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Abstract
In this work, we formulate a novel framework for adversar-
ial robustness using the manifold hypothesis. This framework
provides sufficient conditions for defending against adversar-
ial examples. We develop an adversarial purification method
with this framework. Our method combines manifold learn-
ing with variational inference to provide adversarial robust-
ness without the need for expensive adversarial training. Ex-
perimentally, our approach can provide adversarial robust-
ness even if attackers are aware of the existence of the de-
fense. In addition, our method can also serve as a test-time de-
fense mechanism for variational autoencoders. Code is avail-
able at: https://github.com/GoL2022/AdvPFY.

Introduction
State-of-the-art neural network models are known of be-
ing vulnerable to adversarial examples. With small pertur-
bations, adversarial examples can completely change pre-
dictions of neural networks (Szegedy et al. 2014). Defense
methods are then designed to produce robust models to-
wards adversarial attacks. Common defense methods for ad-
versarial attacks include adversarial training (Madry et al.
2018), certified robustness (Wong and Kolter 2018), etc.. Re-
cently, adversarial purification has drawn increasing atten-
tion (Croce et al. 2022), which purifies adversarial examples
during test time and thus requires fewer training resources.

Existing adversarial purification methods achieve supe-
rior performance when attackers are not aware of the exis-
tence of the defense; however, their performance drops sig-
nificantly when attackers create defense-aware or adaptive
attacks (Croce et al. 2022). Besides, most of them are em-
pirical with limited theoretical justifications. Differently, we
adapt ideas from the certified robustness and build an adver-
sarial purification method with a theoretical foundation.

Specifically, our adversarial purification method is based
on the assumption that high-dimensional images lie on low-
dimensional manifolds (the manifold hypothesis). Com-
pared with low-dimensional data, high-dimensional data
are more vulnerable to adversarial examples (Goodfellow,
Shlens, and Szegedy 2015). Thus, we transform the ad-
versarial robustness problem from a high-dimensional im-
age domain to a low-dimensional image manifold domain
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Figure 1: Adversarial purification against adversarial at-
tacks. (a) Clean, adversarial (adv.), and purified images. (b)
Jointly learning of the variational autoencoder and the clas-
sifier to achieve semantic consistency. (c) Applying seman-
tic consistency between predictions and reconstructions to
defend against attacks.

and present a novel adversarial purification method for
non-adversarially trained models via manifold learning and
variational inference (see Figure 1 for the pipeline). With
our method, non-adversarially trained models can achieve
performance on par with the performance of adversarially
trained models. Even if attackers are aware of the defenses,
our approach still provides robustness against attacks.

Our method is significant in introducing the manifold hy-
pothesis to the adversarial defense framework. We improve a
model’s adversarial robustness from low-dimensional image
manifolds than the complex high-dimensional image space.
In the meantime, we provide conditions (in theory) to quan-
tify the robustness of the predictions. Also, we present an
effective adversarial purification approach combining man-
ifold learning and variational inference, which achieves re-
liable performance on adaptive attacks without adversarial
training. We also demonstrate the feasibility of our method
to improve the robustness of adversarially trained models.

Related Work
Adversarial Training. Adversarial training is one of the
most effective adversarial defense methods which incorpo-
rates adversarial examples into the training set (Goodfel-
low, Shlens, and Szegedy 2015; Madry et al. 2018). Such a
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method could degrade classification accuracy on clean data
(Tsipras et al. 2019; Pang et al. 2022). To reduce the degra-
dation in clean classification accuracy, TRADES (Zhang
et al. 2019) is proposed to balance the trade-off between
clean and robust accuracy. Recent works also study the ef-
fects of different hyperparameters (Pang et al. 2021; Huang
et al. 2022a; Rice, Wong, and Kolter 2020) and data aug-
mentation (Rebuffi et al. 2021; Sehwag et al. 2022; Zhao
et al. 2020) to reduce robust overfitting and avoid the de-
crease of model’s robust accuracy. Besides the standard ad-
versarial training, others also study the adversarial training
on manifolds (Stutz, Hein, and Schiele 2019; Lin et al. 2020;
Zhou, Liang, and Chen 2020; Patel et al. 2020). In this work,
we introduce a novel defense without adversarial training.
Adversarial Purification and Test-time Defense. As an
alternative to adversarial training, adversarial purification
aims to shift adversarial examples back to the represen-
tations of clean examples. Some efforts perform adver-
sarial purification using GAN-based models (Samangouei,
Kabkab, and Chellappa 2018), energy-based models (Grath-
wohl et al. 2020; Yoon, Hwang, and Lee 2021; Hill,
Mitchell, and Zhu 2021), autoencoders (Hwang et al. 2019;
Yin, Zhang, and Zuo 2022; Willetts et al. 2021; Gong
et al. 2022; Meng and Chen 2017), augmentations, self-
supervised learning (Pérez et al. 2021; Shi, Holtz, and
Mishne 2021; Mao et al. 2021), PixelCNN (Song et al. 2018)
etc.. Prior efforts (Athalye, Carlini, and Wagner 2018; Croce
et al. 2022) have shown that methods such as Defense-
GAN, PixelDefend (PixelCNN), SOAP (self-supervised),
autoencoder-based purification are vulnerable to the Back-
ward Pass Differentiable Approximation (BPDA) attacks
(Athalye, Carlini, and Wagner 2018). Recently, diffusion-
based adversarial purification methods have been stud-
ied (Nie et al. 2022; Xiao et al. 2022) and show adversar-
ial robustness against adaptive attacks such as BPDA. Lee
and Kim (2023), however, observe that the robustness of
diffusion-based purification drops significantly when evalu-
ated with the surrogate gradient designed for diffusion mod-
els. Similar to adversarial purification, existing test-time de-
fense techniques (Nayak, Rawal, and Chakraborty 2022;
Huang et al. 2022b) are also vulnerable to adaptive white-
box attacks. In this work, we present a novel defense com-
bining manifold learning and variational inference which
achieves better performance compared with prior works and
greater robustness on adaptive white-box attacks.

