

NOT gate

u v w
1 1 1
0 {0, 1,⊥} 0

{0, 1,⊥} 0 0
Else {0, 1,⊥}

AND gate

u v w
0 0 0
1 1 1

⊥ At least one
output in {0, 1}

PURIFY gate

Figure 1: The truth tables of the three gates of PURE-CIRCUIT.

This can be rewritten as 1
2k

∣∣∣∑a∈A(N−(i)) fi(a)
∣∣∣ ≤ ε, where,

for any action profile a ∈ A(N−(i)), we let
fi(a) := Ri(0; a)−Ri(1; a).

Note that since all payoffs lie in [0, 1], we always have
fi(a) ∈ [−1, 1].

Let M :=
∑

a∈A(N−(i)) fi(a). To prove the correctness
of the algorithm, it suffices to prove that |M | ≤ 2k − 1− ε;
since then 1

2k
· |M | ≤ 1− 1+ε

2k
≤ 1− 1+ε

2d
= ε. To see why

this is indeed the case, observe the following. Since player
i does not have an ε-dominant action (otherwise, it would
have been removed in the first step), it means that there exist
a,a′ ∈ A(N−(i)) such that

fi(a) > ε and fi(a
′) < −ε. (1)

Given that M is the sum of 2k terms, each of them upper
bounded by 1, and at least one of them upper bounded by −ε
by (1), it follows that M ≤ 2k − 1− ε. Similarly, since each
term is also lower bounded by −1, and one of them is lower
bounded by ε, we also obtain that M ≥ −2k − 1 + ε. Thus,
|M | ≤ 2k − 1− ε, as desired.

The lower bound. In this section we prove a matching
lower bound for Theorem 2, which essentially proves that
computing an ε-WSNE in two-action graphical games is
PPAD-complete for every constant ε ∈ (0, 1).

We will prove our result by a reduction from PURE-
CIRCUIT. For the remainder of this section, we fix ε <
1− 2

2d+1
. Given a PURE-CIRCUIT instance with in-degree

2, we build a two-action graphical game, where the two ac-
tions will be named zero and one. For any given d ≥ 2,
the game will have in-degree at most d. Each node v of the
PURE-CIRCUIT instance will correspond to a player in the
game – the game will have some additional auxiliary players
too – whose strategy in any ε-WSNE will encode a solution
to the PURE-CIRCUIT problem as follows. Given a strategy
sv for the player that corresponds to node v, we define the
assignment x for PURE-CIRCUIT such that:
• if sv(zero) = 1, then x[v] = 0;
• if sv(one) = 1, then x[v] = 1;
• otherwise, x[v] =⊥.

We now give implementations for NOT, AND, and PU-
RIFY gates. We note that, in all three cases, the payoff re-
ceived by player v is only affected by the actions chosen
by the players representing the inputs to the (unique) gate g
that outputs to v. Thus, we can argue about the equilibrium
condition at v by only considering the players involved in
gate g, and we can ignore all other gates while doing this.

NOT gates. For a gate g = (NOT, u, v) – where recall that
u is the input variable and v is the output variable – we create
a gadget involving players u and v, where player v has a
unique incoming edge from u. The payoffs of v are defined
as follows.

• If u plays zero, then v gets payoff 0 from playing zero
and payoff 1 from playing one.

• If u plays one, then v gets 1 from zero and 0 from one.

This gadget appeared in (Deligkas et al. 2022a), but we in-
clude it here for completeness. We claim that this gadget
works correctly.

- If su(zero) = 1, i.e., u encodes 0, observe that for player
v action zero yields payoff 0, while action one yields
payoff 1. Hence, by the constraints imposed by ε-WSNE
it must hold that sv(one) = 1, and thus v encodes 1.

- Using identical reasoning, we can prove that if su(one) =
1, then sv(one) = 0 in any ε-WSNE.

AND gates. For a gate g = (AND, u, v, w) we create the
following gadget with players u, v and w, where u and v are
the in-neighbors of w. The payoffs of w are as follows.

• If su(one) = 1 and sv(one) = 1, then w gets payoff 0
from playing zero and payoff 1 from playing one.

• For any other action profile of u and v, player w gets 1
from zero and 0 from one.

