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Abstract

Fine-tuning pre-trained models has recently yielded remark-
able performance gains in graph neural networks (GNNs).
In addition to pre-training techniques, inspired by the
latest work in the natural language fields, more recent
work has shifted towards applying effective fine-tuning ap-
proaches, such as parameter-efficient fine-tuning (PEFT).
However, given the substantial differences between GNNs
and transformer-based models, applying such approaches di-
rectly to GNNs proved to be less effective. In this paper, we
present a comprehensive comparison of PEFT techniques for
GNNs and propose a novel PEFT method specifically de-
signed for GNNs, called AdapterGNN. AdapterGNN pre-
serves the knowledge of the large pre-trained model and
leverages highly expressive adapters for GNNs, which can
adapt to downstream tasks effectively with only a few param-
eters, while also improving the model’s generalization abil-
ity. Extensive experiments show that AdapterGNN achieves
higher performance than other PEFT methods and is the only
one consistently surpassing full fine-tuning (outperforming
it by 1.6% and 5.7% in the chemistry and biology domains
respectively, with only 5% and 4% of its parameters tuned)
with lower generalization gaps. Moreover, we empirically
show that a larger GNN model can have a worse generaliza-
tion ability, which differs from the trend observed in large
transformer-based models. Building upon this, we provide
a theoretical justification for PEFT can improve generaliza-
tion of GNNs by applying generalization bounds. Our code is
available at https://github.com/Lucius-Ist/AdapterGNN.

Introduction

Graph neural networks (GNNs) (Scarselli et al. 2008; Wu
et al. 2020) have achieved remarkable success in analyz-
ing graph-structured data (Hamilton, Ying, and Leskovec
2017; Velickovic et al. 2017; Xu et al. 2018) but face chal-
lenges such as the scarcity of labeled data and low out-of-
distribution generalization ability. To overcome these chal-
lenges, recent efforts have focused on designing GNNSs pre-
training approaches (Hu et al. 2019; Xia et al. 2022a; You
et al. 2020) that leverage abundant unlabeled data to capture
transferable intrinsic graph properties and generalize them
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to different downstream tasks by fine-tuning (Zhou et al.
2019a,b; Wang et al. 2022). While fine-tuning all param-
eters from a pre-trained model can improve performance
(Peng et al. 2019; Hu et al. 2019), it usually requires a rel-
atively large model architecture to effectively glean knowl-
edge from pre-training tasks (Devlin et al. 2018; Brown et al.
2020). This becomes challenging when the downstream task
has limited data, as optimizing a large number of parameters
can lead to overfitting (LeCun, Bengio, and Hinton 2015).
Moreover, training and maintaining a separate large-scale
model for each task can prove to be inefficient as the num-
ber of tasks grows. To address these challenges, recent re-
search has focused on developing parameter-efficient fine-
tuning (PEFT) techniques that can effectively adapt pre-
trained models to new tasks (Ding et al. 2022), such as
adapter tuning (Houlsby et al. 2019), LoRA (Hu et al. 2021),
BitFit (Zaken, Ravfogel, and Goldberg 2021), prefix-tuning
(Li and Liang 2021), and the prompt tuning (Lester, Al-
Rfou, and Constant 2021). PEFT seeks to tune a small por-
tion of parameters and keep the left parameters frozen. This
approach reduces training costs and allows for use in low-
data scenarios. PEFT could be applied to the GNNs (Xia
et al. 2022b). In particular, the idea of prompt tuning has
been widely adopted to GNNs (Wu et al. 2023). This adop-
tion involves either manual prompt engineering (Sun et al.
2022) or soft prompt tuning techniques (Liu et al. 2023; Diao
et al. 2022; Fang et al. 2022). However, prompt-based meth-
ods involve modifying only the raw input and not the in-
ner architecture and thus struggling to match full fine-tuning
performance (Fang et al. 2022), unless in special few-shot
setting (Liu et al. 2023). Existing works lack study and com-
parison with other PEFT methods. And due to the inherent
difference between transformer-based models and GNNs,
not all NLP solutions can be directly applied to GNNS.

