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Abstract

Neural networks are composed of multiple layers arranged in
a hierarchical structure jointly trained with a gradient-based
optimization, where the errors are back-propagated from the
last layer back to the first one. At each optimization step, neu-
rons at a given layer receive feedback from neurons belong-
ing to higher layers of the hierarchy. In this paper, we pro-
pose to complement this traditional ’between-layer’ feedback
with additional *within-layer’ feedback to encourage the di-
versity of the activations within the same layer. To this end,
we measure the pairwise similarity between the outputs of the
neurons and use it to model the layer’s overall diversity. We
present an extensive empirical study confirming that the pro-
posed approach enhances the performance of several state-
of-the-art neural network models in multiple tasks. The code
is publically available at https://github.com/firasl/AAAI-23-
WLD-Reg.

Introduction

Deep learning has been extensively used in the last decade
to solve several tasks (Krizhevsky, Sutskever, and Hinton
2012; Golan and El-Yaniv 2018; Hinton et al. 2012a). A
deep learning model, i.e., a neural network, is formed of
a sequence of layers with parameters optimized during the
training process using training data. Formally, an m-layer
neural network model can be defined as follows:

f(ll?; W) — ¢77L(Wm(¢m—1(_ . ¢2(W2¢1(W1£L‘)>)),

. ey
where ¢'(.) is the non-linear activation function of the
it" layer and W {W1 ..., W™} are the model’s
weights. Given a training data {x;,y;};L,, the parameters

of f(a; W) are obtained by minimizing a loss L(-):

N
L) = 5 S 1(f (@ W), 1), )
i=1

However, neural networks are often over-parameterized,
i.e., have more parameters than data. As a result, they tend
to overfit to the training samples and not generalize well

on unseen examples (Goodfellow et al. 2016). While re-
search on double descent (Advani, Saxe, and Sompolinsky
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2020; Belkin et al. 2019; Nakkiran et al. 2020) shows that
over-parameterization does not necessarily lead to overfit-
ting, avoiding overfitting has been extensively studied (Dzi-
ugaite and Roy 2017; Foret et al. 2020; Nagarajan and Kolter
2019; Neyshabur et al. 2018; Poggio et al. 2017; Grari et al.
2021) and various approaches and strategies, such as data
augmentation (Goodfellow et al. 2016; Zhang et al. 2018),
regularization (Arora et al. 2019; Bietti et al. 2019; Kukacka,
Golkov, and Cremers 2017; Ouali, Hudelot, and Tami 2021;
Han and Guo 2021), and Dropout (Hinton et al. 2012b; Lee
et al. 2019; Li, Gong, and Yang 2016; Wang et al. 2019),
have been proposed to close the gap between the empirical
loss and the expected loss.

Diversity of learners is widely known to be important in
ensemble learning (Li, Yu, and Zhou 2012; Yu, Li, and Zhou
2011) and, particularly in the deep learning context, diver-
sity of information extracted by the network neurons has
been recognized as a viable way to improve generalization
(Xie, Liang, and Song 2017; Xie, Deng, and Xing 2015b).
In most cases, these efforts have focused on making the set
of weights more diverse (Yang, Gkatzelis, and Stoyanovich
2019; Malkin and Bilmes 2009). However, diversity of the
activations has not received much attention. Here, we ar-
gue that due to the presence of non-linear activations, di-
verse weights do not guarantee diverse feature representa-
tion. Thus, we propose focusing on the diversity on top of
feature mapping instead of the weights.

To the best of our knowledge, only (Cogswell et al. 2016;
Laakom et al. 2021a) have considered diversity of the ac-
tivations directly in the neural network context. The work
in (Laakom et al. 2021a) studied theoretically how diver-
sity affects generalization showing that it can reduce over-
fitting. The work in (Cogswell et al. 2016) proposed an ad-
ditional loss term using cross-covariance of hidden activa-
tions, which encourages the neurons to learn diverse or non-
redundant representations. The proposed approach, known
as DeCov, was empirically proven to alleviate overfitting
and to improve the generalization ability of neural networks.
However, modeling diversity as the sum of the pairwise
cross-covariance, it is not scale-invariant and can lead to
trivial solutions. Moreover, it can capture only the pairwise
diversity between components and is unable to capture the
higher-order diversity”.

