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Abstract

In this work, we present a new computer vision task named
video object of interest segmentation (VOIS). Given a video
and a target image of interest, our objective is to simulta-
neously segment and track all objects in the video that are
relevant to the target image. This problem combines the tra-
ditional video object segmentation task with an additional
image indicating the content that users are concerned with.
Since no existing dataset is perfectly suitable for this new task,
we specifically construct a large-scale dataset called LiveV-
ideos, which contains 2418 pairs of target images and live
videos with instance-level annotations. In addition, we pro-
pose a transformer-based method for this task. We revisit Swin
Transformer and design a dual-path structure to fuse video
and image features. Then, a transformer decoder is employed
to generate object proposals for segmentation and tracking
from the fused features. Extensive experiments on LiveVideos
dataset show the superiority of our proposed method.

1 Introduction
Video object segmentation (VOS) (Perazzi et al. 2016; Pont-
Tuset et al. 2017; Xu et al. 2018) refers to the task of seg-
menting class-agnostic object(s) in a video clip. It has been
extensively studied and widely applied in various fields, like
augmented reality, autonomous driving, video editing, etc.
Current researches on VOS has two main paradigms: unsuper-
vised VOS (Song et al. 2018; Wang et al. 2019b; Zhou et al.
2020; Ren et al. 2021) and semi-supervised VOS (Caelles
et al. 2017; Perazzi et al. 2017; Voigtlaender et al. 2019a; Lin,
Qi, and Jia 2019; Bhat et al. 2020; Liang et al. 2021; Mao
et al. 2021; Seong et al. 2021; Xie et al. 2021). The former
one aims to automatically segment salient/primary objects
while the latter one needs to segment objects specified by
either human interaction or initial object annotation in the
first frame. In this work, we propose a novel paradigm under
the VOS task called Video Object of Interest Segmentation
(VOIS). Different from the previous two settings, our new
problem aims to simultaneously segment and track all objects
in the video that are relevant to a given target image accord-
ing to the user’s interest, as well as requiring no additional
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Figure 1: Illustration of video object of interest segmentation
(VOIS) with a pair of video clip and target image from LiveV-
ideos dataset. The first row shows the target image. The next
two rows display several video frames from the video clip,
together with their corresponding VOIS annotations. Masks
of the same color across frames belong to the same object.

annotation during inference. Each target image contains a
single target object with white background. A video object
is classified as a relevant object only if it looks like the same
instance as the given target object in style, pattern, category,
and color. Note that a relevant object with geometric defor-
mation in the video is still considered as a relevant object
w.r.t. the given target object. Figure 1 illustrates a sample
video with a target image and ground-truth annotations for
the VOIS problem. The new paradigm could facilitate typical
applications that require customized choices of objects for
segmentation. For example, in advertising live broadcasts,
the host may want to highlight the product that he/she is
displaying. Under this condition, as long as the host offered a
picture of the product in advance, the service provider could
use VOIS techniques to obtain the segmentation of relevant
products during the live broadcast, and then apply special
effects to highlight these identified products in real time.

Video object of interest segmentation is intrinsically a
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Figure 2: The overall pipeline of our proposed method, which includes a dual-path Swin Transformer Backbone (see Section 5.1),
a Transformer Decoder (see Section 5.2), and a object sequence matching/segmentation module (see Section 5.3).

multimodal problem that deals with both a video and an
image input. Meanwhile, it requires simultaneous tracking
and segmentation of multiple relevant objects in the video.
The above two reasons make it more challenging than tra-
ditional VOS tasks. VOIS is also related to several existing
segmentation tasks. For example, unsupervised video multi-
object segmentation (Ventura et al. 2019; Luiten, Zulfikar,
and Leibe 2020; Zhou et al. 2020, 2021) aims to segment
multiple class-agnostic salient objects in the video, but it can
not deal with target objects specified by the user. Video in-
stance segmentation (Yang, Fan, and Xu 2019; Bertasius and
Torresani 2020; Wang et al. 2021b; Li et al. 2021) aims to
segment class-specific instances in the video, whereas VOIS
can deal with objects of unseen categories during inference
since the model learns class-agnostic knowledge in training.