To address this issue, we propose an effective method,
AdapterGNN, that combines task-specific knowledge in tun-
able adapters with task-agnostic knowledge in the frozen
pre-trained model. Unlike the vanilla adapter (Houlsby et al.
2019) which exhibits poor performance when directly ap-
plied to GNNs, AdapterGNN is specifically designed to
cater to the non-transformer GNN architecture employing
novel techniques: (1) Dual adapter modules; (2) Batch nor-
malization (BN); (3) Learnable scaling.

As illustrated in Fig. 1, we conduct a comprehensive com-
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Figure 1: Comparison among various PEFT methods of
GNNss in six small molecular datasets. Detailed comparisons
are shown in Table 1 and explanations are in Appendix D.2

parison of various PEFT approaches in GNNs. Applying
them on GNNs is non-trivial since most of them were im-
plemented on transformer-based models. AdapterGNN, with
only 5% tuned parameters, achieves higher evaluation per-
formance than other PEFT methods and is the only one con-
sistently surpassing full fine-tuning.

This improvement can be attributed to AdapterGNN max-
imally utilizing advantages of PEFT with special designs.
PEFT addresses two drawbacks of full fine-tuning to im-
prove generalization. First, catastrophic forgetting of pre-
trained knowledge is disastrous during generalizing (Kirk-
patrick et al. 2017). Since PEFT keeps most parameters
fixed, catastrophic forgetting can be potentially mitigated,
resulting in improved model transferability and generaliza-
tion (Ding et al. 2022). Second, overfitting is severe when
tuning on a small dataset with large parameters (Agha-
janyan, Zettlemoyer, and Gupta 2020; Arora et al. 2018),
particularly in the OOD case (Kuhn et al. 2013; Hu et al.
2019).

For the first time, we provide a detailed theoretical justifi-
cation from the perspective of generalization bounds (Mobhri,
Rostamizadeh, and Talwalkar 2018; Shalev-Shwartz and
Ben-David 2014) to explain how PEFT in GNNs mitigates
overfitting and promotes generalization ability.

To conclude, our work makes the following contributions:

* We are the first to apply the adapter to GNNs. To cater
to the non-transformer GNN architecture, we integrate
special techniques (dual adapter modules, BN, learnable
scaling), which are essential in improving performance.

We are the first to provide a theoretical justification of
how PEFT improves generalization for non-transformer
models. While there are works to study the theoretical
support of PEFT in large transformer models, there is
a lack of theoretical study for non-transformer models,
e.g., GNNs. Although numerous empirical studies have
demonstrated the efficacy of PEFT, we contribute to fill-
ing the gap between theory and empirical results.

We are the first to apply all prevalent PEFT methods on
GNNss and provide a detailed comparison. Applying such
PEFT methods on GNNss is non-trivial since most PEFT
methods were implemented on transformer-based mod-
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els. We make special variations and implement them in
GNNs, which fills the void in this field.

Related Work

Parameter-efficient fine-tuning methods. Full fine-
tuning tunes all the model parameters and adapts them to
downstream tasks, but this becomes inefficient with the
growth of model size and task count. Recent NLP work has
explored PEFT techniques that tune only a small portion of
parameters for efficiency (Ding et al. 2022). Prompt tuning
(Lester, Al-Rfou, and Constant 2021) aims to modify model
inputs rather than model architecture. Prefix-tuning (Li and
Liang 2021) only updates task-specific trainable param-
eters in each layer. Adapter tuning (Houlsby et al. 2019;
Chen et al. 2022) inserts adapter modules with bottleneck
architecture between layers. BitFit (Zaken, Ravfogel, and
Goldberg 2021) only updates the bias terms while freezing
the remaining. LoRA (Hu et al. 2021) decomposes the
weight matrix into low-rank matrices to reduce the number
of trainable parameters. As for the GNNs field, the idea
of prompt tuning has gained widespread acceptance (Wu
et al. 2023). GPPT (Sun et al. 2022) specially designs a
framework for GNNs but is limited to node-level tasks.
Limited to the molecular field, MolCPT (Diao et al. 2022)
encodes additional molecular motif information to enhance
graph embedding. GPF (Fang et al. 2022) and GraphPrompt
(Liu et al. 2023) are parameter-efficient but struggle to
match the full fine-tuning baseline in the non-few-shot
setting.

