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Abstract
Ensuring the overall end-user experience is a challenging task
in arbitrary style transfer (AST) due to the subjective na-
ture of style transfer quality. A good practice is to provide
users many instead of one AST result. However, existing ap-
proaches require to run multiple AST models or inference
a diversified AST (DAST) solution multiple times, and thus
they are either slow in speed or limited in diversity. In this pa-
per, we propose a novel solution ensuring both efficiency and
diversity for generating multiple user-controllable AST re-
sults by systematically modulating AST behavior at run-time.
We begin with reformulating three prominent AST methods
into a unified assign-and-mix problem and discover that the
entropies of their assignment matrices exhibit a large vari-
ance. We then solve the unified problem in an optimal trans-
port framework using the Sinkhorn-Knopp algorithm with
a user input ε to control the said entropy and thus modu-
late stylization. Empirical results demonstrate the superiority
of the proposed solution, with speed and stylization quality
comparable to or better than existing AST and significantly
more diverse than previous DAST works. Code is available at
https://github.com/cplusx/eps-Assign-and-Mix.

Introduction
Neural style transfer (NST) refers to the process of render-
ing a pastiche image P from a content image C and a style
image S through a deep neural network (DNN), such that
the resulting P displays the content of C in the style of S.
Early NST methods like (Gatys, Ecker, and Bethge 2016)
were developed for a single pair of S and C, requiring the
model to be re-trained for every such pair. These were fol-
lowed by a series of methods that support a single S but ar-
bitrary C (Johnson, Alahi, and Fei-Fei 2016; Ulyanov et al.
2016; Ulyanov, Vedaldi, and Lempitsky 2017; Li and Wand
2016), and those developed for a static set of S but arbitrary
C (Ghiasi et al. 2017; Chen et al. 2017; Dumoulin, Shlens,
and Kudlur 2016; Li et al. 2017a; Zhang and Dana 2018;
Kotovenko et al. 2019a; Sanakoyeu et al. 2018). In recent
years, arbitrary style transfer (AST) methods have become
the most popular approaches for NST as they can be utilized
for arbitrary, including unseen, S and C. Contemporary re-
search in AST includes deformable style transfer (Kim et al.
*This work was done during Jiaxin Cheng’s internship at Amazon.
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2020; Liu, Yang, and Hall 2021), brush-based style trans-
fer (Kotovenko et al. 2021), better style transfer loss func-
tions (Risser, Wilmot, and Barnes 2017; Sanakoyeu et al.
2018; Cheng et al. 2021; Wu et al. 2022), transformer-based
AST (Deng et al. 2021; Wu et al. 2021; Cheng et al. 2019;
Deng et al. 2022), text-driven AST (Kwon and Ye 2022) etc.

Despite the existence of a large number of AST ap-
proaches, with each generating pleasing stylized images, no
method produces results that are single-handedly considered
the best among users. This is because style transfer is an
art form and human perception of art is subjective. Indeed,
a review of user preference studies in previous works (Li
et al. 2019; Park and Lee 2019; Liu et al. 2021; Lin et al.
2021; Yao et al. 2019) provides the following insights: (1)
the most preferred AST method typically achieves less than
two-thirds of the user votes, (2) the difference between the
top two most preferred methods commonly ranges from 10
to 30 percentage points, and (3) even the method with the
least votes usually receives at least 5% approval.

To increase stylization diversity and improve user experi-
ence, one solution is to run multiple AST models simultane-
ously, referred to as Multi-AST-K, where K is the number
of AST methods. However, despite achieving good diversity
and style transfer quality, this approach demands significant
computational resources and training efforts. Alternatively,
ArtIns (Xie et al. 2022) generates diverse AST results by
decomposing style into many components and linearly com-
bining them during sampling, but it does not preserve style
faithfully (See appendix for comparison.). In contrast, di-
versified style transfer techniques (Li et al. 2017a; Ulyanov,
Vedaldi, and Lempitsky 2017; Wang et al. 2020; Li et al.
2020; Wang et al. 2021) generate multiple stylized images
for the same input through random noise in the AST pro-
cess (Li et al. 2017a; Wang et al. 2020; Li et al. 2020).
However, the output diversity of such methods is limited
as the noise must be small enough to avoid low-quality re-
sults and is challenging to control in practice. For example,
PWCT (Wang et al. 2020) introduces random noise pertur-
bation in the WCT (Li et al. 2017b) AST process, and SP (Li
et al. 2020) designs random style feature permutation for an
AST process like AdaIN (Huang and Belongie 2017).