Methodology
In this section, we introduce an adversarial purification
method with the manifold hypothesis. We first define suffi-
cient conditions (in theory) to quantify the robustness of pre-
dictions. Then, we use variational inference to approximate
such conditions in implementation and achieve adversarial
robustness without adversarial training.

Let DXY be a set of clean images and their labels where
each image-label pair is defined as (x,y). The manifold hy-
pothesis states that many real-world high-dimensional data
x ∈ Rn lies on a low-dimensional manifoldM diffeomor-
phic to Rm with m ≪ n. We define an encoder function
f : Rn → Rm and a decoder function f† : Rm → Rn to

form an autoencoder, where f maps data point x ∈ Rn to
point f(x) ∈ Rm. For x ∈ M, f† and f are approximate
inverses. See Yang et al. (2023) for notation details.

Problem Formulation
Let L = {1, ..., c} be a discrete label set of c classes and
h : Rm → L be a classifier of the latent space. Given an
image-label pair (x,y) ∈ DXY , the encoder maps the im-
age x to a lower-dimensional vector z = f(x) ∈ Rm and
the functions f and h form a classifier of the image space
ypred = h(z) = (h ◦ f)(x). Generally, the classifier pre-
dicts labels consistent with the ground truth labels such that
ypred = y. However, during adversarial attacks, the adver-
sary can generate a small adversarial perturbation δadv such
that (h ◦ f)(x) ̸= (h ◦ f)(x + δadv). Thus, our purification
framework aims to find a purified signal ϵpfy ∈ Rn such
that (h ◦ f)(x) = (h ◦ f)(x + δadv + ϵpfy) = y. However,
it is challenging to achieve ϵpfy = −δadv because δadv is
unknown. Thus, we aim to seek an alternative approach to
estimate the purified signal ϵpfy and defend against attacks.

Theoretical Foundation for Adversarial Robustness
The adversarial perturbation is usually ℓp-bounded where
p ∈ {0, 2,∞}. We define the ℓp-norm of a vector a =
[a1, ..., an]

⊺ as ∥a∥p and a classifier of the image space as
G : Rn → L. We follow Bastani et al. (2016); Leino, Wang,
and Fredrikson (2021) to define the local robustness.

Definition 1 (Locally robust image classifier) Given an
image-label pair (x,y) ∈ DXY , a classifier G is (x,y, τ)-
robust with respect to ℓp-norm if for every η ∈ Rn with
∥η∥p ≤ τ , y = G(x) = G(x+ η).

Human vision is robust up to a certain perturbation. For ex-
ample, given a clean MNIST image x with pixel values in [0,
1], if ∥η∥∞ ≤ 85/255, we assign (x+η) and x to the same
class (Madry et al. 2018). We use ρH(x,y) to represent the
maximum perturbation budget for static human vision inter-
pretations given an image-label pair (x,y). Exact ρH(x,y)
is often a large value but difficult to estimate. We use it to
represent the upper bound of achievable robustness.

Definition 2 (Human-level image classifier) For every
image-label pair (xi,yi) ∈ DXY , if a classifier GR is
(xi,yi, τi)-robust and τi ≜ ρH(xi,yi) where ρH(·, ·) rep-
resents the maximum perturbation budget for static hu-
man vision interpretations, we define such a classifier as a
human-level image classifier.

