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Abstract

A fundamental challenge in multi-agent reinforcement learn-
ing (MARL) is to learn the joint policy in an extremely
large search space, which grows exponentially with the num-
ber of agents. Moreover, fully decentralized policy factor-
ization significantly restricts the search space, which may
lead to sub-optimal policies. In contrast, the auto-regressive
joint policy can represent a much richer class of joint poli-
cies by factorizing the joint policy into the product of a se-
ries of conditional individual policies. While such factoriza-
tion introduces the action dependency among agents explic-
itly in sequential execution, it does not take full advantage
of the dependency during learning. In particular, the subse-
quent agents do not give the preceding agents feedback about
their decisions. In this paper, we propose a new framework
Back-Propagation Through Agents (BPTA) that directly ac-
counts for both agents’ own policy updates and the learning
of their dependent counterparts. This is achieved by prop-
agating the feedback through action chains. With the pro-
posed framework, our Bidirectional Proximal Policy Optimi-
sation (BPPO) outperforms the state-of-the-art methods. Ex-
tensive experiments on matrix games, StarCraftll v2, Multi-
agent MuJoCo, and Google Research Football demonstrate
the effectiveness of the proposed method.

Introduction

Multi-agent reinforcement learning (MARL) is a promis-
ing approach to many real-world applications that naturally
comprise multiple decision-makers interacting at the same
time, such as cooperative robotics (Yu et al. 2023), traffic
management (Ma and Wu 2020), and autonomous driving
(Shalev-Shwartz, Shammah, and Shashua 2016). Although
reinforcement learning (RL) has recorded sublime success in
various single-agent domains, trivially applying single-agent
RL algorithms in this setting brings about the curse of di-
mensionality. In multi-agent settings, agents need to explore
an extremely large policy space, which grows exponentially
with the team size, to learn the optimal joint policy.
Existing popular multi-agent policy gradient (MAPG)
frameworks (Lowe et al. 2017; Foerster et al. 2018; Yu et al.
2022; Wang et al. 2023; Zhang et al. 2021) often directly
represent the joint policy as the Cartesian Product of each
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agent’s fully independent policy. However, this factorization
ignores the coordination between agents and severely limits
the complexity of the joint policy, causing the learning algo-
rithm to converge to a Pareto-dominant equilibrium (Chris-
tianos, Papoudakis, and Albrecht 2022). This phenomenon
is commonly referred to as relative overgeneralization (Wei
et al. 2018; Wang et al. 2021b) and can occur even in simple
scenarios (Fu et al. 2022; Ye et al. 2023). To tackle these is-
sues, some recent works (Wang, Ye, and Lu 2023; Wen et al.
2022; Fu et al. 2022) present the joint policy in an auto-
regressive form based on the chain rule (Box et al. 2015).
The auto-regressive model specifies that an agent’s policy
depends on its preceding agents’ actions. In this way, the
dependency among agents’ policies is explicitly considered
and the expressive limitations of the joint policy can be sig-
nificantly relaxed. However, they only take into account the
preceding agents* actions during decision-making, i.e., the
forward process, while disregarding reactions from subse-
quent agents during policy improvement, i.e., the backward
process (Li et al. 2023). This may lead to conflicting direc-
tions in policy updates for individual agents, where their lo-
cal improvements may jointly result in worse outcomes. In
contrast, the neural circuits in the central nervous system re-
sponsible for the sensorimotor loop consist of two internal
models (Miiller, Ohstrom, and Lindenberger 2021): 1) the
forward model, which builds the causal flow by integrating
the joint actions, and 2) the backward model, which maps
the relation between an action and its consequence to invert
the causal flow. Such two bidirectional models internally in-
teract in order to enhance learning mechanisms.