In this paper, we propose a novel ε-Assign-and-Mix (ε-
AM ) formulation to address the preference diversity issue in
AST by allowing a user input ε at run-time to systematically
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Framework Multi-AST-K DAST Ours
Param. AST-Index Random noise ε param.

Controllable? Yes No Yes
#Models K 1 1

#Outputs K ∞ ∞
Diversity High Low-Med High

Quality High Low-Med High
Speed Slow Fast Fast

Table 1: Comparisons of style transfer frameworks for in-
creasing stylization diversity.

change the behavior of the assignment matrix that defines
the correspondence between content and style features, and
consequently, the nature of the generated stylized images.
Our work makes three major contributions: (1) we show
that popular AST methods, e.g. AdaIN (Huang and Belongie
2017), DFR (Gu et al. 2018) and SANet (Park and Lee
2019), can all be unified into our generalized assign-and-mix
formulation, (2) we propose a novel ε-AM framework to
allow users to systematically modulate the assignment ma-
trix and subsequent stylization at run-time, and (3) we pro-
pose framing the problem as optimal transport, which can be
solved efficiently using the Sinkhorn-Knopp algorithm (Cu-
turi 2013) via entropy regularization. Results of extensive
experiments show that our framework can explicitly and ac-
tively control the AST behavior, and produce high-quality
and diverse outputs with high inference speed to please a
wide range of users. Fig. 1 shows the overview of our solu-
tion and ?? highlights its similarities and differences with
the existing ones.

ε-Assign-and-Mix
In this section, we first review the core transfer function used
in AST. We then revisit three well-known AST approaches
and show that a large family of existing AST approaches
can be viewed as solving a generalized two-step Assign-and-
Mix (AM ) problem. We later present our analysis that shows
that a major difference among different AST methods is the
entropy of the assignment matrix that defines style-content
feature correspondence. Based on these findings, we pro-
pose to solve the proposed AST problem using the general
AM formulation. By introducing a new input parameter ε to
control the entropy of the assignment matrix explicitly, our
proposed ε-AM approach can output diverse AST results at
run-time. We explain the assignment step and the mix step
and show that the problem can be efficiently solved by the
Sinkhorn-Knopp algorithm (Cuturi 2013).

AST Transfer Function
An essential task in AST is to construct a transfer function
t(·) that maps content feature fC and style features fS to a
pastiche feature fP carrying content and style information.

fP = t(fC , fS) (1)

Thus, we broadly classify AST approaches into three fam-
ilies, namely: (1) content feature transform, (2) style fea-
ture assignment, and (3) others. The family of content fea-

ture transform methods typically obtains fP via a heuris-
tic or learnable transform of the content feature fC with
the style feature fS as the reference for controlling the im-
plicit transfer process (Li et al. 2019; Guo et al. 2018), or
through explicit statistical matching (Huang and Belongie
2017; Li et al. 2017b,c; Huo et al. 2021) between fP and fS ,
e.g. mean and variance (Huang and Belongie 2017), covari-
ance (Li et al. 2017b), and maximum mean discrepancy (Li
et al. 2017c). In contrast, the family of style feature assign-
ment methods reconstructs fP from the style feature vec-
tors in fS , while the content feature fC is used as the refer-
ence to either implicitly guide the style assignment (Huang
et al. 2020) or explicitly ensure the optimal global and/or
local assignment (Chen and Schmidt 2016; Gu et al. 2018).
The third family spans AST approaches (Park and Lee 2019;
Shen, Yan, and Zeng 2018; Zhang, Zhu, and Zhu 2019; Ko-
tovenko et al. 2019b; Yao et al. 2019; Cheng et al. 2019; Liu
et al. 2021; Deng et al. 2021; Wu et al. 2021) that do not
show a strong preference between fS and fC , and typically
use a sub-network to implicitly represent the function.