The human-level image classifier GR is an ideal classifier
that is comparable to human. To construct such GR, we need
a robust feature extractor fR of the image space and a robust
classifier hR of the feature space to form GR = hR ◦ fR.
However, it is a challenge to construct a robust fR due to the
high-dimensional image space. Therefore, we aim to find
an alternative solution to enhance the robustness of h ◦ f
against adversarial attacks by enforcing the semantic con-
sistency between the decoder f† and the classifier h. Both
functions (f† and h) take inputs from a lower dimensional
space (compared with the encoder); thus, they are more reli-
able (Goodfellow, Shlens, and Szegedy 2015).
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We define a semantically consistent classifier on the mani-
fold as hS : Rm → L, which yields a class prediction hS(z)
given a latent vector z ∈ Rm.

Definition 3 (Semantically consistent classifier on the man-
ifoldM) A semantically consistent classifier hS on the man-
ifold M satisfies the following condition: for all z ∈ Rm,
hS(z) = (GR ◦ f†)(z).
A classifier (on the manifold) is a semantically consistent
classifier if its predictions are consistent with the semantic
interpretations of the images reconstructed by the decoder.
While this definition uses the human-level image classifier
GR, we can use the Bayesian method to approximate hS

without using GR in experiment. Below, we provide the suf-
ficient conditions of adversarial robustness for hS ◦ f given
an input x, where the encoder f is not adversarially robust.

Proposition 1 Let (x,y) be an image-label pair from DXY

and the human-level image classifier GR be (x,y, τ)-
robust. If the encoder f and the decoder f† are approxi-
mately invertible for the given x such that the reconstruction
error ∥x−(f†◦f)(x)∥p ≜ κ ≤ τ (sufficient condition), then
there exists a function F : Rn → Rn such that (hS ◦ f ◦ F)
is (x,y, τ−κ

2 )-robust. (See Yang et al. (2023) for proof.)

The function F is considered to be the purifier for adver-
sarial attacks. We construct such a function based on recon-
struction errors. We assume the sufficient condition holds
(bounded reconstruction errors κ for clean inputs). Lemma 1
states that adversarial attacks on a semantically consistent
classifier lead to reconstruction errors larger than κ (abnor-
mal reconstructions on adversarial examples).

Lemma 1 If an adversarial example xadv = x+ δadv with
∥δadv∥p ≤ τ−κ

2 causes (hS ◦ f)(xadv) ̸= GR(xadv), then
∥xadv − (f† ◦ f)(xadv)∥p > τ+κ

2 ≥ κ. (Yang et al. 2023).

To defend against the attacks, we need to reduce the recon-
struction error. Theorem 1 states that if a purified sample
xpfy = xadv + ϵpfy has a reconstruction error no larger than
κ, the prediction from (hS ◦ f)(xpfy) will be the same as the
prediction from GR(x).

Theorem 1 If a purified signal ϵpfy ∈ Rn with ∥ϵpfy∥p ≤
τ−κ
2 ensures that ∥(xadv+ϵpfy)−(f†◦f)(xadv+ϵpfy)∥p ≤

κ, then (hS ◦ f)(xadv + ϵpfy) = GR(x).(Yang et al. 2023).

If ϵpfy = −δadv, then ∥xpfy − (f† ◦ f)(xpfy)∥p = κ. Thus,
feasible regions for ϵpfy are non-empty. Let S : Rn → Rn

be a function that takes an input x and outputs a purified
signal ϵpfy = S(x) by minimizing the reconstruction error,
then F(x) ≜ x+S(x) and hS ◦ f ◦F is (x,y, τ−κ

2 )-robust.

Remark 1 For every perturbation δ ∈ Rn with ∥δ∥p ≤ ν,
if S(x+δ) = −δ, then the function S : Rn → Rn is locally
Lipschitz continuous on Bν ≜ {x̂ ∈ Rn | ∥x̂ − x∥p < ν}
with a Lipschitz constant of 1.(Yang et al. 2023).

Insights of the Theory. We transform a high-dimensional
adversarial robustness problem into a low-dimensional se-
mantic consistency problem. Since we only provide the suf-
ficient conditions for robustness, dissatisfaction with the
conditions is not necessary to be adversarially vulnerable.

Figure 2: Two-stage pipeline: (a) jointly training for seman-
tic consistency between the decoder and the classifier and
(b) iterative updates of ϵpfy to purify xadv in inference.

Our conditions indicate that higher reconstruction quality
could lead to stronger robustness. Meanwhile, our method
can certify robustness up to τ

2 (reconstruction error κ = 0)
when a human-level image classifier can certify robustness
up to τ . The insight is that adding a purified signal on top
of an adversarial example could change the image seman-
tic, see Figure 5(c). Our framework is based on the triangle
inequality and can be extended to other distance metrics.
Relaxation. Our framework requires semantic consistency
between the classifier on the manifold and the decoder on
the manifold. Despite that the classifiers and decoders (on
the manifold) have a low input dimension, it is still difficult
to achieve high semantic consistency between them. Mean-
while, the human-level image classifier GR is not available.
Thus, we assume that predictions and reconstructions from
high data density regions of p(z|x) are more likely to be
semantically consistent (Zhou 2022). Next, we introduce a
practical implementation of adversarial purification based
on our framework. The implementation includes two stages:
(1) enforce consistency during training and (2) test-time pu-
rification of adversarial examples, see Figure 2.