In this work, we propose a novel approach to encour-



age activation diversity within the same layer. We pro-
pose complementing the "between-layer’ feedback with ad-
ditional *within-layer’ feedback to penalize similarities be-
tween neurons on the same layer. Thus, we encourage each
neuron to learn a distinctive representation and to enrich the
data representation learned within each layer. We propose
three variants for our approach that are based on different
global diversity definitions.
Our contributions in this paper are as follows:

* We propose a new approach to encourage the ’diversifi-
cation’ of the layers’ output feature maps in neural net-
works. The proposed approach has three variants. The
main intuition is that, by promoting the within-layer ac-
tivation diversity, neurons within a layer learn distinct
patterns and, thus, increase the overall capacity of the
model.

* We show empirically that the proposed within-layer ac-
tivation diversification boosts the performance of neural
networks. Experimental results on several tasks show that
the proposed approach outperforms competing methods.

Within-Layer Diversity Regularizer

In this section, we propose a novel diversification strategy,
where we encourage neurons within a layer to activate in a
mutually different manner, i.e., to capture different patterns.
In this paper, we define as “feature layer” the last interme-
diate layer in a neural network. In the rest of the paper, we
focus on this layer and propose a data-dependent regularizer
which forces each unit within this layer to learn a distinct
pattern and penalizes the similarities between the units. In-
tuitively, the proposed approach reduces the reliance of the
model on a single pattern and, thus, can improve generaliza-
tion.

We start by modeling the global similarity between two
units. Let ¢,,(z;) and ¢y, (z;) be the outputs of the n”* and
m*" unit in the feature layer for the same input sample ;.
The similarity s,,,,, between the the n** and m** neurons
can be obtained as the average similarity measure of their
outputs for N input samples. We use the radial basis function
to express the similarity:

1 N
Sam 1=~ >_exp( = |0 (2;) — dm(@)?), B
j=1

where 7 is a hyper-parameter. The similarity s,,,, can be
computed over the whole dataset or batch-wise. Intuitively,
if two neurons n and m have similar outputs for many sam-
ples, their corresponding similarity s,,, will be high. Oth-
erwise, their similarity s,,, is small and they are considered
“diverse”.

Next, based on these pairwise similarities, we propose
three variants for obtaining the overall similarity J of all the
units within the feature layer:

* Direct: J := ), Snm. In this variant, we model the
global layer similarity directly as the sum of the pairwise
similarities between the neurons. By minimizing their
sum, we encourage the neurons to learn different repre-
sentations.
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* Det: J := —det(S), where S is a similarity matrix de-
fined as Sy, = Spm. This variant is inspired by the
Determinantal Point Process (DPP) (Kulesza and Taskar
2010, 2012), as the determinant of .S measures the global
diversity of the set. Geometrically, det(.S) is the volume
of the parallelepiped formed by vectors in the feature
space associated with s. Vectors that result in a larger
volume are considered more “diverse”. Thus, maximiz-
ing det(-) (minimizing —det(+)) encourages the diversity
of the learned features.

o Logdet: J := —logdet(S)!. This variant has the same
motivation as the second one. We use Logdet instead of
Det as Logdet is a convex function over the positive def-
inite matrix space.

It should be noted here that the first proposed variant,
i.e., direct, similar to DeCov (Cogswell et al. 2016), cap-
tures only the pairwise similarity between components and
is unable to capture the higher-order “diversity”, whereas the
other two variants consider the global similarity and are able
to measure diversity in a more global manner. Promoting di-
versity of activations within a layer can lead to tighter gen-
eralization bound and can theoretically decrease the gap be-
tween the empirical and the true risks (Laakom et al. 2021a).