Generalization error bounds. Generalization error
bounds, also known as generalization bounds, provide
insights into the predictive performance of learning al-
gorithms in statistical machine learning. In the classical
regime, bias—variance tradeoff states that the test error
as a function of model complexity follows the U-shaped
behavior (Mohri, Rostamizadeh, and Talwalkar 2018;
Shalev-Shwartz and Ben-David 2014). However, in the
over-parameterized regime, increasing complexity decreases
test error, following the modern intuition of larger model
generalizes better (Belkin et al. 2019; Nakkiran et al. 2021;
Zhang et al. 2021; Sun et al. 2016; Hardt, Recht, and Singer
2016; Mou et al. 2018). (Aghajanyan, Zettlemoyer, and
Gupta 2020) has theoretically analyzed generalization on
over-parameterized large language models, it explains the
empirical results that larger pre-trained models generalize
better by applying intrinsic-dimension-based generalization
bounds. While our work utilizes conventional generalization
bounds to analyze the generalization ability of PEFT on
GNNe .

Parameter-Efficient Fine-Tuning Improving
Generalization Ability in GNNs

Several works have empirically shown that transformer-
based large models in NLP/CV are over-parameterized and
larger pre-trained models generalize better, aligning with the
modern regime in Fig. 2. They use generalization bounds
which are independent of the parameter count for large pre-
trained models (Aghajanyan, Zettlemoyer, and Gupta 2020).
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Figure 2: A large model is often employed for pre-training
when sufficient data is available. However, for downstream
tasks with limited data, a smaller model is optimal in the
classical regime. Compared with full fine-tuning, PEFT pre-
serves expressivity while reducing the size of parameter
space, leading to lower test error.

However, theoretical study for PEFT in models align-
ing with the classical regime is still lacking. Our empiri-
cal findings in Appendix C.1 (Li, Han, and Bai 2023) find
that larger GNNs generalize worse, satisfying the classical
regime in Fig. 2. Therefore, we explore how PEFT bene-
fits these models. We theoretically demonstrate PEFT can
lower the bounds of test error (generalization bounds) and
improve generalization ability in GNNs compared to full
fine-tuning, as illustrated in Fig. 2. Our justification begins
with this premise:

Premise 1. GNNs satisfy the classical regime of generaliza-
tion bounds theory.

Within this regime, we apply a widely used parame-
ter counting based generalization bounds theorem (Agha-
janyan, Zettlemoyer, and Gupta 2020; Arora et al. 2018) and
the detailed proof of this theorem can be found in Appendix
B.1:

Theorem 1. Generalization bounds for finite hypothesis
space in classical regime. Training data D,, and the trained
parameters P are variables of training error E. The number
of training samples n and size of parameter space |P| are
variables of generalization gap bounds. Then, statistically,
the upper bound U (&) of the test error € of a model in finite
hypothesis space is determined as follows:

£ <UE) = E(Dy,P) + O (\/|77\/n) .

Before introducing PEFT, we first compare the er-
ror bounds of two paradigms: “supervised training from
scratch” and “pre-train, fine-tune”. For supervised training
from scratch, we denote the task as 7" and training data as
DI . With the increase of | Pr|, training error £(DZ_, Pr)
decreases due to stronger optimization capability and gen-
eralization gap bounds O(+/|Pr|/nr) increases. Therefore,
following the U-shaped behavior, the following corollary is
obtained and the detailed proof can be found in Appendix
B.2:

ey
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Corollary 1. Bounds of supervised training from scratch.
There is an optimal |Pr| to get the tightest upper bound

min(U(Er)) = (DT, Pr) + O («/\75T|/nT).

For pre-training task S, data is more abundant: ng > nr.
Many previous works discover that with abundant data to
pre-train, we should employ a larger model to capture suf-
ficient knowledge (Han et al. 2021; Ding et al. 2022; Wei
et al. 2022). Therefore, we have the following corollary and
the proof can be found in Appendix B.3:

Corollary 2. Bounds of pre-training. For the pre-training
task S satisfying ng > nr, there is also an optimal |Pg| and
|Ps| > |Pr| to get the tightest upper bound min(U(Es)) =

é('DS 755) + O(\/ |755\/n5)

ns?

In the “pre-train, fine-tune” paradigm, a model that has
been pre-trained on task .S is used as initialization to im-
prove the performance of a supervised task. To account for
the effect of the initial parameter values, we use gS(D, P)
to denote the training error of the pre-trained model.