Semantic Consistency with the ELBO
Exact inference of p(z|x) is often intractable, we, therefore,
use variational inference to approximate the posterior p(z|x)
with a different distribution q(z|x). We define two parame-
ters θ and ϕ which parameterize the distributions pθ(x|z)
and qϕ(z|x). When the evidence lower bound (ELBO) is
maximized, qϕ(z|x) is considered to be a reasonable ap-
proximation of p(z|x). To enforce the semantic consistency
between the classifier and the decoder, we force the latent
vector z inferred from the qϕ(z|x) to contain the class label
information of the input x. We define a one-hot label vector
as y = [y1, y2..., yc]

⊺, where c is the number of classes and
yi = 1 if the image label is i otherwise it is zero. A classifi-
cation head parametrized by ψ is represented as hψ(z) =
[h1(z), h2(z)..., hc(z)]

⊺ and the cross-entropy classifica-
tion loss is −Ez∼qϕ(z|x)[y

⊺ loghψ(z)] where log(·) is an
element-wise function for a vector. We assume the classifi-
cation loss is no greater than a threshold ω and the training
objective can then be written as

max
θ,ϕ

Ez∼qϕ(z|x)[log pθ(x|z)]−DKL[qϕ(z|x)∥p(z)]︸ ︷︷ ︸
ELBO (lower bound of log pθ(x))

(1)

s.t. − Ez∼qϕ(z|x)[y
⊺ loghψ(z)] ≤ ω. (2)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16381



We use the Lagrange multiplier with KKT conditions to
optimize this objective as

max
θ,ϕ,ψ

ELBO + λEz∼qϕ(z|x)[y
⊺ loghψ(z)], (3)

where λ is a trade-off term to balance the two loss terms.
We follow Kingma and Welling (2014) to define the

prior p(z) = N (0, I) and the posterior (encoder) qϕ(z|x)
by using a normal distribution with diagonal covariance.
Given an input vector x, an encoder model parameterized
by ϕ is used to model the posterior distribution qϕ(z|x) =
N (µϕ(x), diag(σ2

ϕ(x))). The model predicts the mean vec-
tor µϕ(x) = [µ1(x), µ2(x)..., µm(x)]⊺ and the diagonal
covariance σ2

ϕ(x) = [σ2
1(x), σ

2
2(x)..., σ

2
m(x)]⊺. We define

pθ(x|z) = (1/β)exp(−(1/γ)∥x − f†
θ(z)∥22), where γ con-

trols the variance, β is a normalization constant, and f†
θ is a

decoder parametrized by θ, which maps data from the latent
space to the image space. The illustrated network optimizing
over Eq. (3) is provided in Figure 2(a).

Adversarial Attack and Purification
We mainly focus on the white-box attacks here. During in-
ference time, the attackers can create adversarial perturba-
tions on the classification head. Given a clean image x, an
adversarial example can be crafted as xadv = x+ δadv with

δadv = argmax
δ∈Cadv

−Ez∼qϕ(z|x+δ)[y
⊺ loghψ(z)], (4)

where Cadv ≜ {δ ∈ Rn | x + δ ∈ [0, 1]n and ∥δ∥p ≤ δth}
is the feasible set for δth-bounded perturbations.

To avoid changing the semantic interpretation of the im-
age, we need to estimate the purified signal with a ℓp-norm
no greater than a threshold value ϵth. The purified signal also
needs to project the sample to a high-density region of the
manifold with a small reconstruction loss. The ELBO con-
tains ℓ2 reconstruction loss (relaxation from ℓp-metric), and
it can be applied to maximize the posterior qϕ(z|x). There-
fore, we present a defense method that optimizes the ELBO
during the test time to degrade the effects of the attacks.
Given an adversarial example xadv, a purified sample can
be obtained by xpfy = xadv + ϵpfy with
ϵpfy = argmax

ϵ∈Cpfy

Ez∼q̂ϕ(z)[log p̂θ(ϵ)]−DKL[q̂ϕ(ϵ)∥p(z)],

(5)
where p̂θ(ϵ) ≜ pθ(xadv+ϵ|z), q̂ϕ(ϵ) ≜ qϕ(z|xadv+ϵ) and
Cpfy ≜ {ϵ ∈ Rn | xadv+ϵ ∈ [0, 1]n and ∥ϵ∥p ≤ ϵth}which
is a feasible set for purification. Compared with training a
model to produce the purified signal ϵpfy = S(x), the test-
time optimization of the ELBO is more efficient.