In this paper, we aim to augment the existing MAPG
framework with bidirectional dependency (Li et al. 2023),
i.e. forward and backward process, to provide richer peer
feedback and align the policy improvement directions of in-
dividual agents with that of the joint policy. To this end,
we propose Back-Propagation Through Agents (BPTA), a
multi-agent reinforcement learning framework that follows
the Back-Propagation Through Time (BPTT) used for train-
ing recursive neural networks (RNN) (Cho et al. 2014).
Specifically, BPTA begins by unfolding the execution se-
quence in agents. The actions passed to subsequent agents
during the forward process will be integrated with their own
actions and serve as latent variables (Kingma and Welling
2022) in the backward process, the reactions from the subse-
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quent agents are propagated to the preceding agents through
the variables using the reparameterization trick (Kingma,
Salimans, and Welling 2015). Taking the feedback from
subsequent agents into account allows each agent to learn
from the consequences of the collective actions and adapt
to the changing behavior of the team. Furthermore, depen-
dent on such rich feedback agents can complete the causal-
ity loop: cyclic interaction between the forward and back-
ward process. As a result, BPTA enables individuals to func-
tion as a whole and find a consistent improvement direc-
tion. We incorporate PPO with auto-regressive policy and
BPTA and propose Bidirectional Proximal Policy Optimi-
sation (BPPO). Empirically, in several tasks, including ma-
trix game (Claus and Boutilier 1998a), Google Research
Football (GRF) (Kurach et al. 2020), StarCraft Multi-Agent
Challenge Version 2 (SMACv2) (Ellis et al. 2022), and
Multi-agent MuJoCo (MA-MuJoCo), BPPO achieves better
performance than baselines.
Specifically, our contribution is summarized as follows.

* We propose a novel framework BPTA that, for the first
time, explicitly models feedback from action-dependent
peer agents. In particular, BPTA allows derivatives to
pass across agents during learning.

Our proposed framework can be naturally integrated
with existing conditional policy-gradient methods. We
augment PPO with the auto-regressive policy under the
BPTA framework and propose Bidirectional Proximal
Policy Optimisation (BPPO).

Finally, the effectiveness of the proposed method is ver-
ified in four cooperative environments, and empirical re-
sults show that the proposed method outperforms the
state-of-the-art algorithms.

Related Work

Various works on MARL have been proposed to tackle co-
operative tasks, including algorithms in which agents make
decisions simultaneously and algorithms that coordinate
agents’ actions based on static or dynamic execution orders.

Simultaneous decision scheme. Most algorithms tend to
follow a simultaneous decision scheme, where agents’ poli-
cies are only conditioned on their individual observations.
One line of research extends PG from RL to MARL (Lowe
et al. 2017; Foerster et al. 2018; Wang et al. 2021b; Yu et al.
2022; Wang et al. 2023; Zhang et al. 2021), adopting the
Actor-Critic (AC) approach, where each actor explicitly rep-
resents the independent policy, and the estimated centralized
value function is known as the critic. Under this scheme, in
contrast to independent updates, some recent methods se-
quentially execute agent-by-agent updates, such as Rollout
and Policy Iteration for a Single Agent (RPISA) (Bertsekas
2021), Heterogeneous PPO (HAPPO) (Kuba et al. 2022),
and Agent-by-agent Policy Optimization (A2PO) (Wang
et al. 2023). Another line is value-based methods, where
the joint Q-function is decomposed into individual utility
functions following different interpretations of Individual-
Global-Maximum (IGM) (Sunehag et al. 2018; Rashid et al.
2020; Son et al. 2019; Wang et al. 2021a; Wan et al. 2022).
VDN (Sunehag et al. 2018) and QMIX (Rashid et al. 2020)
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provide sufficient conditions for IGM, however, suffer from
structural constraints. QTRAN (Son et al. 2019) and QPLEX
(Wang et al. 2021a) complete the representation capacity of
the joint Q-function through optimization constraints and a
dueling mixing network respectively, while it is impractical
in complicated tasks. Wan et al. introduce Optimal consis-
tency and True-Global-Max (TGM), then propose GVR to
ensure the optimality. A special case is SeCA (Zang et al.
2023), which factorizes the joint policy evaluation into a se-
quence of successive evaluations.

