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Abstract

Infectious disease outbreaks continue to pose a significant
threat to human health and well-being. To improve dis-
ease surveillance and understanding of disease spread, sev-
eral surveillance systems have been developed to monitor
daily news alerts and social media. However, existing sys-
tems lack thorough epidemiological analysis in relation to
corresponding alerts or news, largely due to the scarcity of
well-annotated reports data. To address this gap, we intro-
duce the Biomedical Alert News Dataset (BAND), which in-
cludes 1,508 samples from existing reported news articles,
open emails, and alerts, as well as 30 epidemiology-related
questions. These questions necessitate the model’s expert rea-
soning abilities, thereby offering valuable insights into the
outbreak of the disease. The BAND dataset brings new chal-
lenges to the NLP world, requiring better inference capability
of the content and the ability to infer important information.
We provide several benchmark tasks, including Named Entity
Recognition (NER), Question Answering (QA), and Event
Extraction (EE), to demonstrate existing models’ capabilities
and limitations in handling epidemiology-specific tasks. It is
worth noting that some models may lack the human-like in-
ference capability required to fully utilize the corpus. To the
best of our knowledge, the BAND corpus is the largest corpus
of well-annotated biomedical outbreak alert news with elab-
orately designed questions, making it a valuable resource for
epidemiologists and NLP researchers alike.

Introduction

In spite of advancements in healthcare, infectious disease
outbreaks continue to pose a substantial threat to human
health and well-being. To enhance disease surveillance and
deepen our understanding of disease transmission, several
surveillance systems have been established, including Bio-
Caster (Meng et al. 2022), GPHIN (Mawudeku et al. 2013),
ProMED-mail (Yu and Madoff 2004), HealthMap (Freifeld
et al. 2008) and EIOS. These systems perform real-time
surveillance and analysis of disease outbreaks by monitor-
ing daily news alerts and social media platforms.

Despite the notable achievements of current surveillance
systems, most of them concentrate on the detection of out-
break events using social media and news sources. However,
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Figure 1: The BAND dataset consists of 30 disease
outbreak-related questions designed by epidemiologists.
Annotators are required to infer answers based on their un-
derstanding of the context when the answer is not explicitly
provided in the context (e.g. the answers in green color).

there is a dearth of systems that offer automatic and com-
prehensive epidemiological analysis of corresponding alerts
or news. For instance, epidemiologists require such systems
that can identify cases where the disease is deliberately re-
leased or affects vulnerable populations, such as the elderly
or children. The automatic identification of these cases can
facilitate preventive measures and prompt rescue efforts.
The limited capacity of existing systems can partly be at-
tributed to the scarcity of well-annotated report data, which
is critical for training machine learning systems for domain
experts. Although several existing datasets (Torres Munguia
et al. 2022; Carlson et al. 2023) have been annotated to ex-
tract outbreak events, they mostly focus on the statistics (e.g.
location, disease names, etc.) of the outbreak event rather
than providing a thorough epidemiological analysis for fur-
ther investigation.

To enrich the capabilities of existing surveillance sys-
tems, we present a newly annotated dataset, namely the
Biomedical Alert News Dataset (BAND)!. This dataset
comprises 1,508 samples extracted from recently reported
news articles, open emails, and alerts, accompanied by 30
epidemiology-related questions. These questions cover most

' Our dataset and code available at

https://github.com/fuzihaofzh/BAND
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of the event-related queries raised in Torres Munguia et al.
(2022); Carlson et al. (2023) as well as more detailed in-
quiries regarding the outbreak event. For instance, we anno-
tate whether an outbreak was an intentional release or in-
volved a pregnant woman (refer to Table 1 for details of
all the questions), which are important risk factors consid-
ered by human public health analysis. Affirmative responses
to these questions serve as indicators for epidemiologists to
prioritize and assess the need for further action. The selec-
tion of samples and questions is meticulously carried out by
domain experts specializing in the fields of epidemiology
and NLP. This dataset aims to empower NLP systems to an-
alyze and address several critical questions, which aids the
current surveillance systems in identifying significant trends
and providing insights on how to improve disease surveil-
lance and management.