We focus on ℓ∞-bounded purified vectors while our
method is effective for both ℓ2 and ℓ∞ attacks in our ex-
periments. We define α as the learning rate and ProjS as the
projection operator which projects a data point back to its
feasible region when it is out of the region. We use a clipping
function as the projection operator to ensure ∥xpfy−x∥∞ =
∥ϵpfy∥∞ ≤ ϵth and xpfy = x + ϵpfy ∈ [0, 1]n, where x is
an (adversarial) image and ϵth is the budget for purification.
We then define F(x;θ,ϕ) as

Ez∼qϕ(z|x)[log pθ(x|z)]−DKL[qϕ(z|x)∥p(z)] (6)

Algorithm 1: Test-time Purification
Input: xadv: input (adv) data; α: learning rate; T : number
of purification iterations; ϵth: purification budget.
Output: xpfy: purified data; s: purification score.

1: procedure PURIFY(x, α, T, ϵth)
2: ϵpfy ∼ U[−ϵth,ϵth] ▷ random initialization
3: for t = 1, 2, ..., T do
4: ϵpfy ← ϵpfy + α · sign(∇ϵpfyF(xadv + ϵpfy))
5: ϵpfy ← min(max(ϵpfy,−ϵth), ϵth)
6: ϵpfy ← min(max(xadv + ϵpfy, 0), 1)− xadv

7: xpfy ← xadv + ϵpfy ▷ purified data
8: s← F(xpfy) ▷ purification score
9: return xpfy, s

(a) Trajectory: clean-attack-purify (b) image pairs

Figure 3: (a) 2D trajectories of Fashion-MNIST. (b) Input
and reconstructed image pairs on clean (top), adversarial
(middle), and purified (bottom) examples with model pre-
dictions (numerical index) and failure cases (in box).

and iterative purification given adversarial example xadv as

ϵt+1 = ProjS
(
ϵt + α sgn(∇ϵtF(xadv + ϵ

t;θ,ϕ))
)
, (7)

where the element-wise sign function sgn(x) = x/|x| if x
is non-zero otherwise it is zero. A detailed procedure is pro-
vided in Figure 2(b) and Algorithm 1.

The test-time optimization of the ELBO projects adver-
sarial examples back to their feasible regions with a high
posterior q(z|x) (regions where decoders and classifiers
have strong semantic consistency) and a small reconstruc-
tion error (defend against adversarial attacks). To better
demonstrate the process, we build a classification model
in a 2-dimensional latent space (Figure 3 (a)) on Fashion-
MNIST and show examples of clean, attack, and purified
trajectories in Figure 3. Correspondingly, adversarial attacks
are likely to push latent vectors to abnormal regions which
cause abnormal reconstructions (Lemma 1). Through the
test-time optimization over the ELBO, the latent vectors can
be brought back to their original regions (Theorem 1).

If attackers are aware of the existence of purification, they
could take advantage of this knowledge to create adaptive at-
tacks. A straightforward formulation is to perform the multi-
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objective attacks with a trade-off term λa to balance the clas-
sification loss H(x,y;θ,ψ) and the purification objective
F(x;θ,ϕ) (Mao et al. 2021; Shi, Holtz, and Mishne 2021).
The adversarial perturbation of the multi-objective attacks is

δadv = argmax
δ∈Cadv

H(x+δ,y;θ,ψ)+λaF(x+δ;θ,ϕ). (8)

Another popular adaptive attack is the BPDA attack
(Athalye, Carlini, and Wagner 2018). Consider a purification
process as xpfy = F(x) and a classifier as G(xpfy) = (G ◦
F)(x). The BPDA attack uses an approximation∇x̂F(x̂) ≈
I (identity) to estimate the gradient as ∇x̂G(F(x̂))|x̂=x ≈
∇x̂G(x̂)|x̂=F(x). Many adversarial purification methods are
vulnerable to the BPDA attack (Athalye, Carlini, and Wag-
ner 2018; Croce et al. 2022). We show that even if attackers
are aware of the defense, our method can still achieve effec-
tive robustness to this white-box adaptive attacks.