Generalized Assign-and-Mix Problem
To simplify discussion, we view all deep features fC and fS
as matrices, i.e., for a convolutional feature tensor f∗ of size
h×w×d, we view it as an n∗×d matrix in the paper, where
n∗ = h ·w and d is the feature dimension. In addition, we
denote f∗,i as the i-th row in f∗. The row vector is named
the content/style vector.

As aforementioned, the core task in AST is to design the
transfer function Eq. (1). Existing approaches have differ-
ent design criteria, but we discover that many (Huang and
Belongie 2017; Park and Lee 2019; Gu et al. 2018; Huang
et al. 2020; Deng et al. 2020) follow the same AM transfer
function of the abstract form below,

fP = tAM(fC , fS) = A× fS︸ ︷︷ ︸
Assign

+M ⊙ ϕ(fC)︸ ︷︷ ︸
Mix

(2)

where content fC and style of fS are of size nC ×d and size
nS × d, respectively, fP is the output feature with content
from fC and style from fS , A is the assignment matrix of
size nC×nS denoting style-content feature correspondence,
M is the mixing matrix of size nC×d that fuses content and
style features, ϕ(·) is an element-wise projection function,
and × and ⊙ represents matrix multiplication and element-
wise multiplication, respectively. Further, with A[i, j] denot-
ing the element in A at position (i, j), we have A[i, j] ≥ 0
and

∑
j A[i, j] = 1.

We now show how the transfer functions of three well-
known and representative AST methods, namely, Adap-
tive Instance Normalization (AdaIN) (Huang and Belongie
2017) from the content feature transform family, Deep
Feature Reshuffle (DFR) (Gu et al. 2018) from the style
feature assignment family, and Style Attentional Network
(SANet) (Park and Lee 2019) from the implicit network-
based family, can be rewritten in the AM formulation.
Adaptive Instance Normalization AdaIN (Huang and Be-
longie 2017) is a representative content feature transform
AST method. It adopts the following linear transfer func-
tion with style mean and standard deviation used as the bias
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Figure 1: Overview of our ε-Assign-and-Mix (ε-AM ) arbitrary style transfer framework. Besides content and style inputs C
and S, we introduce a new user-controllable parameter ε to modulate our two-step style transfer process. For given content and
style features fC and fS , Sinkhorn Style Assignment finds the ε-dependent optimal assignment matrix Aε to reconstruct content
features using style features fS . Quality-aware Content Mixing compares feature similarity between the reconstructed content
fS→C and the original content fC to dynamically generate a mixing matrix M for extra content blending. In conjunction, they
produce diversified and high quality outputs by varying ε using the same network.

and slope, respectively,

fAdaIN
P = µfS + σfS ⊙ fN

C (3)

where fN
∗ indicates a normalized feature,

fN
∗ = normalize(f∗) = (f∗ − µf∗)⊘ σf∗ ; (4)

⊙ and ⊘ denote element-wise product and division, respec-
tively, and µf∗ and σ2

f∗
are the mean and variance of f∗.

Thus, AdaIN (Huang and Belongie 2017) aligns the first two
statistical moments between fP and fS . Following the AM
formulation, the AdaIN transfer function can be rewritten
as Eq. (5), where ⊮h×w is an all-one matrix of size h×w.

fAdaIN
P =

⊮nC×nS

nS︸ ︷︷ ︸
=A

×fS + σfS︸︷︷︸
=M

⊙ normalize(fC)︸ ︷︷ ︸
=ϕ(·)

(5)

Deep Feature Reshuffle: DFR (Gu et al. 2018) is the first
work in the style feature assignment family of AST methods.
It has the following transfer function:

fDFR
P = B × fS + β · fC (6)

where B is a binary matrix whose 1s indicate the optimal
correspondences between one content vector and one style
vector, · and × refer to scalar product and matrix multiplica-
tion, respectively, and β is a scalar. Following the AM for-
mulation, Eq. (6) can be rewritten as Eq. (7), where I(·) is
the identity function.