The proposed global similarity measures J can be min-
imized by using them as an additional loss term. However,
we note that the pair-wise similarity measure s,,,,, expressed
in (3), is not scale-invariant. In fact, it can be trivially min-
imized by making all activations of the feature layer high,
i.e., by multiplying by a high scaling factor, which has no ef-
fect on the performance, since the model can rescale high ac-
tivations to normal values simply by learning small weights
on the next layer. To alleviate this problem, we propose an
additional term, which penalizes high activation values. The
total proposed additional loss is defined as follows:

N
Lwip—reg =MJ+ X Y _|[@)|3, @

i=1
where ®(x) = [¢1(x), -+ , pc(x)] is the feature vector, C

is the number of units within the feature layer, and \; and
Ao are two hyper-parameters controlling the contribution of
each term to the diversity loss. Intuitively, the first term
of (4) penalizes the similarity between the units and pro-
motes diversity, whereas the second term ensures the scale-
invariance of the proposed regularizer.

The total loss function L(f) defined in (2) is augmented
as follows:

Laug(f) := L(f) + LwLD—Reg (5)
N
= L(f)+MJ + X Z [|®(z:)|[3.
i=1
The proposed approach is summarized in Algorithm 1. We
note that our approach can be incorporated in a plug-and-

'This is defined only if S is positive definite. It can be shown
that in our case S is positive semi-definite. Thus, in practice, we use
a regularized version (S + €I) to ensure the positive definiteness.



Algorithm 1: One epoch of training with WLD-Reg

Model: Given a neural network f(-) with a feature repre-
sentation ¢(+), i.e., last intermediate layer.

Input: Training Data: {z;,y;} Y,

Parameters: \; and )\, in (4)

1: for every mini-batch: {z;, y;}7™, € {x;, v}, do

2:  Forward pass the inputs {@;}", into the model to
obtain the outputs { f(x;)}, and the feature repre-
sentations {®(xz;)},

Compute the standard loss ﬁ( 1) ().

Compute the extra loss ﬁw LD—Reg (4)).

Compute the total loss ﬁaug( I®))

Compute the gradient of the total loss and use it to
update the weights of f.

7: end for

8: return Return f.

AN S

play manner into any neural network-based approach to aug-
ment the original loss and to ensure learning diverse fea-
tures. We also note that although in this paper, we focus only
on applying diversity regularizer to a single layer, i.e., the
feature layer, our proposed diversity loss, as in (Cogswell
et al. 2016), can be applied to multiple layers within the
model.

Our newly proposed loss function defined in (5) has two
terms. The first term is the classic loss function. It com-
putes the loss with respect to the ground-truth. In the back-
propagation, this feedback is back-propagated from the last
layer to the first layer of the network. Thus, it can be con-
sidered as a between-layer feedback, whereas the second
term is computed within a layer. From (5), we can see that
our proposed approach can be interpreted as a regularization
scheme. However, regularization in deep learning is usually
applied directly on the parameters, i.e., weights (Goodfel-
low et al. 2016; Kukacka, Golkov, and Cremers 2017), while
in our approach a data-dependent additional term is defined
over the output maps of the layers. For a feature layer with
C units and a batch size of m, the additional computational
cost is O(C?(m + 1)) for Direct variant and O(C? + C?m))
for both Det and Logdet variants.

Related Work

Diversity promoting strategies have been widely used in
ensemble learning (Li, Yu, and Zhou 2012; Yu, Li, and
Zhou 2011), sampling (Biyik et al. 2019; Derezinski, Ca-
landriello, and Valko 2019; Gartrell et al. 2019), energy-
based models (Laakom et al. 2021b; Zhao, Mathieu, and Le-
Cun 2017), ranking (Gan et al. 2020; Yang, Gkatzelis, and
Stoyanovich 2019), pruning by reducing redundancy (He
et al. 2019; Kondo and Yamauchi 2014; Lee et al. 2020;
Singh et al. 2020), and semi-supervised learning (Zbon-
tar et al. 2021). In the deep learning context, various ap-
proaches have used diversity as a direct regularizer on top
of the weight parameters. Here, we present a brief overview
of these regularizers. Based on the way diversity is de-
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fined, we can group these approaches into two categories.
The first group considers the regularizers that are based
on the pairwise dissimilarity of the components, i.e., the
overall set of weights is diverse if every pair of weights
is dissimilar. Given the weight vectors {w,, }}_,, (Yu, Li,
and Zhou 2011) defines the regularizer as ), (1 — 0 ),
where 6,,,,, represents the cosine similarity between w,,, and
w,. In (Bao et al. 2013), an incoherence score defined as