Next we argue that this gadget works correctly.

- If su(one) = 1 and sv(one) = 1, i.e. both u and v
encode 1, observe that for player w action zero yields
payoff 0, while action one yields payoff 1. Hence, by
the constraints imposed by ε-WSNE it must hold that
sw(one) = 1, and thus w encodes 1.

- If at least one of u or v encodes 0, then for player w action
zero yields expected payoff 1 while action one yields
expected payoff 0. Hence, by the constraints imposed by
ε-WSNE it must hold that sw(zero) = 1, and thus w
encodes 0.

PURIFY gates. For a gate g = (PURIFY, u, v, w) we
create the following gadget with d+ 3 players. We introduce
auxiliary players u1, u2, . . . , ud. Each player ui has a unique
incoming edge from u. The idea is that in any ε-WSNE, every
player ui “copies” the strategy of player u.

• If u plays zero, then ui gets 1 from zero and 0 from one.
• If u plays one, then ui gets 0 from zero and 1 from one.

5603

Lemma 3. At any ε-WSNE the following hold for every i ∈
[d]: if su(zero) = 1, then sui(zero) = 1; if su(one) = 1,
then sui

(one) = 1.

Proof. If su(zero) = 1, then for player ui action zero
yields payoff 1, while action one yields payoff 0. Thus,
the constraints of ε-WSNE dictate that sui

(zero) = 1. If
su(one) = 1, then for player ui action zero yields payoff
0, while action one yields payoff 1. Thus, the constraints of
ε-WSNE dictate that sui(one) = 1.

Next, we describe the payoff tensors of players v and
w; each one of them has in-degree d with edges from all
u1, u2, . . . , ud. In what follows, fix λ := 1 − 2

2d+1
. The

payoffs of player v are as follows.

• If v plays zero and at least one of u1, . . . , uk plays zero,
then the payoff for v is 1.

• If v plays zero and every one of u1, . . . , uk plays one,
then the payoff for v is 0.

• If v plays one and at least one of u1, . . . , uk plays zero,
then the payoff for v is 0.

• If v plays one and every one of u1, . . . , uk plays one,
then the payoff for v is λ.

The payoffs of player w are as follows.

• If w plays zero and every one of u1, . . . , uk plays zero,
then the payoff for w is λ.

• If w plays zero and at least one of u1, . . . , uk plays one,
then the payoff for w is 0.

• If w plays one and every one of u1, . . . , uk plays zero,
then the payoff for w is 0.

• If w plays one and at least one of u1, . . . , uk plays one,
then the payoff for w is 1.

We are now ready to prove that this construction correctly
simulates a PURIFY gate. We consider the different cases
that arise depending on the value encoded by u.

– su(zero) = 1, i.e., u encodes 0. From Lemma 3 we know
that sui(zero) = 1 for every i ∈ [d]. Then, we have the
following for players v and w.

- Player v gets payoff 1 from action zero and payoff 0
from action one. Hence, in an ε-WSNE we get that
sv(zero) = 1, and thus v encodes 0.

- Player w gets payoff λ from action zero and payoff 0
from action one. Hence, since ε < λ, in an ε-WSNE
we get that sw(zero) = 1, and thus w encodes 0.

– su(one) = 1, i.e., u encodes 1. From Lemma 3 we know
that sui

(one) = 1 for every i ∈ [d]. Then, we have the
following for players v and w.

- Player v gets payoff 0 from action zero and payoff λ
from action one. Hence, since ε < λ, in an ε-WSNE
we get that sv(one) = 1, and thus v encodes 1.

- Player w gets payoff 0 from action zero and payoff 1
from action one. Hence, in an ε-WSNE we get that
sw(one) = 1, and thus w encodes 1.

– su(one) ∈ (0, 1), i.e., u encodes ⊥. Then each one of the
auxiliary players u1, . . . , ud can play a different strategy.
For each i ∈ [d], denote sui

(one) = pi, i.e., pi ∈ [0, 1]
is the probability player ui assigns on action one. Let
P :=

∏
i∈[d] pi and Q :=

∏
i∈[d](1− pi). Then, we have

the following two cases.
- P ≤ 2−d. Then we focus on player v: action zero

yields expected payoff 1− P ≥ 1− 2−d, while action
one yields expected payoff P · λ ≤ 2−d · λ. Then,
since ε < λ, we get that in an ε-WSNE it must hold
that sv(zero) = 1, i.e., v encodes 0.