To our best knowledge, no previous work deals with video
object of interest segmentation, and no existing video dataset
is directly applicable to VOIS. Hence, we propose the first
large-scale dataset for VOIS, called LiveVideos. The new
dataset contains 2003 high-resolution live videos and 2418
target images from the E-commerce live broadcast scenes,
which constitute 2418 pairs of target image and video for
training and inference. Meanwhile, our dataset includes anno-
tations for 3341 video objects and 114k high-quality masks.
Our new dataset could serve as a fundamental benchmark for
not only video object of interest segmentation, but also tradi-
tional video object segmentation. The application scenarios
of the dataset includes video retrieval, video highlight, etc.

Furthermore, we propose a Transformer-based method for
VOIS. As illustrated in Figure 2, the whole framework con-
tains a dual-path Swin Transformer backbone, a Transformer
decoder, and a object sequence matching and segmentation
module. Swin Transformer (Liu et al. 2021b) has proved to
be a well-performed general-purpose network for computer
vision. We reuse and reconstruct Swin Transformer to be a
dual-path backbone that accepts a 3D video input and a 2D
image input simultaneously. Generally, the redesigned Swin
Transformer functions as a backbone network that fuses the
video feature and the target image feature, and outputs the
attended video feature where video regions related to the
target image are activated. After that, we introduce a Trans-

former decoder (Vaswani et al. 2017; Carion et al. 2020) to
extract object-level proposals from pixel-level backbone fea-
tures. Finally, we adopt the instance sequence matching/seg-
mentation module in VisTR (Wang et al. 2021b) to arrange
the object proposals according to ground-truth labels, and
produce the segmentation masks for each object proposal.
Extensive experiments on LiveVideos dataset demonstrate
the effectiveness of our method.

In conclusion, the main contributions of this paper are:
• We define and explore a new VOS paradigm called video

object of interest segmentation (VOIS).
• We create the first large-scale benchmark for VOIS, con-

taining 2418 pairs of target image and video clip.
• We propose an end-to-end Transformer-based method for

VOIS, and prove its advantages over several baselines.

2 Related Work
Video Object Tracking. Video object tracking methods
either track objects based on the given bounding boxes in
the first frame (i.e., detection-free tracking) (Bertinetto et al.
2016; Nam and Han 2016; Feichtenhofer, Pinz, and Zisser-
man 2017) or detect and track objects at the same time (i.e.,
detection-based tracking) (Sadeghian, Alahi, and Savarese
2017; Wojke, Bewley, and Paulus 2017; Son et al. 2017). Both
of them only require to produce bounding boxes, whereas
video object of interest segmentation requires preciser seg-
mentation masks. Besides, our task aims at objects specified
by a target image, which also makes it different from video
object tracking. Compared with video multi-object track-
ing (Voigtlaender et al. 2019b), we have some additional
differences: 1) our problem is not limited to moving objects,
and 2) if an object goes out of scene for several frames then
reappears, the object label should be consistent.

Video Object Segmentation. Video object segmentation
(VOS) has two main settings: unsupervised VOS and semi-
supervised VOS. The former one (Ventura et al. 2019; Wang
et al. 2019a; Lu et al. 2020b; Zhang et al. 2021) segments
class-agnostic salient objects, while the latter one (Oh et al.
2018, 2019; Lu et al. 2020a; Park et al. 2021; Duke et al. 2021;
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Dataset Video clips Categories Objects Masks Exhaustive

FBMS (Ochs, Malik, and Brox 2013) 59 16 139 1.5k %

YouTubeObjects (Jain and Grauman 2014) 96 10 96 1.7k %

DAVIS2016 (Perazzi et al. 2016) 50 - 50 3.4k %

DAVIS2017 (Pont-Tuset et al. 2017) 90 - 205 13.5k %

YouTubeVOS (Xu et al. 2018) 4453 94 7755 197k %

YouTubeVIS (Yang, Fan, and Xu 2019) 2883 40 4883 131k "

LiveVideos 2418 - 3341 114k "

Table 1: Statistics of different video segmentation datasets.