fDFR
P = B︸︷︷︸

=A

×fS + β · ⊮nC×d︸ ︷︷ ︸
=M

⊙I(fC)︸ ︷︷ ︸
=ϕ(·)

(7)

Style Attentional Networks: SANet (Park and Lee 2019)
uses an attention module to dynamically compute similari-
ties between content and style vectors. The similarity matrix
is then used to assign style features and mix content features.
We omit learnable feature projections in SANet to simplify
discussion as they don’t change the content or style seman-
tics of a feature, and arrive the transfer function below,

fSANet
P = softmax

(
fN
C × (fN

P )T
)
× fP + fC (8)

where (·)T is the matrix transpose and softmax(·) indicates
the softmax function along rows. Following the AM formu-
lation, we rewrite Eq. (8) as Eq. (9) below.

fSANet
P =softmax

(
fN
C ×(fN

S )T
)︸ ︷︷ ︸

=A

×fS+⊮nC×d︸ ︷︷ ︸
=M

⊙I(fC)︸ ︷︷ ︸
=ϕ(·)

(9)

AST Modulation via ε-Assign-and-Mix
One important but unanswered question in the last section is
why the three studied AST solutions produce very different
results. We investigate this by studying their similarities and
differences in ?? . As shown, the methods have different de-
pendencies on style and content. We also observe that, since
the mixing matrix M is always heuristic or constant matrix,
the assignment matrix A generally plays a more important
role in determining the AST output. Hence, it is crucial to
analyze the assignment matrix A.

We recharacterize A by normalizing it as Ã = A/nC .
Since

∑
i

∑
j Ã[i, j]=1 and Ã[i, j]≥0, Ã can be viewed as

a probability matrix with entropy as:

h(Ã) = −
nc∑
i=1

nS∑
j=1

Ã[i, j] · log(Ã[i, j]) (10)

The differences in the three studied AST methods can be
largely attributed to their distinct nature of h(Ã). Specifi-
cally, AdaIN (Huang and Belongie 2017) requires a fully-flat
assignment matrix to represent the style mean, correspond-
ing to maximum h(ÃAdaIN); DFR (Gu et al. 2018) uses a
binary assignment matrix to reshuffle style feature vectors
w.r.t. content, resulting in a small h(ÃDFR); and SANet (Park
and Lee 2019) adopts an attention module to predict an dy-
namic assignment matrix, with h(ÃSANet) lying between the
previous two extremes.

We reformulate the AST transfer function (Eq. (2)) as our
ε-AM transfer function in Eq. (11) with a new and exter-
nal user-adjustable parameter ε that allows users to directly
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modulate the AST output at runtime by controlling the en-
tropy of the assignment matrix.

fP = tAM
ε (fC , fS) = Aε × fS︸ ︷︷ ︸

ε−Assign

+M ⊙ ϕ(fC)︸ ︷︷ ︸
Mix

(11)

The resulting ε-AM formulation is illustrated in Fig. 1
and the Sinkhorn Style Assignment and the Quality-aware
Content Mixing processes implement the Assignment and
Mixing steps in Eq. (11), respectively. In the assignment
step, the external parameter ε is used to constrain the entropy
of the assignment probability matrix Ãε during optimization
for reconstructing content from style features as below

fS→C = Aε × fS . (12)

In the mixing step, we quantify the content discrepancy be-
tween fS→C and fC , and mix content features accordingly.
Details discussion can be found later.

AdaIN DFR SANet Ours
M dep. on style? Yes No No Yes

M dep. on content? No No No Yes
M ’s type Heuri. Const. Const. Attention

A dep. on style? Yes Yes Yes Yes
A dep. on content? No Yes Yes Yes

A’s type Heuris. Optim. Attention Optim.

Entropy of Ã High Low Med Adjustable
Multi-output? No No No Yes

Table 2: AST assignment and mixing matrices comparisons.
Heuris. means Heuristic, Const. means Constant, and Optim.
means Optimization.

Sinkhorn Style Assignment
The design of the assignment matrix Aε needs to fulfill two
requirements: (1) its entropy should be easily controlled by
ε, and (2) Aε can be efficiently computed. We adopt the op-
timal transport framework for computing the style-content
correspondence in Aε and use Sinkhorn distances (Cuturi
2013) for efficiency.