- P > 2−d. Then, it holds that Q < 2−d; this is because
P ·Q =

∏
i∈[d] pi · (1− pi) ≤ (1/4)d. In this case we

focus on player w: action zero yields payoff λ ·Q <
λ·2−d, while action one yields payoff 1−Q > 1−2−d.
Then, again since ε < λ, in any ε-WSNE it must hold
that sw(one) = 1, i.e., w encodes 1.

From the arguments given above, we have that in any ε-
WSNE of the graphical game, with ε < 1− 2

2d+1
, the players

correctly encode a solution to the PURE-CIRCUIT instance.
Theorem 4. Computing an ε-WSNE in two-action graphical
games with maximum in-degree d ≥ 2 is PPAD-complete for
any ε < 1− 2

2d+1
.

We can see that the constructed game is not win-lose since
there is a payoff λ /∈ {0, 1} in the gadget that simulates
PURIFY gates. However, if we set λ = 1, and use verbatim
the analysis from above, we will get PPAD-hardness for
ε-WSNE with ε < 1− 1

2d−1 .
Theorem 5. Computing an ε-WSNE in two-action win-lose
graphical games with maximum in-degree d ≥ 2 is PPAD-
complete for any ε < 1− 1

2d−1 .
Since for every constant ε < 1 we can find a constant d

such that Theorem 5 holds, we get the following corollary.
Corollary 6. For any constant ε < 1, computing an ε-WSNE
in two-action win-lose graphical games is PPAD-complete.

Approximate Nash Equilibria
A straightforward upper bound. We first show that a 0.5-
NE can easily be found in any two-action graphical game.
Theorem 7. There is a polynomial-time algorithm that finds
a 0.5-NE in a two-action graphical game.

Proof. Let s be the strategy profile in which all players mix
uniformly over their two actions. Then, for each player i we
have

ui(s) ≥ 0.5 · bri(s−i)

≥ bri(s−i)− 0.5,

where the final inequality used the fact that bri(s−i) ∈ [0, 1].
Thus, s is a 0.5-NE.

The lower bound. We will show that computing a (0.5−ε)-
NE of a graphical game is PPAD-hard for any constant ε > 0
by a reduction from PURE-CIRCUIT.

Given a PURE-CIRCUIT instance, we build a two-action
graphical game, where the two actions will be named zero

5604

and one. Each node v of the PURE-CIRCUIT instance will
be represented by a set of k players in the game, named
v1, v2, . . . , vk, where we fix k to be an odd number satisfying
k ≥ ln(12/ε) ·18/ε2. Therefore, since ε is constant, k is also
constant.

The strategies of these players will encode a solution to
the PURE-CIRCUIT problem in the following way. Given a
strategy profile s, we define the assignment x such that
• If svi

(zero) ≥ 0.5 + ε/3 for all i, then x[v] = 0.
• If svi

(one) ≥ 0.5 + ε/3 for all i, then x[v] = 1.
• In all other cases, x[v] =⊥.

We now give implementations for NOT, AND, and PU-
RIFY gates. We note that, in all three cases, the payoff re-
ceived by player vi is only affected by the actions chosen
by the players representing the inputs to the (unique) gate g
that outputs to v. Thus, we can argue about the equilibrium
condition at vi by only considering the players involved in
gate g, and we can ignore all other gates while doing this.

NOT gates. For a gate g = (NOT, u, v), we use the fol-
lowing construction, which specifies the games that will be
played between the set of players that represent u and the set
of players that represent v.

Each player vi has incoming edges from all players
u1, u2, . . . , uk, and vi’s payoff tensor is set as follows.
• If strictly more than3 k/2 of the players u1 through uk

play zero, then vi receives payoff 0 for strategy zero and
payoff 1 for strategy one.

• If strictly less than k/2 of the players u1 through uk

play zero, then vi receives payoff 1 for strategy zero and
payoff 0 for strategy one.