Ge, Lu, and Shen 2021; Hu et al. 2021) segments specified
objects given in the first frame. Compared with the above two
settings, our proposed video object of interest segmentation
aims at segmenting video objects relevant to a specified target
image. Meanwhile, video object of interest segmentation
requires to simultaneously track different relevant objects,
whereas traditional VOS mainly focuses on a single object.

Video Instance Segmentation. Video instance segmenta-
tion (VIS) (Yang, Fan, and Xu 2019; Athar et al. 2020; Wang
et al. 2021b,a; Lin et al. 2021; Liu et al. 2021a) aims to simul-
taneously detect, track, and segment class-specific instances
in a video clip. Compared with VIS, our proposed video ob-
ject of interest segmentation has two main differences. First,
our setting targets at class-agnostic objects, which means
it has the potentiality to segment unseen classes during in-
ference. Second, the objects to segment is determined by a
specified target image instead of a predefined class set, which
makes it more flexible during application because users can
arbitrarily decide what type of objects to segment by choos-
ing the target image according to their interest.

3 Video Object of Interest Segmentation
Problem Definition. Given a target image and a video clip
with T frames, suppose there are M video objects relevant to
the target image. For the i-th object, we use mi

p...q to denote
its binary segmentation mask across the video, where p and
q ∈ [1, T ] represents its starting and ending time, respectively.
Suppose a video object of interest segmentation algorithm
produces H object hypotheses (also called object sequence
proposals). For the j-th hypotheses, the algorithm needs to
produce a confidence score sj ∈ [0, 1] and a sequence of
predicted binary masks m̃j

p̃...q̃ . The confidence score will be
used in the evaluation metric.

Our objective is to minimize the difference between the
hypotheses and the ground truth. It requires that a good VOIS
algorithm should be able to 1) correctly detect relevant ob-
jects, 2) consistently track all relevant objects across frames,
and 3) accurately segment all relevant objects.

Evaluation Metrics. Since VIS (Yang, Fan, and Xu 2019)
and VOIS share the same spirit of tracking and segmenting
multiple objects simultaneously, we directly adapt the evalu-
ation metrics (average precision AP and average recall AR)
in VIS to our VOIS task. AP is defined as the area under the

precision-recall curve, and AR is defined as the maximum
recall given some fixed number of segmented objects per
video. More detailed definitions are given in (Yang, Fan, and
Xu 2019). AP and AR work together to reflect the quality of
hypotheses produced by the algorithm for evaluation. There
is only one difference when we adapt the evaluation metrics
to our problem. In VIS, AP and AR are calculated per cat-
egory and then averaged across the category set. However,
in our VOIS problem, since all objects are class-agnostic,
AP and AR are directly calculated among all relevant video
objects. In other words, evaluation metrics in VOIS can be
regarded as a special case of those in VIS, where the category
set has only one category, i.e., the relevant object.

4 LiveVideos
Since no existing video segmentation dataset perfectly adapts
to our video object of interest segmentation (VOIS) task,
we need to establish a new benchmark for this task specif-
ically. There are three important principles to satisfy when
we establish the benchmark. The first concern is the source
of data. As introduced in Section 1, advertising live broad-
casts is a common and practical scenario where VOIS can be
applied. This guides us to select data from E-commerce live
broadcast scenes to form our dataset. The second concern is
the challenge of complex objects like occlusion, appearance
change, frequent camera entry/leave, etc. We should take all
these conditions into consideration to ensure the diversity and
robustness of the dataset. The last concern is the quality of
segmentation annotations. We should overcome the weakness
of some existing datasets with polygon-based annotations.