This dataset presents new challenges for the NLP commu-
nity, particularly in the area of common sense reasoning. For
example, as illustrated in Figure 1, the system must automat-
ically extract the outbreak country from the given news, even
when it is not explicitly stated. This requires the model to in-
fer the country name from context clues such as city name,
state name, and report organization. In addition, the dataset
requires better content disambiguation capabilities. For in-
stance, when asked to identify the city of the outbreak, many
cities worldwide share the same name, making it necessary
to provide a geocode? to uniquely identify the location. Our
datasets can be used to assess the capabilities of state-of-the-
art models across a range of benchmark NLP tasks. In par-
ticular, we have performed experiments on three prominent
tasks, including Question Answering (QA), Named Entity
Recognition (NER), and Event Extraction (EE), to showcase
the effectiveness of current models in addressing these tasks
on this new dataset.

The contribution of this paper can be summarized as fol-
lows:

1) We introduce the BAND corpus, which is the largest
corpus of well-annotated biomedical alert news with elabo-
rately designed questions to the best of our knowledge.

2) We provide various model benchmarks for a range
of NLP tasks, including Named Entity Recognition (NER),
Question Answering (QA), and Event Extraction (EE).

3) We present a complete pipeline for annotating biomed-
ical news data that can be leveraged for annotating similar
datasets.

The BAND Corpus

The BAND corpus consists of 1,508 authentic biomedical
alert news articles and 30 expert-generated questions aiming
at enhancing understanding of disease outbreak events and
identifying significant incidents requiring special attention.
The alert news articles encompass a wide range of sources,
including publicly available news articles, emails, and re-
ports. The annotation process is outlined in Figure 2. Ini-
tially, epidemiology and NLP researchers select appropriate
questions and samples from the alert news. Experienced an-
notators then conduct an ethics check to filter out unsuitable

% https://www.geonames.org/
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Figure 2: Our annotation workflow.

content and perform a feasibility check to ensure that they
can annotate the selected questions. Should any questions
arise, annotators consult with the experts for clarification.
Subsequently, annotators engage in a preliminary annotation
process by answering the selected questions for each sample.
Following this, a consistency check is performed to ensure
the same understanding among all annotators regarding the
questions and samples. Finally, in the main annotation stage,
annotators proceed to annotate all remaining samples. Mul-
tiple checks and feedback are incorporated throughout the
annotation process to ensure a high-quality outcome.

Data Annotation

Question Selection. The question selection process involves
the creation of pertinent natural language questions crucial
for analyzing new articles within the realm of epidemiol-
ogy, which were conducted collaboratively with esteemed
experts possessing Ph.D. qualifications in the fields of epi-
demiology and public health. The expertise and knowledge
of these professionals contribute to the meticulous design
of the questions, which are subsequently categorized into
three groups: event questions, epidemiology questions, and
ethics questions. Event questions are designed to capture
specific information such as the location and disease name,
resembling similar disease outbreak events found in Tor-
res Munguia et al. (2022) and Carlson et al. (2023). Epi-
demiology questions focus on detailed epidemiological in-
formation, such as whether the disease was intentionally re-
leased, which extends the questions in Conway et al. (2009)
and Conway et al. (2010). Ethics questions require the an-
notators to conduct thorough ethical assessments to prevent
potential privacy breaches or inappropriate content. For a de-
tailed list of these questions, please refer to Table 1.
Samples Selection. We obtain our raw news alerts from
ProMED-mail?, a network of medical professionals known
for delivering timely information on global disease out-
breaks. ProMED-mail covers a wide range of diseases, in-
cluding infectious diseases, foodborne illnesses, zoonotic
diseases, etc. It offers detailed reports on outbreaks contain-
ing crucial information such as the number of cases, out-
break locations, associated symptoms, and etc. This infor-
mation is invaluable for the development of effective strate-