We now show the correctness of this construction. We start
with a technical lemma that we will use repeatedly throughout
the construction.
Lemma 8. Suppose that player p has two actions a and b.
In any (0.5− ε)-NE, if the payoff of action a is at most ε/3,
and the payoff of action b is at least 1− ε/3, then player p
must play action b with probability at least 0.5 + ε/3.

We can now prove that the NOT gadget operates correctly.
Lemma 9. In every (0.5− ε)-NE, the following properties
hold.
• If the players representing u encode 0, then the players

representing v encode 1.
• If the players representing u encode 1, then the players

representing v encode 0.

Proof. Let s be a (0.5−ε)-NE. We begin with the first claim.
Since the players representing u encode a 0, we have that
suj (zero) ≥ 0.5 + ε/3 for all j ∈ [k].

We start by proving an upper bound on the payoff of action
zero for player vi. The payoff of this action increases as the
players uj place less probability on action zero, so we can
assume suj

(zero) = 0.5 + ε/3, since this minimizes the
payoff of zero to vi.

3Since k is odd, it is not possible for exactly k/2 players to play
zero.

Under this assumption, the number N of players uj

that play action zero is distributed binomially according
to N ∼ B(k, 0.5 + ε/3). Applying the standard Hoeffding
bound (Hoeffding 1994) for the binomial distribution, and
using the fact that k ≥ ln(6/ε) · 9/2ε2 yields the following

Pr(N ≤ k/2) ≤ 2 · exp

(
−2k

(
0.5 + ε/3− k/2

k

)2
)

= 2 · exp
(
−2k · ε2/9

)
≤ exp (− ln(3/ε))

= ε/3.

Hence the payoff of action zero to player vi is at most ε/3,
and therefore the payoff of action one to vi is at least 1−ε/3.

So we can apply Lemma 8 to argue that svi(one) ≥
0.5 + ε/3. Since this holds for all i, we have that the play-
ers representing v encode the value 1 in the PURE-CIRCUIT
instance, as required.

The second case can be proved in an entirely symmetric
manner.

AND gates. For a gate g = (AND, u, v, w) we use the
following construction. Each player wi has in-degree 2k and
has incoming edges from all of the players u1, u2, . . . , uk,
and all of the players v1, v2, . . . , vk. The payoff tensor of wi

is as follows.

• If strictly more than k/2 of the players u1 through uk play
one, and strictly more than k/2 of the players v1 through
vk play one, then wi receives payoff 0 from action zero
and payoff 1 from action one.

• If this is not the case, then wi receives payoff 1 from
action zero and payoff 0 from action one.

Correctness of this construction is shown in the following
pair of lemmas.

Lemma 10. In every (0.5−ε)-NE of the game, if the players
representing u encode value 1, and the players representing
v encode value 1, then the players representing w will encode
value 1.

Proof. Let s be a (0.5− ε)-NE. From the assumptions about
u and v, we have that suj

(one) ≥ 0.5 + ε/3 for all j, and
svj

(one) ≥ 0.5 + ε/3 for all j ∈ [k].
We start by proving an upper bound on the payoff of

zero to wi. Since this payoff decreases as the players uj

and vj place more probability on one, we can assume that
suj (one) = 0.5 + ε/3 for all j, and svj (one) = 0.5 + ε/3
for all j, since this maximizes the payoff of zero to wi.

The number N of players uj that play one is distributed
binomially according to N ∼ B(k, 0.5+ ε/3). Similarly, the
number of players vj that play one, are distributed accord-
ing to the same distribution, that is why we focus only in
the former. The standard Hoeffding bound for the binomial

5605

distribution, and the fact that k ≥ ln(12/ε) · 9/2ε2, give

Pr(N ≤ k/2) ≤ 2 · exp

(
−2k

(
0.5 + ε/3− k/2

k

)2
)

= 2 · exp
(
−2k · ε2/9

)
≤ exp (− ln(6/ε))

= ε/6.

We can then use the union bound to prove that the probability
that strictly less than k/2 of the players u1 through uk play
one, or strictly less than k/2 of the players v1 through vk
play one is at most ε/3.

Hence, the payoff of zero to player wi is at most ε/3, and
so the payoff of one to player wi is at least 1 − ε/3. Thus
we can apply Lemma 8 to argue that wi must play one with
probability at least 0.5 + ε/3. Since this holds for all i, we
have that w1, w2, . . . wk correctly encode value 1.