Based on the above three principles, we establish a large-
scale benchmark called LiveVideos. We collect over 10k high-
resolution live videos from the E-commerce live broadcast
scenes and manually select 2003 representative videos from
them. In the broadcast scenes of these selected videos, we col-
lect 2418 relevant target images from the commodity banners,
and ensure each of them is clear and not over-covered. Every
target image contains a cropped target object with white-base
background, indicating the commodity (e.g., clothing, jew-
ellery, daily supplies) displayed in one of the 2003 live videos.
Therefore, we have 2418 pairs of live videos and target im-
ages. For each pair, we carefully clip out one video clip with
a duration of 5.0∼7.2 seconds from the live video, and man-
ually verify that this clip contains the correct target object(s)
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Figure 3: (a) The architecture of our dual-path Swin Transformer backbone; (b) Structure of Cross Transformer block. MLP
means multi-layer perceptron. Flatten3D means flattening spatial and temporal dimensions. Flatten2D means flattening spatial
dimensions. Anti-Flatten3D means recovering the flattened spatial and temporal dimensions.

and is useful for our task (e.g., not too blurry or shaky, no
scene transition). After the 2418 video clips are selected, we
ask professional human annotators to annotate all the objects
(no more than 10 in fact) in each video clip that are relevant
to the corresponding target image. We follow (Xu et al. 2018)
to adopt a skip-frame annotation strategy. The annotation is
performed every four frames in a 20fps frame rate, resulting
in a 5fps sampling rate, so no more than 36 frames are an-
notated in each video clip. Some annotation examples are
shown in Figure 1. As a result, our LiveVideos dataset con-
tains 2418 pairs of video clips and target images, and 3341
video objects with 114k high-quality object masks, which
form a large-scale benchmark. Table 1 compares LiveVideos
with some existing video segmentation datasets. It shows that
the scale of our dataset is comparable with YouTubeVOS (Xu
et al. 2018) and YouTubeVIS (Yang, Fan, and Xu 2019), and
evidently larger than other commonly used datasets.

5 Methodology
Video object of interest segmentation (VOIS) task takes a
video clip and a target image as input, and aims to track and
segment all video objects that are relevant to the target image.
Generally, we tackle the VOIS task with three steps, as shown
in Figure 2. First, we design a dual-path Swin Transformer
to fuse video features and image features in Section 5.1. Sec-
ond, we employ a Transformer decoder to generate object
proposals from the fused features in Section 5.2. Third, we
use a sequence matching module to arrange the object pro-
posals and a sequence segmentation module to produce the
segmentation results for each object proposal in Section 5.3.

5.1 Dual-path Swin Transformer
2D Swin Transformer (Liu et al. 2021b) was proposed as a
general-purpose backbone to extract image features with a
totally end-to-end Transformer-based network. Specifically,
it splits the input image into non-overlapping 2D patch tokens
and applies four stages to process these tokens. Each stage

contains a predefined number of consecutive Swin Trans-
former Blocks with the proposed 2D window based multi-
head self-attention modules (W-MSA) or 2D shifted-window
based multi-head self-attention modules (SW-MSA). Four
stages work together to produce a hierarchical representation
as output. 3D Swin Transformer (Liu et al. 2022) extends
the 2D version to deal with video inputs. Likewise, it splits
videos into 3D patch tokens, and changes the 2D window
based attention modules into 3D versions.

In this work, we combine the 2D version and the 3D ver-
sion to form a dual-path Swin Transformer that accepts both
an image and a video input, as shown in Figure 3. The target
image and the video are defined with size HI ×WI × 3 and
T ×HV ×WV × 3, respectively. We use different subscripts
I/V in image/video to avoid confusion. The video has an
extra dimension T indicating it contains T frames. We treat
each 2D patch of size 4× 4× 3 as token in the 2D path, and
each 3D patch of size 1× 4× 4× 3 as token in the 3D path.
The 2D patch partitioning layer obtains HI

4 × WI

4 2D patches
and the 3D patch partitioning layer obtains T × HV

4 × WV

4
3D patches. Each patch/token consists of a 48-dimensional
feature. Then a 2D/3D linear embedding layer is employed
to map the 2D/3D token to an arbitrary dimension C.