3 https://promedmail.org/



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Questions Short name Category Options Sparse
1) Which infectious disease caused the outbreak? Disease Event - -
2) In which country is the outbreak taking place? Country Event - -
3) In which province is the outbreak taking place? Province Event - -
4) In which city/town is the outbreak taking place? City Event - -
5) Check and fill country Geo Code (e.g. 1794299): Countrycode  Event - -
6) Check and fill province Geo Code (e.g. 1794299): Provincecode  Event - -
7) Check and fill city Geo Code (e.g. 1815286): Citycode Event - -
8) Which virus or bacteria caused the outbreak? Virus Event - -
9) What symptoms were experienced by the infected victims? Symptoms Epidemiology - -
10) Which institution reported this outbreak? Reporter Epidemiology - -
11) What is the type of victims? Victimtype Epidemiology Human/Animal/Plant -
12) How many new infected cases are reported in the specific event Casesnum Epidemiology - )
in the report? (please input digits like 1, 34, etc.) P ey
t1)5))i(1};;1$s()the victim of the disease travelled across international Borders Epidemiology YES/NO/Cannot Infer  YES
14) Does the outbreak involve the intentful release? Intentful Epidemiology YES/NO/Cannot Infer = YES
15) Did human victims acquire the infectious disease from an Fromanimal Epidemiolo YES/NO/Cannot )
animal? P Y Infer/ Not Applicable
. . . . . . YES/NO/Cannot

? -
16) Did the victim fail to respond to a drug? Faildrug Epidemiology Infer/ Not Applicable
17) Are healthcare workers included in the infected victims? Healthcareworkers Epidemiology YES/NO/Cannot Infer YES
18) Are animal workers included in the infected victims? Animalworkers Epidemiology YES/NO/Cannot Infer YES
19) Is the victim of the disease a military worker? Militaryworkers Epidemiology YES/NO/Cannot Infer YES
20) Did the outl?reak involve a suspected contaminated blood Vaccine Epidemiology YES/NO/Cannot Infer ~ YES
product or vaccine?

C e .. . . YES/NO/Cannot
? -
21) Are the victims in a group in time and place? Group Epidemiology Infer/ Not Applicable
22) Did the victim catch the disease during a hospital stay? Hospitalstay Epidemiology YES/NO/Cannot Infer YES
23) Is the victim of the disease a child? Child Epidemiology YES/NO/Cannot Infer -
24) Is the victim of the disease an elderly person? Elderly Epidemiology YES/NO/Cannot Infer -
25) Is the victim of the disease a pregnant woman? Pregnant Epidemiology YES/NO/Cannot Infer YES
26) Has the victim of the disease been in quarantine? Quarantine Epidemiology YES/NO/Cannot Infer ~YES
z\zgr%d the outbreak take place during a major sporting or cultural Event Epidemiology YES/NO/Cannot Infer  YES
28) Did the outbreak take place after a natural disaster? Disaster Epidemiology YES/NO/Cannot Infer YES
. 5 . . .

tZi?ge\)Nhen did the outbreak happen? (Relative to article completion Tense Epidemiology Past/Now/Not Yet )
30) Does the text contain information that can uniquely identify
individual people? e.g. names, email, phone, and credit card Sensitive Ethics YES/NO -

numbers, addresses, user names.