Experiments
We first evaluate our method on MNIST (LeCun, Cortes,
and Burges 2010), Fashion-MNIST (Xiao, Rasul, and Voll-
graf 2017), SVHN (Netzer et al. 2011), and CIFAR-10
(Krizhevsky and Hinton 2009), followed by CIFAR-100
(Krizhevsky and Hinton 2009) and CelebA (64×64 and
128×128) for gender classification (Liu et al. 2015). See
Yang et al. (2023) for the dataset details.
Model Architectures and Hyperparameters. We use three
types of models (encoders) in our experiments: (1) tiny
ResNet with standard training (for ablation study), (2)
ResNet-50 with standard training (He et al. 2016) (for com-
parison with benchmark), and (3) PreActResNet-18 with ad-
versarial training (Rebuffi et al. 2021) (to study the impact
on adversarially trained models). We use several residual
blocks to construct decoders and use linear layers for classi-
fication. We empirically set the weight of the classification
loss (λ in Eq. (3)) to 8. See Yang et al. (2023) for details.
Adversarial Attacks. We evaluate our method on standard
adversarial attacks and adaptive attacks (multi-objective and
BPDA). All attacks are untargeted. For standard adversar-
ial attacks (Eq. (4)), we use Foolbox (Rauber, Brendel, and
Bethge 2017) to generate the PGD (ℓ∞) attacks (Madry
et al. 2018). We use Croce and Hein (2020) for the Au-
toAttack (ℓ∞, ℓ2). For the adaptive attacks, we use Tor-
chattacks (Kim 2020) for the BPDA-PGD/APGD (ℓ∞) at-
tacks (Athalye, Carlini, and Wagner 2018), and standard
PGD (ℓ∞) for the multi-objective attacks. For MNIST and
Fashion-MNIST, we report the attack hyperparameters and
numerical results in Yang et al. (2023). For SVHN, CIFAR-
10/100, and CelebA, we set the ℓ∞ attack budget δth to
8/255 and the ℓ2 attack budget to 0.5. We run 100 itera-
tions with step size 2/255 for PGD (ℓ∞) and 50 iterations
with step size 2/255 for the BPDA attack.

We also evaluate our ResNet-50 (CIFAR-10) model on
the RayS (blackbox) attack (Chen and Gu 2020), the FGSM
(ℓ∞) attack (Goodfellow, Shlens, and Szegedy 2015) and the
C&W (ℓ2) attack (Carlini and Wagner 2017) in Yang et al.
(2023) and our defense is effective for these attacks.
Test-time Purification. Key hyperparameters and experi-
mental details are provided below, and only the ℓ∞-bounded

Figure 4: Examples using the VAE-Classifier models on
clean, adversarial, and purified images with model predic-
tions (text), similar to Figure 3(b). We report predictions
from Fashion-MNIST in numerical index.

Figure 5: Examples of more datasets with failed cases on
MNIST in (c) in addition to Figure 4.

purification is considered in this work. We initialize the
purified signal ϵpfy by sampling from an uniform distri-
bution U[−ϵth,ϵth] where ϵth is the purification budget. We
run purification 16 times in parallel with different initializa-
tions and select the signal with the best purification score
measured by the reconstruction loss or the ELBO. Step
size α is alternated between {1/255, 2/255} for each run.
For SVHN, CIFAR-10/100, and CelebA, we set the ℓ∞-
purification budget ϵth to 8/255 with 32 iterations. Despite
the aforementioned hyperparameters, our method also works
on other hyperparameter settings as shown in Figure 7.
Baselines. We compare our VAE-Classifier (V-CLF) with
the standard autoencoders, denoted by Standard-AE-
Classifier (S-CLF), by replacing the ELBO with reconstruc-
tion loss. One should note that the classifiers of the Standard-
AE-Classifier may not have consistency with their decoders.
See Yang et al. (2023) for details.
Objectives of Test-time Purification. The autoencoders are
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(a) MNIST (b) CIFAR-10

Figure 6: Illustration of negative ELBOs. Adversarial at-
tacks yield higher negative ELBOs while our purification
reverses the ELBO shifts. Compared with MNIST, diverse
backgrounds of CIFAR-10 lead to less obvious ELBO shifts.

trained with the reconstruction loss and the ELBO respec-
tively. The Standard-AE-Classifier can only minimize the re-
construction loss during inference while the VAE-Classifier
can optimize both the reconstruction loss and the ELBO dur-
ing inference. We use “TP (R)” to represent the test-time
optimization of the reconstruction loss and “TP (E)” for the
test-time optimization of the ELBO.
Inference Time. We evaluate our method on an NVIDIA
Tesla P100 GPU in PyTorch. For ResNet-50 with a batch
size of 256 on CIFAR-10, the average run time per batch
for 32 purification steps is 17.65s. Following the standard in
(Croce et al. 2022), our method is roughly 102×. To reduce
the inference time, one can adapt APGD (adaptative learning
rate and momentum) during purification.

Experiment Results
Standard Adversarial Attacks. For the standard adversar-
ial attacks, only the classification heads are attacked. We
observe that, for MNIST, Fashion-MNIST, and SVHN, the
standard adversarial attacks of the VAE-Classifier create ab-
normal reconstructed images while this is not applied to
the Standard-AE-Classifier. It indicates that the classifiers
and the decoders of the VAE-Classifier are strongly con-
sistent. Figure 4 shows various sample predictions and re-
constructions on clean, attack, and purified images from the
VAE-Classifier. For clean images, the VAE-Classifier mod-
els achieve qualified reconstruction and predictions. For ad-
versarial examples, the VAE-Classifier models generate ab-
normal reconstructions which are correlated with abnormal
predictions from the classifiers (implied by Lemma 1). In
other words, if the prediction of an adversarial example is 2,
the digit on the reconstructed image may look like 2 as well.
If we can estimate the purified vectors by minimizing the
errors between inputs and reconstructions, the attacks could
be defended (implied by Theorem 1). In our experiments, the
predictions and reconstructions of adversarial examples be-
come normal after using the test-time optimization (ELBO).