Like the traditional 2D/3D Swin Transformer, The dual-
path Swin Transformer architecture also contains four stages,
with each stage combining a 2D stage and 3D stage. Under
this design, each stage accepts dual-path inputs and generates
dual-path outputs. In the 2D/3D patch merging layer of each
stage, the height dimension and the width dimension are
down-sampled, while the token dimension doubles. Note that
we follow the prior work (Liu et al. 2022) not to down-sample
along the temporal dimension in the 3D path. The designs of
each 2D/3D Swin Transformer block remain the same as (Liu
et al. 2021b, 2022), so we omit the details here.

Since we aim to find video objects of interest conditioned
on the target image, we add a Cross Transformer block to
fuse video and image feature in stage 3 and stage 4, respec-
tively. The Cross Transformer block contains a multi-head
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cross-attention and a MLP. We first apply the multi-head
cross-attention by treating video feature as query and image
feature as key/value. Then, we handle the attended feature via
a 2-layer MLP. The output feature of the Cross Transformer
block functions as the 3D video input of the next stage. Under
this design, video regions relevant to the target image tend
to be activated, while the remaining parts tend to be deacti-
vated. Then, the following steps would pay more attention to
the video regions that we are interested in, which facilitates
segmentation of relevant objects in an implicit way.

For ease of representation, we use f1, f2, f3, and f4 to
represent the output 3D video features of each stage, as shown
in both Figure 2 and Figure 3. We finally obtain a 3D video
feature f4 of size T× HV

32 ×WV

32 ×8C as the backbone output.

5.2 Transformer Decoder
Motivated by DETR (Carion et al. 2020), we incorporate
a Transformer decoder to decode pixel-level features into
object-level representations. As illustrated in Figure 2, be-
fore the backbone feature f4 enters the Transformer decoder,
we apply a linear embedding layer on f4 to map it from
backbone dimension to decoder hidden dimension. Then, we
flatten its spatial and temporal dimensions so that it could
be fed into the Transformer decoder. During implementation,
we introduce a fixed number of input embeddings to query
object-level features, termed as object queries. Specifically,
the model decodes n objects for each frame, so the total num-
ber of object queries is N = n · T . The Transformer decoder
works by taking the output of the dual-path Swin Tranformer
backbone and N object queries as input to produce N object-
level features. After that, N object-level features form n
object sequence proposals (abbr., object proposals), and each
object proposal is composed by T object-level features from
the same index of different frames. The workflow of Trans-
former decoder is shown in Figure 2. We denote the decoder
output by O, which represents the set of n object proposals.

5.3 Object Sequence Matching and Segmentation
Once we obtain object sequence proposals, we will match
them with the ground truth object sequences via a object
sequence matching module. Then, we predict the mask se-
quence for each object proposal. After that, we calculate
losses between the predicted mask sequence and its matched
ground truth sequence to optimize the model, which is
achieved by a object sequence segmentation module.

We draw inspirations from VisTR (Wang et al. 2021b) to
realize object sequence matching and segmentation. VisTR
deals with the video instance segmentation (VIS) task. It first
matches its predicted instance sequence proposals with the
ground truth sequences via an instance sequence matching
module with bipartite matching loss. Then, it segments each
instance sequence proposal and optimizes the model via an in-
stance sequence segmentation module with a Hungarian loss.
The above steps of VisTR is somewhat similar to our task,
which guides us to adapt the instance sequence matching/seg-
mentation module in VisTR to our required object sequence
matching/segmentation module. Generally, there exists two
differences between object sequence matching/segmentation
and instance sequence matching/segmentation.