Table 1: Epidemiology questions are given by experts in epidemiology.

gies aimed at controlling and preventing the spread of dis-
eases. To conduct our research, we initially collect 36,788
raw alerts available on ProMED-mail, spanning from De-
cember 2009 to December 2021. Then, we engage experts
with Ph.D. degrees in epidemiology and public health to
generate a list of questions and filter samples for further an-
notation. Specifically, we carefully select 2,458 samples and
request the experts to assign scores ranging from 1 to 5 to
each sample. The distribution of scores is illustrated in Fig-
ure 4. Samples with scores exceeding 4 are chosen as can-
didate samples for further analysis. Additionally, it has been
observed that certain questions, such as Question 14 (Does
the outbreak involve intentful release?), have a sparse dis-
tribution of answers, as most diseases are not intentionally
released. These questions are called “sparse questions” and
are listed in Table 1. To ensure an adequate number of data
points for these types of questions, the candidate sample set

is ranked based on both the expert scoring and the keyword
hits*. For instance, if a sample contains keywords like “in-
tentful release”, the sample will be given one extra point.
In this way, samples with more keyword hits are prioritized.
However, these kinds of samples are still not enough and
a manual search is conducted on ProMED, Wikipedia, and
media news platforms to identify relevant articles containing
positive answers to these questions.

Annotation. To facilitate the annotation process, we de-
velop a new annotation interface using LabelStudio® (see
Fu et al. (2023) Appendix Figure 5 for the annotation in-
terface). Subsequently, we employ a professional annotation
company to undertake the annotation of the detailed ques-
tions. The annotation process is divided into four batches,

be found in Fu

4 A detailed list of keywords can
5 https://labelstud.io/

et al. (2023) Appendix Table 7.
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comprising 40, 710, 110, and 660 samples, respectively. Af-
ter each stage, we manually review the annotations and pro-
vide feedback to address any systematic annotation issues
that may arise.

Consistency Check. To ensure the annotation team deliv-
ers high-quality annotations, we conducted a quality check
during the preliminary annotation. All five annotators were
assigned to annotate the same set of 40 samples, and we
manually reviewed the answers to identify any obvious mis-
takes. Additionally, we assessed the consistency of annota-
tions by comparing the responses from all annotators®.

Quality Check. To maintain the quality of annotations,
we implement a quality check after the completion of each
batch by the annotators. First, the annotators conduct a man-
ual review of their annotation results to identify and rectify
any typos or erroneous annotations. Subsequently, they sub-
mit the annotated batch to the experts, who provide feedback
to address any misunderstandings that occur. This iterative
feedback loop between the annotators and experts ensures
ongoing refinement and enhancement of the quality.

Ethics Check. To ensure compliance with ethical require-
ments, we initiate a research ethics review and obtain per-
mission from the faculty’s research ethics committee prior
to conducting the annotation process. During the annotation
phase, we instruct the annotators to carefully assess whether
the samples violate any ethical rules. Any samples found
to be in violation were promptly removed from the corpus
without further annotation. This proactive approach ensures
that the annotation process adheres to ethical guidelines and
maintains the integrity of the research.

Statistics

To gain a comprehensive understanding of the BAND
dataset, we present various statistics that provide insights
into the data’s coverage and highlight its significant contri-
butions to the field of NLP and epidemiology. These statis-
tics effectively demonstrate the breadth and depth of the
dataset, showcasing its value and potential impact.

Disease Distribution. The distribution of diseases in the
BAND dataset is depicted through a histogram shown in
Figure 3 (a). This histogram reveals that our dataset cov-
ers a wide range of popular infectious diseases, such as An-
thrax, Cholera, and others. This extensive coverage under-
scores the dataset’s potential for training models to effec-
tively monitor and surveil various disease outbreaks.

Location Distribution. In addition, we have generated vi-
sualizations of the location distribution in the BAND dataset,
highlighting the coverage of various countries (Figure 3 (b)),
provinces (Figure 3 (c)), and cities (Figure 3 (d)). These
visualizations demonstrate that our dataset encompasses a
wide range of locations, affirming its potential for train-
ing a model capable of handling daily news reports from
around the world. This global coverage further enhances the
dataset’s applicability in addressing diverse scenarios.