perparameter, is proposed. In (Xie, Deng, and Xing 2015a;
Xie, Zhu, and Xing 2016), mean(,,,,,) — var(6,,,) is used
to regularize Boltzmann machines. The authors theoretically
analyzed its effect on the generalization error bounds in
(Xie, Deng, and Xing 2015b) and extend it to kernel space in
(Xie, Liang, and Song 2017). The second group of regulariz-
ers considers a more global view of diversity. For example,
in (Malkin and Bilmes 2008, 2009; Xie, Singh, and Xing
2017), a weight regularization based on the determinant of
the weights’ covariance is proposed based on determinantal
point process (Kulesza and Taskar 2012; Kwok and Adams
2012).

Unlike the aforementioned methods which promote diver-
sity on the weight level and similar to our method, (Cogswell
et al. 2016; Laakom et al. 2022) proposed to enforce dissim-
ilarity on the feature map outputs, i.e., on the activations.
To this end, they proposed an additional loss based on the
pairwise covariance of the activation outputs. Their addi-
tional loss, L pecov, is defined as the squared sum of the non-
diagonal elements of the global covariance matrix C' of the
activations:

1 ,
Lpecov = 5 (|ICIIF: — [|diag(C)[[3), (6)

where ||.|| is the Frobenius norm. Their approach, De-
cov, yielded superior empirical performance. However, cor-
relation is highly sensitive to noise (Kim, Kim, and Ergiin
2015), as opposite to the RBF-based distance used in our
approach (Savas and Dovis 2019; Haykin 2010). Moreover,
the Decov approach only captures the pairwise diversity be-
tween the components, whereas we propose variants of our
approach which consider a global view of diversity. More-
over, based on the cross-covariance, their approach i-s not
scale-invariant. In fact, it can be trivially minimized by mak-
ing all activations in the latent representation small, which
has no effect on the generalization since the model can
rescale tiny activations to normal values simply by learning
large weights on the next layer.

Y B|€mn|%), where [ is a positive hy-

Experimental Results
CIFAR10 & CIFAR100

We start by evaluating our proposed diversity approach on
two image datasets: CIFAR10 and CIFAR100 (Krizhevsky,
Hinton et al. 2009). They contain 60,000 (50,000
train/10,000 test) 32 x 32 images grouped into 10 and 100
distinct categories, respectively. We split the original train-
ing set (50,000) into two sets: we use the first 40,000 images
as the main training set and the last 10,000 as a validation
set for hyperparameters optimization. We use our approach
on two state-of-the-art CNNs:



¢ ResNext-29-08-16: we consider the standard ResNext
Model (Xie et al. 2017) with a 29-layer architecture, a
cardinality of 8, and a width of 16.

¢ ResNet50: we consider the standard ResNet model (He
et al. 2016) with 50 layers.

We compare against the standard networks?, as well
as networks trained with the DeCov diversity strategy
(Cogswell et al. 2016). All the models are trained using
stochastic gradient descent (SGD) with a momentum of 0.9,
weight decay of 0.0001, and a batch size of 128 for 200
epochs. The initial learning rate is set to 0.1 and is then
decreased by a factor of 5 after 60, 120, and 160 epochs,
respectively. We also adopt a standard data augmentation
scheme that is widely used for these two datasets (He et al.
2016; Huang et al. 2017). For all models, the additional di-
versity term is applied on top the last intermediate layer.
The penalty coefficients A\; and Ao, in (4), for our ap-
proach and the penalty coefficient of Decov are chosen from
{0.0001,0.001,0.01,0.1}, and y in the radial basis function
is chosen from {1, 10}. For each approach, the model with
the best validation performance is used in the test phase. We
report the average performance over three random seeds.

Table 1 reports the average top-1 errors of the different
approaches with the two basis networks. We note that, com-
pared to the standard approach, employing a diversity strat-
egy consistently boosts the results for all the two models and
that our approach consistency outperforms both competing
methods (standard and DeCov) in all the experiments. With
ResNet50, the three variants of our proposed approach sig-
nificantly reduce the test errors compared to the standard ap-
proach over both datasets: 0.51% — 0.63% improvement on
CIFARI10 and 1.25% — 1.44% on CIFAR100.