Compared to training from scratch with the same model

as pre-training: U(Ep) = é(DTTT,ﬁS) + O(\/|Psl/nr),
fine-tuning benefits from a better initialization, which

leads to a lower error bound: U(Ep) = Es(DT |, Pg) +

nrm?

O(\/|Ps|/nr). Based on this, we make the following as-
sumption and corollary:

Assumption 1. The Transfer Gain TG from the pre-
trained model can be quantified. It is solely determined by
the properties of S,'T and can be calculated as: TG =
E(DL., Ps) — Es(DE., Ps)

Corollary 3. Bounds of full fine-tuning. Full fine-tuning of
a pre-trained model can result in a lower error bound, which
can be measured by the transfer gain denoted by TG:

U(Er) = E(DT,, Pg) +0 (\/ |7>s/nT) 16 @

In regard to PEFT, the PEFT model is initialized with the
same pre-trained parameters as fine-tuning, so T'G is inher-
ited similarly to fine-tuning, leading to the following corol-
lary:

Corollary 4. Bounds of PEFT. Bounds of PEFT U(Eg)
share a similar form as full fine-tuning:

UEr) =EMDE . Pp)+0 (\/\PEI/nT) - TG. (3)

For PEFT, we propose a prerequisite: the preservation of
the expressivity of full fine-tuning GNNs. Our AdapterGNN
is specifically designed to maintain the capacity of the orig-
inal GNNs maximally. With comparable parameters, it can
be almost as powerful as full fine-tuning. We validate this
in Appendix C.2. In contrast, several PEFT techniques have
failed to yield satisfactory results in GNNs, such as prompt
tuning (Fang et al. 2022; Liu et al. 2023). This can be at-
tributed to not meeting this prerequisite.

With this prerequisite, when training from scratch on 7',
the trainable structure of PEFT and fine-tuning yields simi-
lar minimal generalization errors (under Pr and Pg, respec-
tively) as follows:
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Figure 3: Comparison between full fine-tuning and AdapterGNN PEFT on GIN. a) The full fine-tuning updates all parameters of
each pre-trained GNN layer. (b) AdapterGNN includes two parallel adapters taking input before and after the message passing.
Their outputs are added to the original output of batch normalization with learnable scaling. During tuning, the original MLP
of each GNN layer, which comprises the majority of the parameters, is frozen.
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And for downstream task 7', the optimal size is [Pr| as in

Cor. 1. But Cor. 2 gives |Pg| > |Pr|. Therefore, error bound
U(Er) under |Pg| is larger than that under the optimal |Pr|:

minU(Er)) = E(DL ,Pr) + O (\/ |PT|/nT>
< &ML ,Ps)+0 (\/ |P5|/nT>

This means reducing the size of parameter space leads
to a decrease in test error, which is aligned with the phe-
nomena in the classical regime. We also empirically validate
this trend in Appendix C.1. We define this Overfitting mit-

igation Gain as: OG = é(DTTLT,ﬁS) + O(/|Ps|/nT) —
(E(D,, Pr) + O(|Pr|/nr)).

Combining Equation 2,3, Inequality 4, and definition of
OG, we obtain the following proposition:
Proposition 1. Conditioned on ¢ < OG, PEFT has tighter

bounds than fine-tuning. Compare the tightest upper bound
of PEFT on |Pg| (where |Pg| < |Ps|) with the bounds of

fine-tuning:
U(ER) —min(U(EER))
(6)

If PEFT preserves enough expressivity and OG is large
enough, the condition ¢ < OG is satisfied. Therefore, PEFT

(&)
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[Psly [Prl,
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provides tighter bounds than full fine-tuning. The best ap-
proach is pre-training on a larger model and utilizing PEFT
with comparable expressivity and much fewer parameters.

Methodology

AdapterGNN

We propose a GNN PEFT framework called AdapterGNN.
The framework is demonstrated in Fig. 3. It adds train-
able adapters in parallel to GNN MLPs, combining task-
specific knowledge in adapters with task-agnostic knowl-
edge from the pre-trained model. The multi-layer percep-
tion (MLP) module contains the majority of the learnable
parameters and is important for GNNs. Therefore, we intro-
duce adapters as parallel computations to the GNN MLPs.
It utilize bottleneck architecture which includes a down-
projection W goyn : R7in — R™mid 3 RelLU activation,
and an up-projection W, : R"mid — [R"out, Unlike the
original GNN MLP, the middle dimension n;q is greatly
reduced (e.g., 20 x) as a bottleneck, resulting in a significant
reduction in the size of tunable parameters space.
AdapterGNN utilizes ideas adopted in adapters (Houlsby
et al. 2019). However, different from transformer-based
models, GNNs possess distinctive characteristics. It needs
to aggregate information from the neighborhood. The pre-
requisite in the justification Section gives that preserving the
expressivity of the full fine-tuning GNNs is crucial for PEFT
to generalize better than full fine-tuning. To enhance the
expressivity in non-transformer-based GNNs, AdapterGNN
employs several novel techniques specially designed:

Dual adapter modules. In each GNN layer, message
passing (MP) aggregates information from the neighbor-
hood. Node embeddings before and after MP provides com-
plementary and informative information. To sufficiently cap-
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ture the complementary information, we adopt dual parallel
adapters. The first adapter takes input before MP, able to deal
with the original information. And the other adapter takes
input after the non-parametric MP can effectively adapt the
MP-aggregated information.

Batch normalization (BN). Vanilla adapters did not uti-
lize BN. However, data distribution may shift in GNNss. It is
essential to ensure that affine parameters in BN are tunable
during training. To maintain consistency with the backbone
output, we incorporate tunable BN within each adapter.

Learnable scaling. The vanilla adapter simply adds the
output of an adapter to the original output without scaling.
This often causes catastrophic forgetting. On the other hand,
manually tuning (Hu et al. 2021; Chen et al. 2022) the scal-
ing factors requires extensive effort and time, as the opti-
mal scaling factors may vary significantly across different
datasets. This goes against our objective of achieving effi-
cient training. In AdapterGNN, we use learnable scaling fac-
tors s1, so with a small start value. They can be dynamically
adjusted during training.

Our experiments demonstrate that AdapterGNN can
achieve stable and superior performance with these novel
techniques. Formally, the output of the adapter is:

A(x) = BN(Wyp (ReLU(Waon(x)))). (1)

The output of adapters and the original embedding are com-
bined by element-wise addition:

h; = BN(MLP(MP(x;)))+s1-A1(x;) +82- A2 (MP(x;)).

(®)
where x; is the input of the Ith layer and h; is the em-
bedding before GNN ReLU and Dropout, i.e., X;11 =
Dropout(ReLU(hy)).

Discussion

Our framework provides several advantages. Firstly, the is-
sue of catastrophic forgetting of pre-trained knowledge, is
effectively mitigated through our parallel adapter design and
novel learnable scaling strategy. This strategy automatically
controls the proportion of newly-tuned task-specific knowl-
edge, while persistently preserving the pre-trained knowl-
edge. Secondly, to address overfitting when tuning on a
small dataset with large parameters. Our framework intro-
duces a bottleneck that significantly reduces the size of tun-
able parameter space to alleviate overfitting and improve
generalization, while also being highly efficient. Addition-
ally, AdapterGNN is specifically designed for GNNs and
takes input both before and after message passing. This dual
structure along with BN maximally preserves expressivity to
satisfy the prerequisite to fully exploit the benefits of PEFT.
Although our architecture is specifically designed for GIN
(Xu et al. 2018), it can be transferred to any existing GNN
architecture such as GAT (Velickovic et al. 2017) and Graph-
SAGE (Hamilton, Ying, and Leskovec 2017).

Experiments

Experimental setup. We evaluate the effectiveness of
AdapterGNN by conducting extensive graph-level classifi-
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cation experiments on eight molecular datasets and one bi-
ology dataset. We employ prevalent pre-training methods,
all based on a GIN backbone. Details of datasets and pre-
trained models are in Appendix D.3 and D.4. Implementa-
tions can be found in Appendix D.1.

Baseline methods. We mainly compare our method with
full fine-tuning. Besides, we make special variations for
PEFT methods and implement them in GNNs. Comprehen-
sive comparisons of them are presented in Fig. 1, measured
by the average ROC-AUC over six small molecular datasets
and an AttrMasking pre-trained model. AdapterGNN is the
only one surpassing full fine-tuning. Implementations of
these PEFT methods in GNNs are in Appendix D.2. We also
compare existing PEFT methods in GNNs. GPF (Fang et al.
2022) only modifies the input by adding a prompt feature to
the input embeddings. MolCPT (Diao et al. 2022) (backbone
frozen) leverages molecular motifs to provide additional in-
formation to graph embedding. We omit other related works
such as GPPT (Sun et al. 2022) and GraphPrompt (Liu et al.
2023) because they are either not efficient or cannot yield
satisfying performance without a few-shot setting.