In particular, we define the assignment cost matrix C of
size nC×nS as:

C[i, j] = ρ(fC,i, fS,j), (13)

where ρ(·,·) measures the cosine distance, following (Kolkin
et al. 2020), and C[i, j] represents the distance between the
i-th content vector fC,i and the j-th style vector fS,j .

To control the entropy of Aε with an external parameter
ε≥ 0, we formulate the optimal Aε computation as solving
the optimal transport problem with an entropic constraint as:

Aε = argmin
A

〈
A/nC , C

〉
− ε · h(A/nC) (14)

where Ã = A/nC is a probability matrix, ⟨·, ·⟩ stands for
the Frobenius dot-product and h(·) is the entropy function.
According to (Cuturi 2013), this is a strictly convex problem
that can be solved at “lightspeed” with the Sinkhorn-Knopp

matrix scaling algorithm (Cuturi 2013) (see details in the
supplemental material).

Aε exhibits two interesting properties: (1) the entropy
h(Aε/nC) decreases monotonically as ε decreases, and (2)
h(Aε/nC) is differentiable w.r.t. fC and fS . Property (1) al-
lows control over the assignment matrix via ε, i.e. as ε→0,
Aε approaches to a binary matrix, which is similar to the
solution in DFR, and as ε→∞, Aε approaches a uniformly
distributed matrix, which is similar to the solution in AdaIN.
Property (2) allows us to train an encoder using gradients
from the assignment matrix. Finally, we obtain the recon-
structed content feature fS→C via Eq. (12).

Empirically, we notice that when ε=1, the resulting Aε

tends to follow a uniform distribution and does not change
significantly for ε > 1. Further, for ε < 1e-4, the numeri-
cal solution could be unstable. Hence, we set the adjustment
range to ε ∈ [1e-4, 1] in this work. The resulting algorithm
typically converges in three to ten iterations.

Quality-Aware Content Mixing
Instead of using constant or heuristic-based content mixing
like previous works (see ?? ), we develop a novel quality-
aware content mixing method for fusing content and style
features. Intuitively, if a reconstructed content vector fS→C,i

is close to the corresponding original content vector fC,i, no
mixing is needed since both content and style information
are well-preserved. However, if fS→C,i is far from fC,i, it
is necessary to mix it with fC,i to reduce content distortion.
We define the quality-aware mixing matrix M as,

M [i, j]=sigmoid
(
w ·ρ(fC,i, fS→C,i)+b

)
,∀j∈ [1,d] (15)

where sigmoid(·) is the activation, w and b are learnable
scalars, and ρ(·, ·) is the cosine distance function as follow-
ing the work of (Kolkin et al. 2020). Hence, ρ(fC,i, fS→C,i)
quantifies the feature similarity, and M [i, j] indicates the dy-
namic coefficient to mix extra content. As a result, we could
obtain output feature fP that carries both content and style
information via Eq. (11).

Experimental Results
Training Settings
Although the proposed two-step ε-AM transfer function
module can be plugged into many AST networks (see
Fig. 1), e.g., skip-connection networks (Huang et al. 2020),
U-Net-like models (Liu et al. 2021), neural flows (An et al.
2021) and others (Lin et al. 2021), we adopt the classic
AdaIN network (Huang and Belongie 2017). The model
contains a VGG-19 (Simonyan and Zisserman 2014) en-
coder (up to the layer relu4 1) and its mirrored decoder,
where MaxPool2D layers are replaced with UpSample2D
layers. Once the VGG-19 encoder outputs the content and
style features fC and fS , we pass them through the two-step
transfer function, and obtain the pastiche feature fP , which
is then used by the decoder to produce the stylized image P .