Figure 5 shows various sample predictions and re-
constructions from the VAE-Classifier on CIFAR-10 and
CelebA. The results are slightly different from those on
MNIST, Fashion-MNIST, and SVHN: in Figures 5(a)-(b),
although the reconstructed images are more blurry com-

Method Clean PGD AA-ℓ∞ AA-ℓ2 BPDA

SV
H

N

S-CLF 94.00 0.00 0.00 1.67 -
TP (R) 93.03 40.83 44.82 59.93 7.65
V-CLF 95.27 16.01 0.33 6.61 -
TP (R) 90.66 72.44 73.92 79.15 66.68
TP (E) 86.29 72.72 73.47 76.21 64.70

C
IF

A
R

-1
0 S-CLF 90.96 0.00 0.00 0.98 -

TP (R) 87.80 11.65 13.74 44.57 0.70
V-CLF 91.82 17.82 0.05 2.36 -
TP (R) 78.51 51.20 51.63 59.35 43.02
TP (E) 77.97 57.21 58.78 63.38 47.43

Table 1: Classification accuracy on SVHN and CIFAR-10
with ℓ∞ = 8/255 and ℓ2 = 0.5. “S-CLF”: Standard-AE-
Classifier, “V-CLF”: VAE-Classifier, “TP (R)”: Test-time
minimization of the reconstruction loss, “TP (E)”: Test-time
minimization of the negative ELBO, and “AA”: AutoAttack.
We evaluate the model with both BPDA-(PGD/APGD) and
report the minimum accuracy.

Arch. Method Clean PGD AA-ℓ∞ BPDA

R50 V-CLF 94.82 23.84 0.04 -
TP (E) 85.12 63.09 63.16 57.15

PR18 V-CLF 87.35 61.08 58.65 -
TP (E) 85.14 61.98 63.73 60.52

Table 2: VAE-Classifier with ResNet-50 (R50) and adver-
sarially trained PreActResNet-18 (PR18) on CIFAR-10. We
set ℓ∞ = 8/255. See Yang et al. (2023) for more results.

pared with MNIST, Fashion-MNIST, and SVHN, the VAE-
Classifier is still robust under adversarial attacks. Distribu-
tion of the negative ELBO for clean, attack, and purified ex-
amples are shown in Figure 6.

We use tiny ResNet backbones for ablation study be-
tween the Standard-AE-Classifier and the VAE-Classifier.
Classification accuracy of CIFAR-10 and SVHN is provided
in Table 1 (see Yang et al. (2023) for results on MNIST
and Fashion-MNIST). According to our results, optimiz-
ing the ELBO during the test time is more effective than
only optimizing the reconstruction loss. Table 2 shows test-
time purification (CIFAR-10) with larger backbones such
as ResNet-50 (standard training) and PreActResNet-18 (ad-
versarial training). With our defense, the robust accuracy of
ResNet-50 on CIFAR-10 increases by more than 50%. Our
method can also be applied to adversarially trained models
(PreActResNet-18) to further increase their robust accuracy.
Multi-objective Attacks. We evaluate our method with the
multi-objective attacks on CIFAR-10 and provide accuracy
with respect to trade-off term λa of Eq. (8) in Figure 7(a).
We observe that the classification accuracy of adversarial ex-
amples increases as the trade-off term increases while im-
pacts on our defense are not significant. Thus, our defense is
robust to the multi-objective attacks. We show some multi-
objective adversarial examples in Yang et al. (2023).
Backward Pass Differentiable Approximation (BPDA).
We apply PGD and APGD to optimize the objective of the
BPDA attacks. We highlight the minimum classification ac-
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Method St.A-ℓ∞ Adap.A
SV

H
N

Semi-SL* (Mao et al. 2021) 62.12 -
PR18* (Rice et al. 2020) 61.00 -
WR28* (Rebuffi et al. 2021) 61.09 -
WR28 (Lee and Kim 2023) - 49.65
ResNet-Tiny (ours) 72.72 64.70