® The comparison results are presented in Fu et al. (2023) Ap-
pendix Table 8, which demonstrates high level of consistency
among the annotators, and validates the qualification for them.
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Pathogen Distribution. Our dataset exhibits a compre-
hensive coverage of various pathogens including bacteria,
fungi, protozoa, viruses, and etc. The distribution is shown
in Figure 3 (e). It is evident from the statistics that the BAND
dataset encompasses mentions of numerous popular infec-
tious pathogens, including bacillus anthracis, rabies virus,
vibrio cholera, and many others. This extensive coverage of
prominent pathogens enhances the dataset’s relevance and
suitability for training models to effectively analyze and re-
spond to a wide range of infectious disease scenarios.

Victim Distribution. Within the BAND dataset, the term
“victim” refers to the infected host type, which includes hu-
mans, animals, and plants. As depicted in Figure 3 (h), our
primary focus is on human and animal diseases. However,
we have also included a portion of the data (approximately
6%) that describes plant diseases, thereby extending the ap-
plication domains of the dataset.

Symptoms Distribution. The BAND dataset includes an-
notations for a diverse range of symptoms, as illustrated in
Figure 3 (f). Symptoms such as fever, vomiting, and oth-
ers are comprehensively covered within the dataset. This
broad coverage of symptoms highlights the potential to train
a model capable of handling different types of symptoms.

Data Split

We provide two different sampled splits, namely the Rand
Split and the Stratified Split, as shown in Table 2.

Rand Split. This split randomly partitions the corpus into
train/dev/test sets, without considering any other factors.

Stratified Split. In order to assess the model’s ability to
accurately answer sparse questions with limited positive an-
swers, it is crucial to focus on these specific samples in
upcoming research. To accomplish this, we employ a split
strategy that prioritizes samples with positive answers for
sparse questions. These samples are divided in a ratio of
5:1:4 for the train/dev/test sets respectively. This ensures that
these important samples are adequately trained and evalu-
ated. Then, we randomly sample other instances to comple-
ment the dataset. This approach allows for a thorough as-
sessment of the model’s performance in addressing the chal-
lenges posed by sparse questions.

Experiments

To evaluate the performance of existing NLP models on our
newly annotated dataset, we conduct experiments on three
widely used NLP tasks: Named Entity Recognition (NER),
Question Answering (QA), and Event Extraction (EE). By
assessing the performance of various models on these tasks,
we can gain insights into their strengths and limitations in
handling this dataset.

Experimental Setup

NER Task The NER task aims at extracting named enti-
ties belonging to specific categories. In this study, we aim to
demonstrate how our annotated biomedical dataset can help
advance research in the NER task for specific terms. We fo-
cus on extracting entities related to disease names, outbreak
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Figure 3: Statistics for BAND corpus.
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Figure 4: Experts’ scores. Table 2: Data split.

locations (country/province/city), pathogens (viruses/bacte-
ria), and symptoms. To ensure compliance with the require-
ments of the NER task, we limit our analysis to only those
entities that are explicitly mentioned in the original text,
without considering any additional inference by annotators.
We compare the performance of various models, including
CRFBased, TokenBased, SpanBased, and ChatGPT models
in extracting. The model details are as follows:

CRFBased model (Lafferty, McCallum, and Pereira
2001; McCallum and Li 2003; Manning et al. 2014) incor-
porates the contextual information of nearby words to rec-
ognize and classify named entities in the provided text. It
utilizes a Conditional Random Field (CRF) layer to predict
the BIO tags for each input word.

TokenBased model (Kenton and Toutanova 2019; Lee
et al. 2020) fine-tunes a pre-trained model on the annotated
NER data and uses it to directly predict the BIO tags for each
word in the given sequence.

SpanBased model (Lee et al. 2017; Luan et al. 2018,
2019; Wadden et al. 2019; Zhong and Chen 2021) partitions
the input text into spans of varying lengths and then directly
assigns labels to the spans that correspond to named enti-
ties. This technique has been demonstrated to improve the

18016

performance of previous NER models. We employ the im-
plementation provided by Zhong and Chen (2021).