In particular, the encoder is initialized with a VGG-19 (Si-
monyan and Zisserman 2014) pre-trained on ImageNet and
the decoder is initialized with random weights. We use the
suggested VGG layer set from (Huang and Belongie 2017)
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(a) (b)

Figure 2: Influence of ε on stylization diversity: (a) shows
the combined loss distribution of AdaIN, DFR, and SANet
methods, and (b) shows that of ours with different ε values,
respectively. Each ◦ indicates a sample, and colors denote
AST methods. The contours are fitted via OneClassSVM
using data points from (a), for providing reference across
(a) and (b). Solid contours indicate the decision boundaries
while numbers on contours indicate margins. The diversity
generated by ε-AM is comparable to that spanned by all
three methods in (a).

to compute content and style losses and the style-aware nor-
malized losses in (Cheng et al. 2021) for AST optimiza-
tion. The MS-COCO (Lin et al. 2014) and the Painter-By-
Numbers (Nichol 2016) (PBN) datasets are used for con-
tent and style images, respectively. We randomly sample ε
from [1e-4, 1], and (content, style) pairs. We resize images to
256×256, and train models for 160,000 iterations. We tune
the entire network end-to-end with the Adam optimizer us-
ing 1e-4 as the learning rate and 1e-5 as the weight decay.

Study of ε Impact on Stylization and Diversity

We begin with studying the relationship between ε and the
overall AST output diversity in terms of content and style
loss distributions. More precisely, we randomly select 100
pairs of content and style images, and apply the above-
mentioned three AST methods, namely, AdaIN (Huang and
Belongie 2017), DFR (Gu et al. 2018), and SANet (Park and
Lee 2019). We also perform AST on these pairs using our
method with ε ∈ {1e0, 1e-1, 1e-2, 1e-3, 1e-4}.

We then compute content and style losses for all samples
and plot them in Fig. 2. The plot shows that (1) as ε varies,
ε-AM changes the AST behavior in terms of output content
and style losses, and (2) the diversity of ε-AM is comparable
to that spanned in conjunction by AdaIN, DRF, and SANet.

We further study the relationship between ε and the en-
tropy of the resulting probability matrix using the same data.
Tab. 3 summarizes our findings, showing that the entropy of
the assignment matrix h(Ãε) varies as ε changes. Specif-
ically, the resulting assignment matrix has similar entropy
to that of AdaIN (flat matrix) for large ε = 1e0 and DFR
(sparse matrix) for small ε = 1e-4. More importantly, we
can modulate the resulting entropy from that of AdaIN to
that of DFR by tuning ε, which is the exact behavior that we
expect to achieve.

Entropy Adjustable Parameter ε AdaIN DFR SANet
h(Ã=A/nC) 1e0 1e-1 1e-2 1e-3 1e-4

Mean 16.5 14.9 12.4 10.5 8.9 16.6 8.3 9.6
Std 0.01 0.14 0.59 0.48 0.39 - - 0.34

Table 3: The entropy of the probability assignment matrices
trained by different AST methods.

Study of Impact of Assignment and Mixing Steps
We study the effectiveness of the assignment and mixing
steps in our method by comparing the full model with three
ablation versions, namely, (1) Assignment-No-BP, where we
stop the gradient from the assignment matrix to update the
encoder, (2) No-Mix, where we skip the content mixing step,
and (3) Constant-Mix, where we mix constant content fea-
tures like DFR(Gu et al. 2018) (see Eq. (6)). We control for
the impact of ε by fixing it to 1e-2 in this study.

We find that both the proposed modules are effective
for generating high quality images. Tab. 4 validates the
proposed assignment and mixing choices in terms of the
model’s content and style losses. It is clear that the losses in-
crease significantly when the gradient from the assignment
matrix is not used (Assignment-No-BP), which makes it dif-
ficult to tune the encoder. Removing quality-aware content
feature mixing (No-Mix) or using the constant content mix-
ing (Constant-Mix) also increases both the losses compared
to the full model. However, this has less impact compared to
the assignment ablation. Overall, both the proposed differ-
entiable Sinkhorn style assignment method and the quality-
aware content mixing improve AST. Qualitatively, we notice
that Assignment-No-BP achieves the worst image quality,
and fails to preserve local content or style. while the output
image from the full model has the best quality. We provide
corresponding visualization in the supplementary material.