The first difference lies in the formation of features. As
shown in Figure 2, our object sequence segmentation module
follows the instance sequence segmentation module in VisTR
to accept three feature inputs: decoder feature O, encoder
feature E, and backbone feature B. In our implementation, O
remains output feature of the Transformer decoder. E = f4
is exactly the output feature of stage 4 in our dual-path Swin
Transformer backbone. B = {f1, f2, f3} is the set of multi-
level features from the beginning three stages in our dual-path
Swin Transformer backbone. The second difference lies in
class labels. VIS is a multi-class problem and has a predefined
category set. Differently, our VOIS task aims at class-agnostic
objects, i.e., single-class objects. Therefore, we modify the
category-relevant loss terms in bipartite matching loss and
Hungarian loss from multi-class forms to their single-class
counterparts. The Hungarian loss contains three parts: classi-
fication, box regression, and segmentation. The classification
/ segmentation part produces the confidence scores / binary
masks for object proposals respectively, which are both nec-
essary outputs required by our VOIS task. The detailed loss
forms remain unchanged, so we omit here.

6 Experiment
6.1 Dataset and Evaluation Metrics
We conduct experiments on LiveVideos dataset. As intro-
duced in Section 4, we have 2418 pairs of live videos and
target images (i.e. 2418 samples) to form the whole LiveV-
ideos dataset. We then randomly split the dataset into 1935
training samples and 483 test samples. Each sample is anno-
tated with pixel-level segmentation masks and object labels
of all the objects that are relevant to the corresponding target
image. We train models on the training set and evaluate them
on the test set. The evaluation metrics are Average Precision
(AP) and Average Recall (AR) as introduced in Section 3.

6.2 Implementation Details
Network Structure. As introduced in Section 4, each video
clip contains no more than 36 frames, so we set the input
video sequence length T as 36. The dual-path Swin Trans-
former backbone is a fusion of 2D Swin Transformer (Liu
et al. 2021b), 3D Swin Transformer (Liu et al. 2022) with
temporal patch size modified to 1, and two Cross Transformer
blocks. The tiny version of 2D/3D Swin Transformer is cho-
sen due to GPU memory limitation. The initial token dimen-
sion C is 96, so the backbone output dimension is 8C = 768.
Each Cross Transformer block contains a multi-head atten-
tion (Vaswani et al. 2017) and a MLP, with short-cut connec-
tions. MLP is composed of two linear layers, with GELU
non-linearity in between. The Transformer decoder follows
the structure in DETR (Carion et al. 2020), which contains 6
decoder layers with the hidden dimension modified to 384.
The Transformer decoder decodes n = 10 objects for each
frame. The linear embedding layer between the Swin back-
bone and the Transformer decoder is a linear layer that maps
the backbone dimension 768 to the decoder hidden dimension
384. The object sequence matching/segmentation module fol-
lows the design in VisTR (Wang et al. 2021b), with the clas-
sification head modified from 41 classes (40 YouTube-VIS
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Method Backbone AP AP50 AP75 AR1 AR10

MaskTrack R-CNN (Yang, Fan, and Xu 2019) ResNet-50 (He et al. 2016) 29.0 46.4 32.1 32.5 35.5
VisTR (Wang et al. 2021b) ResNet-50 (He et al. 2016) 34.9 54.1 37.0 38.3 41.8
VisTR (Wang et al. 2021b) ResNet-101 (He et al. 2016) 37.0 56.4 39.2 38.1 43.7

Ours Dual-path Swin Transformer 38.8 61.6 41.8 41.2 46.6

Table 2: Quantitative comparison between different methods.