Lemma 11. In every (0.5−ε)-NE of the game, if the players
representing u encode value 0, or the players representing v
encode value 0, then the players representing w will encode
value 0.

PURIFY gates. For a gate g = (PURIFY, u, v, w), we use
the following construction. Each player vi will have incoming
edges from all players u1, u2, . . . , uk, with their payoff tensor
set as follows.
• If strictly more than (0.5 − ε/6) · k of the players u1

through uk play one, then vi receives payoff 0 from action
zero and payoff 1 from action one.

• If this is not the case, then vi receives payoff 1 from action
zero and payoff 0 from action one.

Each player wi will have incoming edges from all players
u1, u2, . . . , uk, with their payoff tensor set as follows.
• If strictly more than (0.5 + ε/6) · k of the players u1

through uk play one, then wi receives payoff 0 from
action zero and payoff 1 from action one.

• If this is not the case, then wi receives payoff 1 from
action zero and payoff 0 from action one.

The following lemma shows that v is correctly simulated.
Lemma 12. Let s be a (0.5−ε)-NE, and let E[X] denote the
expected number of players ui playing strategy one under s.
• If E[X] ≤ (0.5− ε/3) · k, then the players representing
v will encode value 0.

• If E[X] ≥ 0.5 · k, then the players representing v will
encode value 1.

The next lemma shows that w is also correctly simulated.
Lemma 13. Let s be a (0.5−ε)-NE, and let E[X] denote the
expected number of players ui playing strategy one under s.
• If E[X] ≤ 0.5 · k, then the players representing w will

encode value 0.
• If E[X] ≥ (0.5 + ε/3) · k, then the players representing
w will encode value 1.

Combining the two previous lemmas, we can see that the
construction correctly simulates a PURIFY gate.

• If the players representing u encode value 0, then E[X] ≤
0.5−ε/3, and so both the players representing v and those
representing w encode value 0.

• If the players representing u encode value 1, then E[X] ≥
0.5+ε/3, and so both the players representing v and those
representing w encode value 1.

• In all other cases we can verify that either the players
representing v or the players representing w encode a 0
or a 1. Specifically, if E[X] ≤ 0.5 · k then the players
representing w encode value 0, while if E[X] ≥ 0.5 · k,
then the players representing v encode value 1.

The hardness result. From the arguments given above,
we have that in an (0.5− ε)-NE of the graphical game, the
players correctly encode a solution to the PURE-CIRCUIT
instance. Note also that, since Theorem 1 gives hardness for
PURE-CIRCUIT even when the total degree of each node is
3, the graphical game that we have built has total degree at
most 3k. Thus, the game can be built in polynomial time.

Theorem 14. It is PPAD-hard to find a (0.5 − ε)-NE in a
two-action graphical game for any constant ε > 0.

In fact, the payoff entries in all gadgets are 0 or 1. Thus,
our PPAD-hardness result holds for win-lose games too.

Corollary 15. For any constant ε > 0, it is PPAD-hard to
find a (0.5− ε)-NE in a two-action win-lose graphical game.

Conclusions
We have resolved the computational complexity of finding
approximate Nash equilibria in two-action graphical games,
by providing complete characterizations for both ε-NE and
ε-WSNE. Our results show that finding approximate Nash
equilibria in graphical games is much harder when compared
to the special case of (constant-degree) polymatrix games:
for two-action polymatrix games the tractability threshold for
ε-WSNE is 1/3 (Deligkas et al. 2022a).

Below we identify two research questions that deserve
more research.

• What is the intractability threshold for ε-NE in graphical
games with more than two actions? We have shown that
0.5 is the threshold for two-action games, and we conjec-
ture that 0.5 is the correct answer for the multi-action case
as well. Hence, we view the main open problem as finding
a polynomial-time algorithm that finds a 0.5-NE in any
graphical game. We note that such an algorithm is already
known for the special case of polymatrix games (Deligkas
et al. 2017).