Settings Content Loss↓ Style Loss↓ Total Loss↓
Assign-No-BP 2.26 3.02 5.28

No-Mix 2.09 2.82 4.91
Const.-Mix 2.01 2.59 4.60

Full 1.97 2.28 4.25

Table 4: Evaluation losses for models trained with different
assignment methods and mixing methods.

Comparison with the State-of-the-Art
In this section, we conduct experiments to compare our
ε-AM solution with the state-of-the-art (SoTA) style
transfer works, including AST methods AdaIN (Huang
and Belongie 2017),WCT (Li et al. 2017b),SANet (Park
and Lee 2019),MANet (Deng et al. 2020),ArtFlow (An
et al. 2021),DFR (Gu et al. 2018) and DAST methods
PWCT (Wang et al. 2020), and SP(Li et al. 2020). Unless
otherwise stated, we use the default settings for previous
works. Since not all studied metrics are applicable to both
AST and DAST approaches, we do the following adjustment
to ensure fair comparisons – for an AST metric defined on
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Content Style AdaIN SANet DFR MANet ArtFlow Our Diversified Results

Figure 3: Qualitative comparisons of the proposed ε-AM (ε ∈ (1e-4, 1)) to SoTA AST approaches. ε-AM achieves comparable
to or better style transfer quality than SoTA AST solutions. Best viewed digitally and zoomed in. See more results in the
supplemental materials.
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Figure 4: Qualitative comparisons of the proposed ε-AM
(ε ∈ (1e-4, 1)) to SoTA DAST approaches. ε-AM attains
obviously higher diversity than SoTA DAST solutions.

a deterministic output, we fix the random seed in a DAST
solution and use a fixed ε for the proposed ε-AM solution;
for a DAST metric defined on a set of outputs, we group

AST methods as Multi-AST solutions (i.e. a set of AST so-
lutions is treated as single DAST solution to generate diver-
sified outputs) and use random ε values for our method. In
particular, we name the set of all eight studied AST methods
as Multi-AST-8. In the following sections, we show that the
ε-AM solution outperforms SoTA methods for diversity, de-
ception rate, inference time and user-like rate for most cases
and leave the discussion of failure cases in appendix.

Diversity metrics used in DAST include pixel distance
(PD) (Wang et al. 2020) and learned perceptual image patch
similarity (LPIPS) (Zhang et al. 2018). The former computes
the average pixel difference in RGB space, while the latter
measures that in the feature space of conv1 5 of the Ima-
geNet pretrained AlexNet.

Method PD↑ LPIPS↑
PWCT 0.059 0.242
SP + AdaIN 0.050 0.229
SP + WCT 0.088 0.248
Ours 0.117 0.375

Table 5: Diversity evaluation for SoTA DAST approaches.

We compute diversity metrics by randomly sampling
1,000 image pairs with content images from MS-COCO (Lin
et al. 2014) and style images from PBN (Nichol 2016) for
evaluation. For each solution, we generate three diversified
samples for each image pair and compute their pairwise
distances, which results in C2

3 = 6 scores for each style-
content image pair. These results are presented in Tab. 5.
Multi-AST-8 represents a setting that uses eight very differ-
ent AST models. This setting achieves the highest diversity
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performance, as expected, and we treat its scores as empir-
ical upper bounds. In contrast, the SoTA DAST solutions
using a single model attain much lower PD and LPIPS. Al-
though ε-AM also has only one network, it largely promotes
the diversity scores of DAST solutions – leading the best
DAST approach by 33% in PD and 51% in LPIPS relatively,
and comes close to Multi-AST-8. Qualitative results can be
found in Figs. 3 and 4.

Deception Rate (DR) is defined as the success rate of an
AST method’s output stylized images at deceiving an expert
artist classification model. This score is highly correlated to
human expert scores (Sanakoyeu et al. 2018). Consequently,
a higher deception rate indicates better stylization quality.

We follow the protocol in (Cheng et al. 2021) to compute
DR and first generate 5,000 stylized images by randomly
matching 1,798 PBN style images from 34 artists (Cheng
et al. 2021) who have at least 30 paintings in the testing
set that have not been seen during training, and 5,000 MS-
COCO content images. We construct a nearest neighbor
classifier based on the winning solution of the PBN chal-
lenge1. It computes 2,048-d features for all style and stylized
images. Finally, for a stylized image, a successful deception
means that its artist matches that of its nearest style image.