For CIFAR10, the best performance is achieved by the di-
rect variant and the Logdet variant for ResNext and ResNet
models, respectively. For example, with ResNext, our direct
variant yields 0.65 boost compared to the standard approach
and 0.54 boost compared to DeCov. For CIFAR100, the best
performance is acheived by our Logdet variant for both mod-
els. This variant leads to 1.4% and 0.85% boost for ResNet
and ResNext, respectively. Overall, our three variants con-
sistently outperform DeCov and standard approach in all
testing configurations.

ImageNet

To further demonstrate the effectiveness of our approach
and its ability to boost the performance of state-of-the-
art neural networks, we conduct additional image classi-
fication experiments on the ImageNet-2012 classification
dataset (Russakovsky et al. 2015) using four different mod-
els: ResNet50 (He et al. 2016), Wide-ResNet50 (Zagoruyko
and Komodakis 2016), ResNeXt50 (Xie et al. 2017), and
ResNet101 (He et al. 2016). The diversity term is applied on
the last intermediate layer, i.e., the global average pooling
layer for both DeCov and our method.

2For the standard approach, the only difference is not using
an additional diversity loss. The remaining regularizers, data aug-
mentation, weight decay etc., are all applied as specified per-
experiment.
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For the hyperparameters, we fix A\; = Ay = 0.001 and
~ = 10 for all the different approaches. The Scope of this pa-
per is feature diversity. However, in this experiment, we also
report results with weight diversity approaches. In particular,
we compare with the methods in (Yu, Li, and Zhou 2011),
(Xie, Deng, and Xing 2015b), (Rodriguez et al. 2016), and
(Ayinde, Inanc, and Zurada 2019).

We use the standard augmentation practice for this dataset
as in (Zhang et al. 2018; Huang et al. 2017; Cogswell et al.
2016). All the models are trained with a batch size of 256 for
100 epoch using SGD with Nesterov Momentum of 0.9. The
learning rate is initially set to 0.1 and decreases at epochs 30,
60, 90 by a factor of 10.

Table 2 reports the test errors of the different approaches
on ImageNet dataset. As can be seen, feature diversity (our
approach and DeCov) reduces the test error of the model
and yields better performance compared to the standard
approach. We note that, as opposed to feature diversity,
weight diversity does not always yield performance im-
provement and it can sometimes hurt generalization. Com-
pared to decov, our three variants consistently reach better
performance.

For ResNet50 and ResNeXt50, the best performance is
achieved by our direct variant, yielding more than 0.5% im-
provement compared to the standard approach for both mod-
els. For Wide-ResNet50 and ResNet101, our Det variant
yields the top performance with over 0.6% boost for Wide-
ResNet50. We note that our approach has a small additional
time cost. For example for ResNet50, our direct, Det and
Logdet variants take only 0.29%, 0.39%, and 0.49% extra
training time, respectively.

Sensitivity Analysis

To further investigate the effect of the proposed diversity
strategy, we conduct a sensitivity analysis using ImageNet
on the hyperparameters of our methods: A\; and Ay which
controls the contribution of the global diversity term to the
global loss. We analyze the effect of the two parameters on
the final performance of ResNet50 on ImageNet dataset. The
analysis is presented in Figure 1.

As shown in Figure 1, using a diversity strategy, i.e., three
variants of our method, consistently outperform the stan-
dard approach and are robust to the hyperparameters. For
the Direct variant, the best performance is reached with
A1 = 0.005 and A, = 0.001. With this configuration, the
model achieves 0.71% improvement compared to the stan-
dard approach. For the Det and the Logdet variants, using
A1 = 0.001 and Ay = 0.0005, the model reaches the lowest
error rate (23.09%) corresponding to 0.75% accuracy boost.
Emphasizing diversity and using high weights (A\; and \2)
still lead to better results compared to the standard approach
but can make the total loss dominated by the diversity term.
In general, we recommend using \; = A2 = 0.001. How-
ever, this depends on the problem at hand.