Sequential decision scheme. In this scheme, algorithms
explicitly model the coordination among agents via actions.
One perspective is the auto-regressive paradigm, where
agents make decisions sequentially (Wen et al. 2022; Fu
et al. 2022; Ye et al. 2023; Wang, Ye, and Lu 2023; Li
et al. 2023). MAT (Wen et al. 2022) transform MARL into
a sequence modeling problem, and introduce Transformer
(Vaswani et al. 2017) to generate solutions. However, MAT
may fail to achieve the monotonic improvement guarantee as
it does not follow the sequential update scheme. Wang, Ye,
and Lu derives the multi-agent conditional factorized soft
policy iteration theorem by incorporating auto-regressive
policy into SAC (Haarnoja et al. 2019). ACE (Li et al. 2023)
and TAD (Ye et al. 2023) first cast the Multi-agent Markov
decision process (MMDP) (Littman 1994) as an equivalent
single-agent Markov decision process (MDP), and solve the
single-agent MDP with Q-learning and PPO, respectively.
However, only ACE considers the reactions from subsequent
agents by calculating the maximum Q-value over the pos-
sible actions of the successors. In another perspective, the
interactions between agents are modeled by a coordination
graph (Ruan et al. 2022; Yang et al. 2022). However, the
updates of the agents in the graph are independent of the
subsequent agents.

In contrast, our proposed BPTA augmented auto-
regressive method lies in the second category and is the first
bidirectional PG-based MARL method.

Background
Problem Formulation

In MARL, a decentralized partially observable Markov de-
cision process (Dec-POMDP) (Oliehoek and Amato 2016)
is commonly applied to model the interaction among
agents within a shared environment under partial ob-
servability. A Dec-POMDP is defined by a tuple G
<N787AaPaQaOvRap07fy>’ where N = {1,,TL} is a
set of agents, s € S denotes the state of the environ-
ment, A = [[I_, A’ is the product of the agents’ action
spaces, namely the joint action space, Q@ = [[i, O is
the set of joint observations, and pg is the distribution of
the initial state. At time step ¢ € N, each agent i € N
takes an action ai according to its policy 7'(-|o}), where
ol is drawn from the observation function O(s;,i). With
the joint observation o, = {0%, e ,0?} and the joint ac-
tion of agents a; = {a%, e ,a?} drawn from the joint
policy  (-|o;), the environment moves to a state s’ with
probability P (s’|s, a:), and each agent receives a joint re-
ward r; = R (s,a;) € R. The state value function, the
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state-action value function, and the advantage function are
defined as Vi (s) 2 Eagoorsrnr B5207 Tel50 = s,
Qﬂ'(s? a) £ Eal:ooNﬂ-’Sl:ooNP [EtoiOVtTﬂSO =S8 = a]’ and
Ar(s,a) = Qr(s,a) — Vi (s). The agents aim to maximize
the expected total reward:

j(ﬂ) é ESQ,ao,... [Z Vtrt] )
t=0

where sg ~ po(so),as ~ m(at|s:). In order to keep the nota-
tion concise, we will use state s in the subsequent equations.

ey

Independent Multi-Agent Stochastic Policy
Gradient

In cooperative MARL tasks, popular PG methods follow
fully independent factorization: (al|s) = []}_, mo, (a’|s).
With such a form, following along the standard Stochas-
tic Policy Gradient Theorem, Wei et al. derive the indepen-
dent multi-agent policy gradient estimator for the coopera-
tive MARL:

0. 70) = [ 7)o a'ls)

/.

where the notation —¢ indicates all other agents except agent
i, P(s — §',t,m) denotes the density at state s’ after
transitioning for ¢ time steps from state s, and p™(s)
JsE27" tpo(s)P(s — ',t,m) is the (unnormalized)
discounted distribution over states induced by the joint pol-
icy .

H g, (0’ |5)Qr (s, a)da™"da"ds,
Tt

Method

This section considers an auto-regressive joint policy with
fixed execution order {1,2,...,n}:

n

m(a|s) = Hﬂ'gi (a’ls,a’,...,a" ")

i=1

(€)

Although such factorization introduces forward dependency
among agents, it ignores the reaction of subsequent pol-
icy updates on the preceding actions. To achieve bidirec-
tional dependency, we propose Back-Propagation Through
Agents (BPTA) to pass gradients across agents. Specifi-
cally, we leverage the reparameterization trick and devise
a new multi-agent conditional policy gradient theorem that
exploits the action dependency among agents. To cover any
action-dependent policy, the relationship between the joint
policy and individual policies can be stated as:

“

n
m(als) = Hm)i (a'|s,a”) ,
=1

where F; denotes the set of agents on which agent ¢ has a
forward dependency, and a”" are the actions taken by those
agents.
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Back-Propagation Through Agents

In the social context, joint action usually requires people to
actively modify their own actions to reach a common ac-
tion goal. Accordingly, joint action demands not only the
integration of one’s own and others’ actions but also the
corresponding consequences. However, most previous ap-
proaches assume that each agent only needs to account for
its own learning process and completely disregarded the
evaluation of its dependent actions result. In this section, we
will show that our conditional gradient explicitly accounts
for the effect of an agent’s actions on the policies of its
backward-dependent peer agents by additionally including
agent feedback passed through the action dependency.

Theorem 1 (Conditional Multi-Agent Stochastic Policy
Gradient Theorem). For any episodic cooperative stochastic
game with n agents, the gradient of the expected total reward
for agent i, who has a backward dependency on some other
peer agents IB; using parameters 0p,, with respect to current
policy parameters 0; is:

v 76) = [ 7]

/..

/ Tor, (a]:i |S7 a}—}_i )
A i

5,0, 075 M) 74, 9(03,€)]
Peer Learning

Qr(s,a)da""da’ds,

V6,70, (ai|57 a]:i)
A N—— ————
Own Learning

mo_(a”'ls',a”) + /

At

ﬂei(ai‘saa}-i)

&)

B;
o Vaiog, (a
AFi

where Fp, indicates the set of agents on which B; have for-
ward dependencies.

Proof. See the Appendix for detailed proof. O

From Theorem 1, we note that the policy gradient for
agent ¢ at each state has two primary terms. The first term
Vo, 7o, (al|s,a”?) corresponds to the independent multi-
agent policy gradient which explicitly differentiates through
mp, With respect to the current parameters ;. This enables
agent ¢ to model its own learning. By contrast, the second
term /i mg, (aPi]s,a’, a5 M) g, g(0;,€) aims to ad-
ditionally account for how the consequences of the corre-
sponding action on its backward dependent agents’ policies
influence its direction of performance improvement. As a
result, the peer learning term enables agents to adjust their
own policies to those of action partners, which facilitates fast
and accurate inter-agent coordination. Interestingly, the peer
learning term, which evaluates the impact of an agent’s ac-
tions on its peer agents, specifies auxiliary rewards for adapt-
ing its policy in accordance with these reactions.

With Theorem 1 and an auto-regressive joint policy, we
are ready to present the learning framework of our BPTA-
augmented auto-regressive policy gradient algorithm. As il-
lustrated in Figure 1, in the forward process, direct con-
nections and skip connections (He et al. 2015) connect the
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Figure 1: Learning framework of BPTA-augmented auto-regressive policy gradient algorithm. BPTA internally completes the
causality loop by two processes: (1) the forward process, which generates the causal flow by action; and (2) the backward
process, which inverts the causal flow by propagating the feedback.

action of one predecessor agent to the input of subsequent
agents, even those are not adjacent to it in execution order.
As for the backward process described by dashed lines, in
addition to the interactive feedback from the environment,
there are alternative pathways provided by direct and skip
connections, which allows successors to provide feedback
to predecessors through gradients. Furthermore, these two
types of processes are interleaved to allow for a causal flow
loop within and across agents.

Our proposed algorithm can be conveniently integrated
into most PG-based methods. Given the empirical perfor-
mance and monotonic policy improvement of PPO (Schul-
man et al. 2017), we propose Bidirectional Proximal Policy
Optimisation (BPPO) to incorporate the proposed theorem
with PPO. Following the sequential decision scheme, it is
intuitive for BPPO to adopt the sequential update scheme
(Wang et al. 2023; Kuba et al. 2022), where the updates are
performed in reverse order of the execution sequence. We
provide comparisons of the simultaneous update scheme and
the sequential update scheme in Appendix.