• What is the intractability threshold for ε-NE and ε-WSNE
in polymatrix games? For ε-NE our understanding is far
from complete, even in the two-action case, since there is
a substantial gap between the 1/48 lower bound and the
1/3 upper bound (where the latter actually comes from
the tractability of 1/3-WSNE) given in (Deligkas et al.
2022a). For ε-WSNE, although the problem is completely
resolved for the two-action case, the gap in multi-action
polymatrix games is still large, and it seems that improv-
ing either the known lower bound of 1/3, or the trivial
upper bound of 1, would require significantly new ideas.

5606

Acknowledgements
The second author was supported by EPSRC grant
EP/W014750/1 “New Techniques for Resolving Boundary
Problems in Total Search”. The third author was supported
by the Swiss State Secretariat for Education, Research and
Innovation (SERI) under contract number MB22.00026.

References
Barman, S.; Ligett, K.; and Piliouras, G. 2015. Approximat-
ing Nash Equilibria in Tree Polymatrix Games. In Proc. of
SAGT, 285–296.
Chen, X.; Deng, X.; and Teng, S.-H. 2009. Settling the
complexity of computing two-player Nash equilibria. Journal
of the ACM, 56(3): 14:1–14:57.
Daskalakis, C.; Goldberg, P. W.; and Papadimitriou, C. H.
2009. The complexity of computing a Nash equilibrium.
SIAM Journal on Computing, 39(1): 195–259.
Deligkas, A.; Fearnley, J.; Hollender, A.; and Melissourgos,
T. 2022a. Pure-Circuit: Strong Inapproximability for PPAD.
In Proc. of FOCS, 159–170.
Deligkas, A.; Fearnley, J.; Hollender, A.; and Melissourgos, T.
2022b. Tight Inapproximability for Graphical Games. arXiv
preprint, abs/2209.15151.
Deligkas, A.; Fearnley, J.; and Savani, R. 2017. Computing
Constrained Approximate Equilibria in Polymatrix Games.
In Proc. of SAGT, 93–105.
Deligkas, A.; Fearnley, J.; and Savani, R. 2020. Tree Poly-
matrix Games Are PPAD-Hard. In Proc. of ICALP, volume
168, 38:1–38:14.
Deligkas, A.; Fearnley, J.; Savani, R.; and Spirakis, P. G.
2017. Computing Approximate Nash Equilibria in Polyma-
trix Games. Algorithmica, 77(2): 487–514.
Elkind, E.; Goldberg, L. A.; and Goldberg, P. W. 2006. Nash
equilibria in graphical games on trees revisited. In Proc. of
EC, 100–109.
Galeotti, A.; Goyal, S.; Jackson, M. O.; Vega-Redondo, F.;
and Yariv, L. 2010. Network games. The review of economic
studies, 77(1): 218–244.
Hoeffding, W. 1994. Probability inequalities for sums of
bounded random variables. In The collected works of Wassily
Hoeffding, 409–426. Springer.
Jackson, M. O. 2011. An overview of social networks and
economic applications. Handbook of social economics, 1:
511–585.
Jackson, M. O.; and Zenou, Y. 2015. Games on networks.
In Handbook of game theory with economic applications,
volume 4, 95–163. Elsevier.
Kearns, M. 2007. Graphical Games. In Nisan, N.; Rough-
garden, T.; Tardos, É.; and Vazirani, V. V., eds., Algorithmic
Game Theory, 159–180. Cambridge University Press.
Kearns, M.; Littman, M. L.; and Singh, S. 2001. Graphi-
cal Models for Game Theory. In Proceedings of the 17th
Conference on Uncertainty in Artificial Intelligence (UAI),
253–260.

Liu, Z.; Li, J.; and Deng, X. 2021. On the Approximation
of Nash Equilibria in Sparse Win-Lose Multi-player Games.
In Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI), 5557–5565.
Ortiz, L. E.; and Irfan, M. T. 2017. Tractable Algorithms
for Approximate Nash Equilibria in Generalized Graphical
Games with Tree Structure. In Proc. of AAAI, 635–641.
Papadimitriou, C. H. 1994. On the complexity of the parity
argument and other inefficient proofs of existence. Journal
of Computer and System Sciences, 48(3): 498–532.
Rubinstein, A. 2018. Inapproximability of Nash equilibrium.
SIAM Journal on Computing, 47(3): 917–959.

5607