Feature Diversity Reduces Overfitting

In (Laakom et al. 2021a; Cogswell et al. 2016), it has been
observed that feature diversity can reduce overfitting. To
study the effect of feature diversity on the generalization



ResNext-29-08-16

ResNet50

method CIFAR10 CIFAR100 CIFARI10 CIFAR100

Standard 6.93+0.10 2673 £0.10 8.28+£0.41 33.39+042
DeCov 6.82+0.15 26770 +£0.10 8.03£0.11 32.26 £0.22
Ours(Direct)  6.28 £0.11 26.20£0.18 7.77 £0.09 32.09 +£0.11
Ours(Det) 6.51 £0.16 2635+023 7.75+£0.12 32.14+£0.28
Ours(Logdet) 6.38 £0.08 25.88+0.21 7.65+0.10 31.99 & 0.05

Table 1: Classification errors of the different approaches on CIFAR10 and CIFAR100 with three different models. Results are

averaged over three random seeds.

ResNet50 Wide-ResNet50 ResNeXt50 ResNet101

Standard 23.84 22.42 22.70 22.33
(Yu, Li, and Zhou 2011) 23.87 22.48 22.57 22.23
(Ayinde, Inanc, and Zurada 2019) 23.95 22.41 22.67 22.36
(Rodriguez et al. 2016) 24.23 22.70 22.80 23.10
(Xie, Deng, and Xing 2015b) 23.79 22.66 22.64 22.71
DeCov 23.62 22.68 22.57 22.31
Ours(Direct) 23.24 21.95 22.25 22.14
Ours(Det) 23.34 21.75 22.44 21.87
Ours(Logdet) 23.32 21.96 22.40 22.04

Table 2: Performance of different models with different diversity strategies on ImageNet dataset

ERM DeCov direct* det* Ldet*
ResNet50 2.87 2.70 1.15 1.23  1.21
WResNet50 6.33 6.34 4.44 4.34 4.58
ResNeXt50  5.99 5.85 4.41 459 448
ResNet101 4.64 4.61 3.68 3.38 371

Table 3: Generalization Gap, i.e., training error - test error,
of different models with different diversity strategies on Im-
ageNet dataset. * denotes our approach. Ldet refers to our
Logdet variant

gap, in Table 3, we report the final training errors and the
generalization gap, i.e., training accuracy - test accuracy
for the different feature diversity approaches on ImageNet
dataset.

As shown in Table 3, we note that using diversity indeed
can reduce overfitting and decreases the empirical general-
ization gap of neural networks. The three variants of our ap-
proach significantly reduce overfitting for all four models by
more than 1% compared to standard and DeCov for all the
models. For example, our Det variant reduces the empirical
generalization gap, compared to the standard approach and
DeCov, by 2% for Wide-ResNet model and over 1.2% for
the ResNet101 model.

MLP-Based Models

Beyond CNN models, we also evaluate the performance
of our diversity strategy on modern attention-free, multi-
layer perceptron (MLP) based models for image classifica-
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tion (Tolstikhin et al. 2021; Liu et al. 2021; Lee-Thorp et al.
2021). Such models are known to exhibit high overfitting
and require regularization. We evaluate how diversity affects
the accuracy of such models on CIFARI10. In particular, we
conduct a simple experiment using two models: MLP-Mixer
(Tolstikhin et al. 2021), gMLP (Liu et al. 2021) with four
blocks each.

For the diversity strategies, i.e., ours and Decov, similar
to our other experiments, the additional loss has been added
on top of the last intermediate layer. The input images are
resized to 72 x 72. We use a patch size of 8 X 8 and an em-
bedding dimension of 256. All models are trained for 100
epochs using Adam with a learning rate of 0.002, weight
decay with a rate of 0.0001, and batch size of 256. Standard
data augmentation, i.e., random horizontal flip and random
zoom with a factor of 20%, is used. We use 10% of the train-
ing data for validation. We also reduce the learning rate by
a factor of 2 if the validation loss does not improve for 5
epochs and use early stopping when the validation loss does
not improve for 10 epochs. All experiments are repeated
over 10 random seeds and the average results are reported.

The results in Table 4 show that employing a diver-
sity strategy can indeed improve the performance of these
models, thanks to its ability to help learn rich and robust
representations of the input. Our proposed approach con-
sistently outperforms the competing methods for both the
MLP-Mixer and gMLP. For example, our direct variant leads
to 1.15% and 0.3% boost for MLP-Mixer and gMLP, respec-
tively.