Corollary 1.1 (Clipping Objective of BPPO). Let m be
an auto-regressive joint policy with fixed execution order
{1,2,...,n}, and & be the updated joint policy of
agents set {i+1, ... ,n}. For brevity, we omit the preceding
actions in the policy. Then the clipping objective of BPPO
is:

mo, (a']s)

1+1:n
- +
ot (afls)

Espm(s) anm,cnp(e) [min(

M((a%) Ve M7 (0,,£) A(s, a),

mo, (a']s)

.1
o (a’s)
detach (clip (%aijs)’ 1+ e))
5. (a’ls)

Var M*g(0,,2)A(s,a) ).

detach (

clip( + e) Mt (6)

ﬁ_'H»l:n (ai+1:n ‘S)

i+1:n _ . i+1:n _
where M = o ey i e VaM =
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~itling itlin
Vai Wm"tg, and detach() represents detaching the

input from the computation graph, meaning that the input

will not contain gradients. /Al(s, a) is an estimator of the ad-
vantage function A(s,a) computed by GAE (Schulman et al.
2018).

We provide the pseudo-code for BPPO in Algorithm 1.

Algorithm 1 Bidirectional Proximal Policy Optimisation

Initialize: The auto-regressive joint policy w =
{mo,,...,mp, }, the global value function V, replay
buffer B, and the execution order {1,...,n}.

: for episode k =0,1,... do

2. Collect a set of trajectories by sequentially executing
policies according to the execution order;

3:  Push data into B. .

4:  Compute the advantage approximation A(s,a) with
GAE. .

5:  Compute the value target v(s) = A(s,a) + V(s).

6:  Set agent ¢’s gradient w.r.t. agent j’s action {07
0li eN,j e]\/}andM”Jrl =1.

7. foragenti =mn,n — ,1do

8: Generate g(&l, €) based on the reparameterization
trick. 4 4

9: Compute v7,: M*+" based on {¢; = 0] € {i +
1,...,n}} and the chain rule.

10: Optimize Eq. 6 w.r.t. 6;.

11: foragentj =1,...,7—1do

12: Compute the gradlent c of o,d((a JI )) w.rt. af.

13: Set ¢ = c.

14: end for

15: Compute M*" = %M”l n

16:  end for

17:  Update the value function by the following formula:
18V = argming E, (o) | [[0(s) — V(s)]?
19: end for
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Figure 2: Comparison of training results on SMACV2.

Experiments

In this section, we experimentally evaluate BPPO on several
multi-agent benchmarks, including two matrix games (Claus
and Boutilier 1998b), the StarCraft Multi-Agent Challenge
Version 2 (SMACvV2) (Ellis et al. 2022), the Multi-agent
MuJoCo (MA-MuJoCo) (Peng et al. 2021), and the Google
Research Football (GRF) (Kurach et al. 2020), compar-
ing them against MAPPO (Yu et al. 2022), HAPPO (Kuba
et al. 2022), and Auto-Regressive MAPPO (ARMAPPO)
(Fu et al. 2022). All results are presented using the mean
and standard deviation of five random seeds. We fixed the
execution order as sequential in all experiments. Addition-
ally, we compared the effects of different execution orders
in Appendix. More experimental details and results on these
tasks are included in Appendix.

Player 2
A B C
— A 11 [-30]0
% B|-30| 7 |0
= C| 0 6 |5

Table 1: Payoff Matrix of the Climbing game.

Matrix Games

As presented in Table 1 and 2, the Climbing game and the
Penalty game (Claus and Boutilier 1998b) are shared-reward
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Player 2
A B C
— A |-100| 0| 10
% B 0 2 0
= C| 10 | 0] -100

Table 2: Payoff Matrix of the Penalty game.

multi-agent matrix games with two players in which each
player has three actions at their disposal. The two matrix
games have several Nash equilibria, but only one or two
Pareto-optimal Nash equilibria (Christianos, Papoudakis,
and Albrecht 2022). Although stateless and with simple ac-
tion space, the matrix games are difficult to solve as the
agents need to coordinate among two optimal joint actions.
Figure 4 shows that the compared baselines will converge
to a locally optimal policy while BPPO is the only method
that converges to the Pareto-optimal equilibria in all games.
This is because BPPO explicitly considers the dependency
success to find the optimal joint policy. The gap between the
proposed method and the baselines is possibly due to that
agents are fully independent of each other when making de-
cisions in those methods. Interestingly, we observe that even
with an auto-regressive policy, ARMAPPO still fails to find
the optima. However, when we project the preceding actions
inputted to each agent in ARMAPPO to higher-dimensional
vectors, ARMAPPO w/ PROIJ successfully converges to the
optimal policy (verified in Appendix).
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Figure 3: Performance comparison on multiple Multi-Agent MuJoCo tasks.
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Figure 4: Performance comparison on the Climbing game
and the Penalty game.
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SMACv2