Main Results

‘We bold the higher one in Table 1 and Table 2 and the results
suggests the following:

(1) AdapterGNN is the only method consistently
outperforming full fine-tuning. On molecular bench-
marks, among eight datasets with five pre-training methods,
AdapterGNN achieves higher average performances in all
pre-training methods. It is the only method that outperforms
full fine-tuning. The overall average ROC-AUC is 71.2%,
which is 1.6% relatively higher than 70.1% of full fine-
tuning. On the PPI benchmark, AdapterGNN is the only one
that consistently outperforms full fine-tuning. The overall
average ROC-AUC is 68.9%, which is 5.7% higher. In detail,
AdapterGNN achieves higher performances in 32/46 (70%)
experiments. It achieves these with only 5.2% and 4.0% tun-
able parameters, respectively. It also achieves training effi-
ciency (both FLOPs and latency) as detailed in Appendix
C.3.

(2) AdapterGNN outperforms state-of-the-art PEFT
methods. In addition to comparing AdapterGNN with full
fine-tuning, we implement variants of parallel adapter (He
et al. 2021) and LoRA (Hu et al. 2021) in GNNs for the
first time, which are prevalent PEFT methods in transformer-
based models. They are compared under similar propor-
tions of tuned parameters in detail. AdaptGNN has demon-
strated consistent and conspicuous improvements on molec-
ular benchmarks. On the PPI benchmark, overfitting is se-
vere for full fine-tuning. Our implemented PEFT methods
all achieve superior performance than it. Among them, Ap-
daterGNN is the best with the highest average. When com-
pared with existing GNN PEFT methods, the advantage is
more significant. Though GPF has a parameter efficiency
of only 0.1%, its performance is limited. And MolCPT
tunes much more parameters. On molecular benchmarks,
AdapterGNN outperforms GPF and MolCPT by an aver-
age of 8.9% in GraphCL. And on the PPI benchmark, com-
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Tuning Pre-training Dataset
Method Method BACE BBBP ClinTox HIV ~ SIDER Tox21 MUV  ToxCast| Avg.
EdgePred 79.9:09 67.3:24 64.1:37 76.3x10 60.4:07 76.0-06 74.1:21 64.1+06 | 70.3
. ContextPred  79.6:12 68.0:20 65.9:38 77.3:1.0 60.9:06 75.7:07 75.8+1.7 63.9:06 | 70.9

Full Fine-tune . B )