For the MLP-mixer, the top performance is achieved by
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Figure 1: Sensitivity analysis of A\; and Ay on the test error using ResNet50 trained on ImageNet. The first row contains
experiments with fixed A\; and the second row contains experiments with fixed As. From left to right: our Direct variant, our
Det variant, and our Logdet variant. -y is fixed to 10 in all experiments.

MLP-Mixer gMLP
Standard 23.93 22.26
DeCov 24.10 22.00
Ours(Direct) 22.78 21.95
Ours(Det) 22.66 21.62
Ours(Logdet) 22.84 21.56

Table 4: Classification errors of modern MLP-based ap-
proaches on CIFAR10. Results are averaged over ten ran-
dom seeds.

the Det variant of our approach reducing the error rates by
1.27% and 1.44% compared to the standard approach and
DeCov, respectively. For the gMLP model, the top perfor-
mance is achieved by the Logdet variant of our approach
boosting the results by 0.7% and 0.44% compared to the
standard approach and DeCov, respectively.

Learning in the Presence of Label Noise

To further demonstrate the usefulness of promoting diver-
sity, we test the robustness of our approach in the presence of
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label noise. In such situations, standard neural network tend
to overfit to the noisy samples and not generalize well to the
test set. Enforcing diversity can lead to better and richer rep-
resentations attenuating the effect of noise. To show this, we
performed additional experiments with label noise (20% and
40%) on CIFAR10 and CIFAR100 using ResNet50. We use
the same training protocol used for the original CIFAR10
and CIFARI100: all models are trained using SGD with a
momentum of 0.9, weight decay of 0.0001, and a batch size
of 128 for 200 epochs. The initial learning rate is set to 0.1
and is then decreased by a factor of 5 after 60, 120, and
160 epochs, respectively. We also adopt a standard data aug-
mentation scheme that is widely used for these two datasets
(He et al. 2016; Huang et al. 2017). For all models, the addi-
tional diversity term is applied on top of the last intermediate
layer. For the hyperparameters: The loss weights is chosen
from {0.0001,0.001,0.01,0.1} for both our approach (\;
and \) and Decov and +y in the radial basis function is cho-
sen from {1, 10}. For each approach, the model with the best
validation performance is used in the test phase. The average
errors over three random seeds are reported.

The results are reported in Table 5. As it can be seen, in



20% label noise

40% label noise

Method CIFAR10 CIFAR100 CIFAR10 CIFAR100

Standard 1438 £0.29 45.11+£0.52 19.40+£0.80 48.81 £0.57
DeCov 13.75£0.19 4193+040 17.60+0.66 48.23 £0.48
Ours(Direct)  13.31 £0.40 40.10£0.31 16.96 + 0.32 46.73 +0.23
Ours(Det) 1321 £0.21 4035+£031 17.49+0.04 46.93 £0.62
Ours(Logdet) 13.01 £0.40 3997 £0.19 17.24+0.31 46.52 £+ 0.22

Table 5: Classification errors of ResNet50 using different diversity strategies on CIFAR10 and CIFAR100 datasets with different
label noise ratios. Results are averaged over three random seeds.

the presence of noise, the gap between the standard approach
and diversity (Decov and ours) increases. For example, our
Logdet variant boosts the results by 1.91% and 2.29% on
CIFAR10 and CIFAR100 with 40% noise, respectively.

Conclusions

In this paper, we proposed a new approach to encourage
the ‘diversification’ of the layer-wise feature map outputs
in neural networks. The main motivation is that by promot-
ing within-layer activation diversity, units within the same
layer learn to capture mutually distinct patterns. We pro-
posed an additional loss term that can be added on top of
any fully-connected layer. This term complements the tradi-
tional ‘between-layer’ feedback with an additional ‘within-
layer’ feedback encouraging diversity of the activations. Ex-
tensive experimental results show that such a strategy can
indeed improve the performance of different state-of-the-art
networks across different datasets and different tasks, i.e.,
image classification, and label noise. We are confident that
these results will spark further research in diversity-based
approaches to improve the performance of neural networks.
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