ChatGPT model (Ouyang et al. 2022) has shown great
potential in performing this task without requiring additional
training or fine-tuning. We elicit named entities with cor-
responding categories directly from the API. We have at-
tempted various prompts to instruct ChatGPT to infer as
much information as possible and adhere to the terminology
mentioned in the original text.

QA Task The task of question answering involves provid-
ing answers to questions based on a given corpus. This task
can be categorized as either extractive QA or abstractive QA.
In extractive QA, the model selects the relevant answer span
from the input text, while in abstractive QA, the model gen-
erates an answer based on the input text, which may not be
an exact span from the given text. In our task, as the an-
swer to many questions may not exist in the original text,
we focus on the abstractive QA setting. We demonstrate the
performance of several models to showcase their potential
on our dataset. To evaluate the models’ performance, we
utilize the widely-used accuracy metric. Prior to comparing
the models’ results to the gold standard label, we normal-
ize all occurrences of “N/A”, “Unknown”, “na”, and “nan”
as “Cannot Infer”. We use exact match accuracy to evaluate
the results. We conduct experiments with following models:

TS5 (Raffel et al. 2020) model is built on the Transformer
architecture and is pre-trained on large volumes of text data
using a diverse range of language modeling tasks. We fine-
tune the T5 model on the training set by concatenating the
text and the question as input, with the output being the an-
swer to the corresponding question.

Bart (Lewis et al. 2019) model is similar to the TS model,
as it also employs an encoder-decoder architecture. We use
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Random Stratified
Model Precision Recall F1 Precision Recall F1
CRFBased 0.582 0.674 0.625 0.600 0.663 0.630
TokenBased 0.631 0.691 0.660 0.701 0.730 0.715
SpanBased 0.598 0.694 0.642 0.676 0.759 0.715
ChatGPT 0.326 0.353 0.339 0.424 0.318 0.363

Table 3: Named entity recognition results.

Precision Recall F1-score
City 0.326 0.500 0.395
Country 0.710 0.760 0.734
Disease 0.583 0.758 0.659
Province 0.616 0.517 0.562
Virus 0.696 0.823 0.754

Table 4: NER results for each domain.

the Bart model as the backbone model and fine-tune it on our
annotated dataset using the same setting as the T5 model.

GPT2 (Li and Liang 2021) is a decoder-only language
model that concatenates all context sequences, questions,
and answers into a single sequence, which is then used to
fine-tune the GPT2 model.

GPTNEO (Black et al. 2022) is a transformer-based lan-
guage model developed by EleutherAl, designed to be an
open-source model similar to GPT-3. It was trained on the
Pile dataset, which comprises a diverse corpus of text data,
including books, websites, and academic papers.

OPT (Zhang et al. 2022) is a decoder-only language
model developed by Meta Al, with the aim of providing an
open-source model comparable to GPT-3. OPT offers mod-
els with parameters ranging from 125M to 175B. In our ex-
periment, we adopt the model with 350M parameters.

Galactica (Taylor et al. 2022) is a decoder-only language
model trained on a large-scale scientific corpus. It is de-
signed to handle scientific tasks, including scientific QA,
mathematical reasoning, summarization, and document gen-
eration. The model may have been trained with correspond-
ing disease and country names, making it more likely to un-
derstand the news text in our dataset. Galactica comes in a
range of model sizes, from 125M to 120B parameters, and
we test the 125M model in our experiment as larger models
tend to explain the answer with their own words instead of
our pre-defined format, leading to a degenerated output.

BLOOM (Scao et al. 2022) is an autoregressive large lan-
guage model that outputs coherent text in 46 languages and
13 programming languages. Additionally, it can complete
diverse text tasks, even those it was not directly trained for,
by framing them as text generation tasks.