Results are summarized in Tab. 6. It is clear that our ap-
proach achieve much higher DR comparing to SoTA AST
and DAST approaches, and the best DR is attained when we
use ε = 1e-2. Qualitative results in Fig. 4 show that our
method generates high-quality diversified stylized images.

Method DR (%) ↑ Inf. (ms) ↓ Multi. of AdaIN ↓

A
ST

AdaIN 28.80 22 1.00×
WCT 18.45 172 7.82×

SANet 40.65 37 1.68×
UST 22.00 49 2.23×

MANet 33.05 39 1.77×
Art Flow 30.70 183 8.32×

DFR 38.45 4,501 204.59×
MultiModal 21.10 105 4.77×

D
A

ST PWCT 17.45 203 9.23×
SP+WCT 17.55 180 8.18×

SP+AdaIN 33.10 23 1.05×

O
ur

s

ε = 1e-0 34.70 23 1.05×
ε = 1e-1 39.05 26 1.18×
ε = 1e-2 47.35 48 2.18×
ε = 1e-3 43.45 33 1.50×
ε = 1e-4 38.60 26 1.18×

Table 6: Comparison of deception rate (DR) and inference
time.

Inference Time is critical for real-world applications. We
report inference time based on the average of 100 inference
runs of 256×256 images on an NVIDIA Titan X GPU. We
run this evaluation under single sample AST mode, which
treats all DAST solutions as AST and uses fixed ε for ε-AM .
As shown in Tab. 6, our ε-AM runs faster than most SoTA
AST and DAST methods. Despite requiring assignment op-
timization, ε-AM is much faster than other solutions that

1https://github.com/inejc/painters

require optimization, namely, multi-iterations of constraint
nearest neighbor search in DFR (Gu et al. 2018) and Graph-
Cut in MultiModal (Zhang et al. 2019). We also find that
there is a trade-off between speed and quality for ε-AM –
among all ε values, ε = 1e-0 leads to the shortest infer-
ence time and also the lowest DR, while ε = 1e-2 takes the
longest time but attains the highest DR (see Tab. 6).

Figure 5: Like-rate user study. AST, DAST and ours. The
“Multi-AST-8” and “Adjust” are the aggregated like rate for
all AST baselines and five ε values, respectively.

User-Like Rate is a subjective study we conducted on 10
individuals. We randomly select 100 content-style pairs for
each user, and generate corresponding stylized images for
all AST and DAST methods as well as our ε-AM . Users
are presented with tuples of (content, style, output), and they
vote either like or dislike. No verbal guidelines or method in-
formation is provided to the users. Fig. 5 shows the user-like
study for our ε-AM and SoTA works. The proposed ε-AM
with ε = 1e-2 attains the best user-like rate, and leads the
second best SANet by 2%. We further study performance in
the context of user-control by considering the Multi-AST-
8 setting that aggregates likes of eight AST methods and
our Adjustable setting that aggregates likes for our method
across five ε values. Votes for Multi-AST-8 are obtained by
combining the votes of all eight AST methods – it is consid-
ered dislike if none of the votes is like, otherwise it is taken
as like. We use the same setting to aggregate votes across five
ε for the “Adjustable” version of our method. Results show
that our “Adjustable” setting performs the best across the
board while Multi-AST-8, which uses eight different AST
models, comes close with 1% lower like rate.

Conclusion
In this paper, we introduce ε as an external parameter to aug-
ment AST. Our approach includes a generalized AST trans-
fer function with content-style feature assignment optimiza-
tion and quality-aware content feature mixing. We demon-
strate that popular AST works, such as AdaIN, DFR, and
SANet, are special cases of our unified framework. By mod-
ulating the entropy of the assignment matrix via ε, users
can control the output AST images. Our approach outper-
forms SoTA AST and DAST methods in both quantitative
and qualitative evaluations. We generate high-quality and
diverse outputs at fast inference speeds. User-study results
validate the effectiveness of our method, mitigating the user
preference diversity issue in AST.
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