C
IF

A
R

-1
0

WRN28 (Shi et al. 2021) 53.58 3.70
ResNet (Song et al. 2018) 46.00 9.00
WR28 (Hill et al. 2021) 78.91 54.90
WR28 (Yoon et al. 2021) 85.45 33.70
PR18 (Mao et al. 2021) 34.40 -
Semi-SL* (Mao et al. 2021) 64.44 58.40
WR34* (Madry et al. 2018) 44.04 -
WR34* (Zhang et al. 2019) 53.08 -
WR70* (Wang et al. 2023) 70.69 -
WR70* (Rebuffi et al. 2021) 66.56 -
PR18* (Rebuffi et al. 2021) 58.50 -
WR70 (Nie et al. 2022) 71.29 51.13
WR70 (Lee and Kim 2023) 70.31 56.88
ResNet50 (ours) 63.09 57.15

Table 3: Benchmark on SVHN and CIFAR-10 with ℓ∞ =
8/255. Accuracy is directly reported from the respective pa-
per except for the adaptive attack which is reported from Lee
and Kim (2023) for diffusion-based purification and Atha-
lye et al (2018); Croce et al. (2022) for BPDA. Numbers
in bold are the minimum/robust accuracy. “∗”: adversarially
trained models, “-”: missing from the references, “St.A”:
strongest standard attacks and “Adap.A”: strongest adaptive
attacks. “WR”: Wide-ResNet. “PR”: PreActResNet. Other
works follow different evaluation standards, and we com-
pare with them in Yang et al. (2023). We achieves robust
performance without adversarial training.

V-CLF +TP (E)
Dataset Clean AA-ℓ∞ Clean AA-ℓ∞ BPDA

CIFAR100 72.37 0.10 42.96 26.13 16.87
ClbA-642 97.86 0.28 95.36 90.34 73.77
ClbA-1282 97.78 0.00 96.81 93.91 74.02

Table 4: Classification accuracy on CIFAR-100 and CelebA
(size: ClbA-x2) using the VAE-Classifier with ℓ∞ = 8/255.

curacy from our experiments in Tables 1-2. Although the
BPDA attack is the strongest attack compared with the stan-
dard adversarial attacks and the multi-objective attacks, our
defense still achieves desirable adversarial robustness. In
our experiments, models with larger backbones are more ro-
bust to the BPDA attacks. Compared with others in Table 3,
we achieves superior performance against the BPDA attacks
without adversarial training.
Effects of Hyperparameters. We study the effects of the
purification budgets ϵpfy on clean classification accuracy
and adversarial robustness. We use the VAE-Classifier (tiny
ResNet encoder) on CIFAR-10 and show results in Figure 7
that our defense can provide adversarial robustness with var-
ious hyperparameters. See Yang et al. (2023) for details.

Figure 7: Accuracy affected by (a) the trade-off term λa

of the multi-objective attacks, (b) the purification budget
∥ϵpfy∥∞ when ∥δadv∥∞ = 8/255.

Larger Datasets. We use larger datasets to study the im-
pacts of image resolution (CelebA 64×64 and 128×128)
and number of classes (CIFAR-100) on our defense. Table 4
indicates the scalability of our method for high-resolution
data. However, the performance on data with a larger num-
ber of classes is limited as an accurate estimation of p(z|x)
for each class is required. Compared with 5,000 training im-
ages per class in CIFAR-10, CIFAR-100 only provides 500
per class, leading to a less accurate estimation of p(z|x). See
Yang et al. (2023) for more discussion of this perspective.
Theory and Experiments. The theory in our methodology
section also provides insights for the experimental analysis.
For example, CIFAR-10 and SVHN have the same number
of classes and dimensions, but our method shows stronger
robustness on SVHN. The insight is that reconstruction er-
rors are smaller since the manifold of SVHN is easier to
model. Meanwhile, the Standard-AE-Classifier is less robust
compared with the VAE-Classifier since the classifier and
the decoder of the Standard-AE-Classifier are not semanti-
cally consistent. However, the accuracy drops on clean data
is not an implication of the theory. There could be multi-
ple reasons for such phenomena. First, optimizing the ELBO
for clean images causes distribution drifts. Second, there is
a tradeoff between robustness and accuracy (Tsipras et al.
2019). Third, the function generating the purified signals
should be locally Lipschitz continuous (Remark 1); how-
ever, such property is not guaranteed in Eq. (7). Conse-
quently, the purification process may move samples to un-
stable regions causing the drop. One can apply our method
only when attacks are detected to avoid the accuracy drop.

Conclusion
We formulate a novel adversarial purification framework via
manifold learning and variational inference. Our test-time
purification is evaluated with several attacks and shows its
adversarial robustness for non-adversarially trained models.
Even if attackers are aware of our defense method, we can
still achieve competitive adversarial robustness. Our method
is also capable of being combined with adversarially trained
models to further increase their adversarial robustness.
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Pérez, J. C.; Alfarra, M.; Jeanneret, G.; Rueda, L.; Thabet,
A. K.; Ghanem, B.; and Arbeláez, P. 2021. Enhancing Ad-
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