ChatGPT model (Ouyang et al. 2022) is a zero-shot
model unsuitable for fine-tuning with our data. It is used via
its API as in the NER task. We prompt it to read a paragraph
and answer questions sequentially, with instructions detailed
in Fu et al. (2023) Appendix Figure 6.
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Model Rand Stratified Size Mode

T5 0.674 0.591 220M (base) Finetune
Bart 0.666 0.510 140M (base) Finetune
GPT2 0.663 0.647 124M Finetune
OPT 0.699 0.687 125M Finetune
GPTNEO 0.695 0.695 125M Finetune
Galactica 0.717 0.710 125M Finetune
BLOOM 0.735 0.751 560M Finetune
ChatGPT  0.497 0413 - Zero-Shot

Table 5: Question answering results.

EE Task The event extraction task focuses on identifying
and extracting event-specific information from unstructured
text. Detecting disease outbreak events is more challenging
than general event extraction because of the diverse termi-
nology used. Although triggers like “outbreak”, “epidemic”,
or “pandemic” may be utilized, their absence can limit the
effectiveness of traditional keyword-based approaches. In
response, we defined a set of attributes for outbreak events:
disease name, location, pathogens involved, victim type, and
associated symptoms. Our task identifies and classifies enti-
ties linked to these attributes in a document, using autore-
gressive models similar to those in our QA baselines.

Experimental Results

NER Task. The results for NER task are shown in Table 3.
The results indicate that: 1) The existing supervised models
(CRFBased, TokenBased, SpanBased) achieve good perfor-
mance than the zero-shot model (ChatGPT), which suggests
that training the model with the BAND corpus can aid in
identifying commonly used named entities in disease out-
break news. 2) ChatGPT does not perform as well as the su-
pervised models. This could be due to several factors: firstly,
our data is newly annotated and belongs to a highly special-
ized domain that ChatGPT may not have been extensively
trained on. Additionally, ChatGPT prefers to use its own
words to provide the name (which is usually more formal),
leading to lower scores. We have attempted to utilize mul-
tiple instructions to encourage it to use the original text (as
shown in Figure 6), but it remains unresponsive.

We also show the NER results for each domain in Table 4.
The following observations can be made: 1) The NER model
performs well in the country, disease, and virus domains.
This is likely because the named entities in the testing set are
also present in the training set, and the model has learned to
recognize these types of entities. 2) In the province and city
domains, F1 scores drop significantly due to unmentioned
names in the training set, requiring models with improved
few-shot/zero-shot abilities and introducing new challenges.

The QA Task. The results of the QA task are shown in Ta-
ble 5. It can be observed from the results that 1) The decoder-
only models, like GPT2 and Galactica, tend to outperform
encoder-decoder ones, such as TS and Bart, possibly due to
the former’s pre-training on more extensive text data. 2) The
BLOOM model outperforms other generative models, which
may be due to its training on corpora more relevant to our
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Individual F1

Model  Overall F1 Disease Country Province City Country code Province code City code Pathogen Symptoms Victim
T5 0.609 0.764  0.879 0.564 0.580 0.686 0.151 0.023 0.662 0.768 0.973
Bart 0.609 0.683  0.882 0.495 0.533 0.852 0.328 0.066 0.536 0.615 0.987
GPT2 0.548 0.719  0.807 0.405 0.427 0.757 0.113 0.019 0.570 0.532 0.932
OPT 0.589 0.724  0.826 0.466 0.435 0.820 0.324 0.073 0.619 0.522 0.966
GPTNEO  0.433 0.601  0.651 0.272  0.328 0.559 0.084 0.018 0.471 0.317 0.891
Galactica  0.560 0.722  0.824 0.458 0.477 0.807 0.266 0.044 0.652 0.523 0.740
Bloom 0.586 0.689  0.839 0.424 0418 0.826 0.351 0.061 0.586 0.579 0.929
ChatGPT  0.477 0.562 0.792 0473 0.462 0.516 0.073 0.044 0.280 0.450 0.835

Table 6: Event extraction results on random split.

domain. Additionally, finetuning a larger BLOOM model
can force it to use our desired output style, while other larger
backbone models tend to use their own words to answer. 3)
We also attempt to utilize ChatGPT, but its performance was
not as good as fine-tuned models. This might be due to Chat-
GPT being a zero-shot model with limited training on our
new dataset, and it showed no inference capabilities despite
various prompting attempts. In Appendix Error Analysis, we
conduct detailed experiments to discuss these issues.