(100%) AttrMasking ~ 79.3:16 64.3:28 71.8:4.1 77.2:1.1 61.0:07 76.7:04 74.7+14 64.2:05 | 71.1
GraphCL 74.6:22 68.6:23 69.8:72 78.5:12 59.6:07 T4.4+05 73.7:27 62.9+04 | 70.3
SimGRACE ~ 74.7-10 69.0:1.0 59.9:03 74.6=12 59.1:06 73.9:04 71.0:19 61.8:04 | 68.0
EdgePred 78.5:1.7 65.9:28 66.6:5.4 73.5:02 60.9:13 75.4=05 73.0:1.0 63.0:07 | 69.6
Adapter ContextPFed 75.0:33 68.2:30 57.6:36 75.4:06 62412 T4.7:07 73.3:08 62.2:04 | 68.6
(52%) AttrMasking ~ 76.1:14 68.7+1.7 65.8:44 75.6:07 59.8:17 74.4:09 75.8:24 62.6:08 | 69.9
’ GraphCL 72.5:30 69.3:06 67.3:74 75.0:04 59.7:12 74704 72.9:17 62.9:04 | 69.3
SimGRACE  73.4:1.1 64.8:07 63.5:44 73.9x1.0 59.9:09 73.1:09 70.1:46 61.7:08 | 67.6
EdgePred 81.0:08 64.8:16 67.7:12 T4.8+12 60.8:1.1 74.6:04 75.0:15 62.2+10 | 70.1
LoRA ConteXtPl.fed 78.5:1.1 65.3:24 61.3:19 74. 716 60.8204 72.9:04 75.4x09 63.4:02 | 69.0
(5.0%) AttrMasking ~ 79.8:07 64.2:1.1 70.1:229 76.1:14 59.7:05 74.6:05 76.6=1.6 61.7:04 | 70.4
GraphCL 751207 67.8+1.1 65.1:35 78.9-06 57.6:07 73.9x00 72.8:12 62.7:06 | 69.2
SimGRACE  73.2:10 67.5:04 60.7:04 74.1:05 57.6:26 72.2:02 67.9z09 61.8:02 | 66.9
EdgePred 68.0:04 55.9:02 50.8:0.1 66.0:07 51.5:07 63.1:05 63.1:0.1 55.7:05 | 59.3
GPF ContextPfed 58.706 58.6:06 39.8:08 68.0:04 59.4:02 67.8z09 71.8:08 58.8:05 | 60.4
0.1%) AttrMasking  61.7:03 54.3:03 56.4:02 64.0-02 52.0:02 69.2:03 62.9:09 58.1:0 59.8
GraphCL 71.5z06 63.7:04 64.5:06 70.3205 55.3:06 65.5:05 70.1:07 58.5:05 | 64.9
MolCPT (40.0%) GraphCL 74.1=05 60.5:08 73.4:08 64.5:08 55.9:03 67.4:07 65.7:22 57.9:03 | 64.9
EdgePred 79.0:15 69.7:14 67.7:30 76.4:07 61.2:09 75.9:09 75.8:21 64.2:05 | 71.2
ContextPred  78.7:20 68.2:09 68.7-53 76.1:05 61.1:1.0 75.406 76.3:10 63.2:03 | 71.0
Adap“zg(gg (OUIS) N ttrMasking  79.7-1+ 67.5:2> 78326 767-1> 61.3:11 76.6:05 78407 63.6:05 | T2.8
’ GraphCL 76.1:20 67.8:14 72.0:38 77.8:13 59.6:15 74.9-00 75.1:21 63.1:04 | 70.7
SimGRACE  77.7:17 68.1:13 73.9:70 75.1+12 58.9:09 74.4:00 T1.8:14 62.6-06 | 70.3

Table 1: Test ROC-AUC (%) on molecular prediction benchmarks with different tuning and pre-training methods.

Tuning Method - EdgePred ContextPred AttrMasking GraphCL SimGRACE  Avg.
Full Fine-tune (100%)  65.2+1. 65.6:09 63.5:1.1 63.2:12 65.5:08 68.2:12 65.2
GPF (0.1%) 65.9+19 51.2+13 67.1+06 69.0-03 62.3205 50.0-0.9 60.9
Adapter (4.0%) 65.6+1.1 69.8-05 68.2:15 70.9-10 69.0-0.8 64.5:2.0 68.0
LoRA (4.0%) 63.0:04 68.0:1.0 68.0+1.1 69.2:08 69.4-06 63.0:0.3 66.8
AdpaterGNN (4.0%)  66.3-0.9 70.6:1.1 68.3-15 69.7-1.1 68.1-15 70.1:12 68.9

Table 2: Test ROC-AUC (%) on PPI benchmark with different tuning and pre-training methods. ”-”: no pre-training.

pared with GPF, AdapterGNN outperforms it by an average
of 13.1%.

(3) AdapterGNN avoids negative transfer and retains
the stable improvements of pre-training. On the PPI
benchmark, negative transfer frequently occurs in full fine-
tuning and GPF, where the pre-trained model often yields
inferior performance. On the contrary, the benefits of pre-
training remain stable in AdapterGNN.

Ablation Studies

We investigate the properties that make for a good
AdapterGNN. And by ablating on model size and training
data size, we validate our theoretical justification for the gen-
eralization bounds. All models are pre-trained by AttrMask-
ing. Unless otherwise specified, the performance represents
the average ROC-AUC over six small molecular datasets.

Insertion form and BN. AdapterGNN includes dual
adapters parallel to GNN MLP taking input before and af-
ter the message passing. To demonstrate the effectiveness of
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this design, we compare its performance with those of a sin-
gle parallel adapter and a sequential adapter inserted after
GNN MLP. We also compare with the variant without batch
normalization (BN). The count of adapter parameters is the
same across all forms. Table 3 shows that adopting a single
adapter already achieves superior performance over full fine-
tuning. Combining two parallel adapters further improves
the expressivity of PEFT, yielding the best performance. But
without BN, performance drops by a large margin.