In SMAC, a group of learning agents aims to defeat the
units of the enemy army controlled by the built-in heuris-
tic AL Despite its popularity, the SMAC is restricted to lim-
ited stochasticity (Ellis et al. 2022). Compared to the SMAC,
we instead evaluate our method on the more challenging
SMAC-v2 benchmark which is designed with higher ran-
domness. We evaluate our method on 3 maps (Zerg, Ter-
ran, and Protoss) with symmetric (20-vs-20) and asymmet-
ric (10-vs-11 and 20-vs-23) units. As shown in Figure 2,
we generally observe that BPPO outperforms the baselines
across most scenarios. In three 10 vs 10 scenarios, the mar-
gin between BPPO and the baselines becomes larger. Addi-
tionally, we also observe that BPPO has better stability as
the variance shows.

MA-MuJoCo

Multi-Agent MuJoCo is a novel benchmark for decentral-
ized cooperative continuous multi-agent robotic control in
which single robots are decomposed into individual seg-
ments controlled by different agents. We show the perfor-
mance comparison against the baselines in Figure 3. We can
see that BPPO achieves comparable performance compared
to the baselines in most tasks while superiorly outperform-
ing others in certain scenarios. It is also worth noting that the
observed performance gap between BPPO and ARMAPPO
can be attributed to the effectiveness of backward depen-
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Figure 5: Averaged train win rate on the Google Research Football scenarios.

dency. Meanwhile, we can observe that the performance gap
between BPPO and its rivals enlarges with the increasing
number of agents. Especially in HalfCheetah-v2 6x1 and
Walker2d-v2 6x1, when other algorithms fail to learn any
meaningful joint policies or converge to suboptimal points,
BPPO outperforms the baselines by a large margin. Interest-
ingly, especially in HalfCheetah 6x1 task, the performance
of ARMAPPO even drops to negative. These results show
that BPPO enables agents to achieve consistent joint im-
provement.

HalfCheetah-v2 6x1
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Figure 6: Performance comparison on the HalfCheetah-
v2 6x1 Multi-Agent MuJoCo task. ARMAPPO performs
poorly, with even negative rewards.

GRF

Google Research Football is a complex environment with
large action space and sparse rewards where agents aim to
score goals against fixed rule-based opponents. We evalu-
ate our method in both GRF academy scenarios (3-vs-1 with
keeper, corner, and counterattack hard) and full-game sce-
narios (5-vs-5). As can be seen in Figure 5, in the academy
scenarios, only a minor difference can be observed between
the proposed method and the baselines except for the coun-
terattack task. Additionally, Figure 7 shows that BPPO gains
the highest score in the complex 5 vs 5 full-game scenario,
while the baselines barely learn anything. Despite the nega-
tive performance of all algorithms, BPPO has achieved im-

13724

proved returns and is still learning compared to other algo-
rithms that have consistently maintained their initial values.

Football 5 vs 5

c
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Figure 7: Comparisons of averaged return on the 5-vs-5 sce-
nario.

Conclusion

In this paper, we propose Back-Propagation Through Agents
(BPTA) to enable bidirectional dependency in any action-
dependent multi-agent policy gradient (MAPG) methods.
By conditional multi-agent stochastic policy gradient theo-
rem, we can directly model both an agent’s own action effect
and the feedback from its backward dependent agents. We
evaluate the proposed Bidirectional Proximal Policy Opti-
misation (BPPO) based on BPTA and auto-regressive pol-
icy on several multiagent benchmarks. Results show that
BPPO improves the performance against current state-of-
the-art MARL methods. For future work, we plan to study
the methods to learn the adaptive order.
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