The EE Task. In Table 6, overall and individual F1 scores
offer performance insights into various models on event ex-
traction task. All models exhibit challenges with “province
code” and “city code” extraction, highlighting the intricacy
of context-dependent information extraction. In contrast to
the QA task, encoder-decoder models like TS5 and Bart ex-
cel over decoder-only models such as GPT2 and GPTNEO
in tasks, particularly in extracting context attributes, pos-
sibly due to the absence of YES/NO questions in the EE
task. Interestingly, OPT performs better in geocode predic-
tion despite a lower F1 score in location prediction. This
may be due to geocode-related documents in its pretraining
data, showing how these models can use latent knowledge
from the pretraining phase. ChatGPT, though less effective
overall, achieves a notable score in the “city” category. This,
coupled with its weaker zero-shot performance, indicates its
robustness in specific context-dependent tasks.

Related Works

Numerous epidemiology disease surveillance systems have
been developed to monitor disease outbreak events. Among
these, the BioCaster system (Meng et al. 2022) automat-
ically gathers news and alerts from social media, while
GPHIN (Mawudeku et al. 2013) uses global surveillance
and data analysis to detect potential public health threats.
ProMED-mail (Yu and Madoff 2004) relies on a network
of experts to provide real-time news alerts and expert no-
tifications on emerging diseases and outbreaks. HealthMap
(Freifeld et al. 2008) aggregates disease data from various
sources to provide real-time disease outbreak monitoring
and visualization. FluTrackers’ offers real-time monitoring
and analysis of influenza. The ECDPC? is utilized for real-
time monitoring, risk assessment, and outbreak investigation

7 https:/flutrackers.com/forum/
8 https://www.ecdc.europa.eu/en
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of infectious diseases in Europe. However, these systems
have only made use of simple NLP tools such as extrac-
tion tools, and further data is needed to train models with
a deeper understanding of news articles and reports.

In order to enhance the performance of disease surveil-
lance systems, several pandemic and epidemic datasets have
been annotated. Conway et al. (2010) have annotated a dis-
ease outbreak dataset comprising 200 samples. Meanwhile,
Torres Munguia et al. (2022) have provided a dataset that
includes 2,227 samples; however, this dataset mainly con-
centrates on the outbreak event itself and does not contain
report text annotations. Chan et al. (2010); Carlson et al.
(2023) have utilized WHQO’s data to examine the outbreak
event. Mutuvi et al. (2020b,a) have emphasized multilingual
outbreak detection, whereas Balashankar et al. (2019) and
Lamsal (2021) have centered on outbreak news for MERS
and COVID-19, respectively. Nevertheless, these datasets
are either relatively small or emphasize outbreak statistics
ignoring other important information for epidemiologists.

Conclusions

In this paper, we contribute a new Biomedical Alert News
Dataset (BAND) designed to provide a more comprehensive
understanding of disease spread and epidemiology-related
questions by enabling NLP systems to analyze and answer
several important questions. Our dataset contains 1,508 sam-
ples from recent news articles, open emails, and alerts, as
well as 30 event and epidemiology-related questions. The
questions and samples are carefully selected by domain ex-
perts in the fields of epidemiology and NLP and require the
common sense reasoning capability of NLP models. BAND
is the largest corpus of well-annotated biomedical alert news
with elaborately designed questions, and we provide a vari-
ety of model benchmarks for NER, QA and EE tasks in the
epidemiology domain. The experimental results show the
new dataset can help train NLP models to better understand
outbreak and answer important epidemiology questions.
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