Scaling strategy. We compared our novel learnable scal-
ing strategy with various fixed scaling ranging from 0.01 to
5. Table 4 shows that in five out of six datasets, as well as
on average, our learnable scaling strategy achieved the high-
est performance. Among the fixed scalings, smaller scal-
ing is superior. As the scaling factor increased, the perfor-
mance deteriorated due to catastrophic forgetting of pre-
trained knowledge.
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Form Position BN Avg.
Full Fine-tune 69.6
Sequential After MLP v 70.2
Parallel Before MP v 704
Parallel After MP v 703
Parallel Dual X 68.0
Parallel Dual v 712

Table 3: Comparison of insertion forms and BN.

BACE BBBP ClinTox SIDER Tox21 ToxCast Avg.

0.01  77.8+19 67.6:14 76.3:28 59.9:1.1 74.8:04 62.5:04 69.8
0.1 78.5:1.1 67.6:2.1 72.6270 61.0:07 76.2:05 63.3203 69.9
0.5 78.7:1.1 67.6232 72.3:60 60.9:10 76.2:07 63.3:03 69.8
1 78.6=17 68.7:30 66.3272 61.3:08 75.7:07 63.3206 69.0
5 73.7:2.4 66.6:2.1 55.9:66 60.8+1.5 75.3:08 62.9:05 65.9
Ours 79.7:13 67.5:22 78.3:26 61.3:1.1 76.6:05 63.6:05 71.2

Table 4: Comparison of our learnable scaling and fixed scal-
ing.

Model size. We report performances and errors across
model sizes by varying embedding dimensions. (1) As
shown in Fig. 4(a), average performance initially increases
and then decreases, indicating a larger model can be worse,
which is consistent with the classical regime. AdapterGNN
consistently outperforms full fine-tuning across all model
sizes. Specifically, in the BBBP dataset, AdapterGNN may
not surpass full fine-tuning with small model sizes, but it
achieves superior performance in larger models. (2) Fig.
4(b) displays the errors in the Tox21 dataset. The U-shaped
test curve also validates the classical regime in our tasks.
Although increasing the model size leads to a significant
increase in the generalization gap in full fine-tuning, the
gap is well-controlled with AdapterGNN. It demonstrates
AdapterGNN’s superior generalization ability, especially in
larger models.

Training data size. Reducing the size of the training sam-
ples results in inferior generalization, while AdapterGNN
can mitigate this overfitting issue. We compare the perfor-
mance of full fine-tuning with two AdapterGNN settings,
with bottleneck dimensions of 15 (default) and 5, respec-
tively. Fig. 5 demonstrates that when data becomes scarce,
the performance of AdapterGNN with fewer tunable pa-
rameters decreases slower and obtains superior results. And
fewer parameters yield better results.

Bottleneck dimension. Fig.6 demonstrates that reducing
the bottleneck dimension to limit the size of tunable parame-
ter space can improve the generalization ability of the model.
But when the size is too small, the model may suffer from
underfitting, which can restrict its performance. Therefore,
selecting a bottleneck dimension of 15, which represents
5.2% of all parameters, yields the best average performance.
Meanwhile, a dimension of 5, which accounts for only 2.2%
of all parameters, can surpass the results of full fine-tuning.
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Figure 4: Test ROC-AUC (%) performances and generaliza-
tion gap with different model sizes.
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Figure 5: Test ROC-AUC (%) performances with different
training data sizes.

2

X 71

Q 70

=69 s e

< —— Full Fine-tune

QL 68

2 67 AdapterGNN
66

0 1 2 5 10 15

Bottleneck Dim

30 60 100 150

Figure 6: Performances with different bottleneck dimen-
sions. O represents identical mapping.

Conclusion

We present an effective PEFT framework specially designed
for GNNs called AdapterGNN. It is the only PEFT method
that outperforms full fine-tuning with much fewer tunable
parameters, improving both efficiency and effectiveness. We
provide a theoretical justification for this improvement and
find that our tasks fall within the classical regime of the gen-
eralization error, where larger GNNs can be worse, and re-
ducing the size of the parameter space during tuning can re-
sult in lower test error and superior performance. We focus
on graph-level classification tasks on GINs and leave other
tasks and GNN models for future exploration.
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