Target
Image

Video
Frames

Ground
Truth MTR VisTR

Res101 Ours Target
Image

Video
Frames

Ground
Truth MTR VisTR

Res101 Ours

Figure 4: Visualization of video object of interest predictions of different methods. MTR is short for MaskTrack R-CNN. For
each method, segmentation masks of the same color across different frames belong to the same object. Zoom in for more details.

categories and background category) to 2 classes (relevant cat-
egory and background category). The other hyper-parameters
in the backbone network (resp., Transformer Decoder, object
sequence matching/segmentation) follow the default settings
in Swin Transformer (resp., DETR, VisTR).

Data Preprocessing. We first augment the input videos
and target images with random horizontal flip and random
crop. Then, we resize their shorter edges to 224 by keeping
the aspect ratio unchanged. Finally, we apply normalization
before feeding them into the network.

Optimization. We adopt AdamW (Loshchilov and Hutter
2017) optimizer with learning rate being 10−5 for the dual-
path Swin Transformer backbone and 10−4 for the remaining
parts. The model is trained with 18 epochs, where the learning
rate decays by 10x after 12 epochs. We initialize the backbone
network with the weights of Swin Transformer pretrained on
ImageNet (Deng et al. 2009), and initialize the Transformer
decoder with weights of DETR pretrained on MS COCO (Lin
et al. 2014). The model is trained on 32 Tesla V100 GPUs
with distributed parallel. Each GPU card deals with one pair
of video clip and target image in one batch. We perform
inference on a single V100 GPU, and retain object proposals
with confidence scores larger than 0.001. Experiments are

conducted with PyTorch-1.7 (Paszke et al. 2019).

6.3 Baselines
To our best knowledge, no existing method directly adapts
to our task. Therefore, we absorb ideas from related tasks to
form baselines. Video instance segmentation (VIS) (Yang,
Fan, and Xu 2019) is similar to our task in that it also re-
quires to track and segment multiple objects. To adapt a VIS
method to a VOIS method, the modification consists of three
aspects. First, we should modify the input of the network so
that it could accept two inputs, i.e., a video input and an im-
age input. Second, we should fuse video features and image
features at a typical stage in the network. Third, we should
change the multi-class classification head of the network to
its single-class counterpart to deal with class-agnostic output.
In this work, we choose to adapt from two representative VIS
methods to form our baselines: MaskTrack R-CNN (Yang,
Fan, and Xu 2019) and VisTR (Wang et al. 2021b).

MaskTrack R-CNN. MaskTrack R-CNN (Yang, Fan, and
Xu 2019) absorbs the ‘tracking-by-detection’ idea from multi-
object tracking to form its method. Typically, it add a tracking
head with an external memory into the classical Mask R-CNN
to track object instances across frames. To adapt MaskTrack

3810



Target image path AP AP50 AP75 AR1 AR10

26.7 42.9 28.1 31.0 38.0
! 38.8 61.6 41.8 41.2 46.6

Table 3: Ablation study on utility of target image path.

Stage 3 Stage 4 AP AP50 AP75 AR1 AR10

! 37.5 60.3 41.0 39.9 44.6
! 37.7 59.8 41.4 39.5 45.5

! ! 38.8 61.6 41.8 41.2 46.6

Table 4: Ablation study on position of Cross Transformer.

R-CNN (He et al. 2017) to our task, we add a secondary
ResNet (He et al. 2016) backbone to accept target image
input. Then, we use a Cross Transformer block to fuse video
frame features and target image features outputted by two
backbones. The fused features are sent to the original network
structures after the original video backbone.

VisTR. VisTR (Wang et al. 2021b) is the first Transformer-
based VIS method that treats VIS as a direct end-to-end
parallel sequence prediction problem. To adapt VisTR to our
task, we similarly add a secondary ResNet (He et al. 2016)
backbone to accept target image input. Then we add a Cross
Transformer block after each Transformer encoder layer to
fuse features. The Cross Transformer block takes the output
video feature of the current encoder layer and the target image
feature from secondary backbone as input to produce a fused
feature, which functions as the input video feature of the next
encoder layer. Since there six Transformer encoder layers,
we have six Cross Transformer blocks correspondingly. The
output of the final Cross Transformer block is sent to the
instance sequence matching/segmentation module.

6.4 Main Results
Table 2 presents the comparison results between baseline
methods and our proposed method. Generally speaking, our
proposed method achieves the best results among different
methods. In detail, our method surpasses MaskTrack R-CNN
by 9.8 AP / 8.7 AR1, and surpasses VisTR with ResNet-101
backbone by 1.8 AP / 3.1 AR1. It proves that our method
achieves not only better mask quality, but also better temporal
consistency and relevant object detection rate. It is notewor-
thy that although our chosen backbone is merely the tiny
version of Swin Transformer, our proposed method still out-
performs baselines with ResNet backbones, which implies
the great potentiality of our method.

Figure 4 displays two example cases predicted by different
methods. As illustrated, our proposed method performs better
in the several challenging scenarios: 1) relevant object(s) with
heavy motion, 2) relevant object(s) surrounded by multiple
confusing objects that are easily misidentified. For the first
scenario (left side of Figure 4), our method accurately tracks
and segments the relevant object (i.e. the pink overcoat) de-
spite its long-distance movement. For the second scenario

(right side of Figure 4), our method precisely locates and seg-
ments relevant objects with the correct color (i.e. boxes with
green patterns). Meanwhile, our method seamlessly predicts
finer segmentation boundaries. These quantitative results fur-
ther verify the effectiveness of our proposed method.

6.5 Ablation Studies
Utility of Target Image Path. To prove that our architec-
ture effectively studies the target image information and use
it to identify relevant objects in the video clip, we perform an
experiment without the target image path. Specifically, the
2D Swin Transformer path and the two Cross Transformer
blocks in Figure 3 are deleted. We simply use the 3D Swin
Transformer path to extract video frame features, which are
then sent to the Transformer decoder. The comparison results
are shown in Table 3. Unsurprisingly, the network witnesses
a sharp performance drop without the target image input. In
detail, AP and AR1 decrease by 12.1 and 10.2, respectively.
The reason for this phenomenon is intuitive. When we do not
incorporate target images, the network does not know what
object(s) to identify and segment. As a result, it would tend to
randomly identify objects in videos during inference, which
severally harms its ability to detect user-specified objects.

Position of Cross Transformer Block. In our default im-
plementation, we adopt two Cross Transformer blocks in
stage 3 and stage 4, as shown in Figure 3. There are two
reasons why we do not place Cross Transformer blocks in
the beginning two stages. First, features in the beginning
two stages are low-level features in shallow network layers,
so they are not expressive enough for the model to find rel-
evant information from the target image. Second, features
in the beginning two stages have comparably large spatial
dimensions, which makes it space-consuming to compute at-
tention weights in the Cross Transformer block. Considering
the above two points, we only use Cross Transformer in the
deeper two layers. Table 4 presents a comparison to examine
whether each Cross Transformer block in stage 3 / stage 4
is necessary for the overall performance gain. Deleting the
Cross Transformer block in stage 3 (resp., stage 4) gives rise
to the performance drop of 1.1 AP / 0.7 AR1 (resp., 1.3 AP
/ 0.3 AR1). The comparison shows that both Cross Trans-
former blocks contribute to the final segmentation results, so
we maintain both of them as our default setting.

7 Conclusion
In this work, we present a new task named video object of in-
terest segmentation (VOIS) and specifically construct a large-
scale dataset called Livevideos for this task. We also propose
an end-to-end Transformer-based method to deal with this
multi-modal problem. The proposed method is proved to
perform well and surpass several baselines. Compared with
the traditional VOS tasks, our proposed VOIS task adopts an
additional easily available target image as input to specify
what kind of object(s) to track and segment in a video, which
makes it user-friendly and conveniently applicable in many
situations. We believe this work could attract and promote
future research on video object of interest segmentation.
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