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Abstract
Mixture models serve as one fundamental tool with versa-
tile applications. However, their training techniques, like the
popular Expectation Maximization (EM) algorithm, are no-
toriously sensitive to parameter initialization and often suffer
from bad local optima that could be arbitrarily worse than the
optimal. To address the long-lasting bad-local-optima chal-
lenge, we draw inspiration from the recent ground-breaking
foundation models and propose to leverage their underly-
ing big learning principle to upgrade the EM. Specifically,
we present the Big Learning EM (BigLearn-EM), an EM
upgrade that simultaneously performs joint, marginal, and
orthogonally transformed marginal matchings between data
and model distributions. Through simulated experiments, we
empirically show that the BigLearn-EM is capable of de-
livering the optimal with high probability; comparisons on
benchmark clustering datasets further demonstrate its effec-
tiveness and advantages over existing techniques. The code
is available at https://github.com/YulaiCong/Big-Learning-
Expectation-Maximization.

Introduction
As a fundamental and prominent tool in statistical machine
learning and data science, mixture models are ubiquitously
used in versatile practical applications that are associated
with density estimation (Correia et al. 2023), clustering
(Chandra, Canale, and Dunson 2023), anomaly detection
(Qu et al. 2020; An, Wang, and Zhang 2022), feature extrac-
tion (Saire and Rivera 2022; Lin et al. 2023), model explana-
tion (Xie et al. 2023), flexible multi-modal prior (Saseendran
et al. 2021; Lee et al. 2021), deblurring (Guerrero-Colón,
Mancera, and Portilla 2007; Yu, Sapiro, and Mallat 2011),
etc. Among many variants of mixture models (Li, Yu, and
Mandic 2020; Li et al. 2020), the most popular one is the
Gaussian Mixture Model (GMM), thanks both to its sim-
plicity and to its capability in approximating any contin-
uous distribution arbitrarily well (Lindsay 1995; Peel and
MacLahlan 2000). In this paper, we focus on the GMM for
presentation, but the presented techniques can be readily ex-
tended to other mixture models.

Although mixture models are widely utilized in practi-
cal applications, most of their training techniques are known
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to be sensitive to parameter initialization (Bishop 2006; Jin
et al. 2016; Kolouri, Rohde, and Hoffmann 2018), which
alternatively restricts their actual performance. For exam-
ple, the representative Expectation Maximization (EM) al-
gorithm has been proven to converge to a bad local optimum
that could be arbitrarily worse than the optimal solution with
an exponentially high probability, when the number of mix-
ture components exceeds three (Jin et al. 2016).

To address that long-lasting bad-local-optima challenge,
we draw inspiration from the recent ground-breaking foun-
dation models, by noticing that they benefit significantly
from their massive diverse pretraining tasks, such as mask-
and-predict (Devlin et al. 2018; He et al. 2022) and next-
word-prediction (Radford et al. 2018, 2019; Brown et al.
2020). Specifically, Cong and Zhao (2022) reveal that most
of those pretraining strategies actually fall under the big
learning principle, i.e., leveraging one foundation model to
simultaneously and consistently implement many/all joint,
conditional, marginal matchings, as well as their trans-
formed matchings, between data and model distributions.

Inspired by that, we propose to leverage the big learn-
ing principle to upgrade the conventional EM algorithm to a
newly presented Big Learning EM (BigLearn-EM), demon-
strating knowledge feedback from cutting-edge foundation
models to conventional machine learning. Specifically, the
BigLearn-EM exhaustively exploits its training data with a
tailored big learning setup, where joint, marginal, and or-
thogonally transformed marginal matchings between data
and model distributions are simultaneously considered. On
simulated data, the BigLearn-EM delivers the optimal so-
lution with high probability, manifested as an encouraging
direction to address the bad-local-optima challenge.

Our contributions are summarized as follows.

• We propose the BigLearn-EM, a novel, effective, and
easy-to-use algorithm for training mixture models with
only EM-type analytical parameter update formulas.

• We reveal that marginal/conditional matching could help
joint matching getting out of bad local optima, which
serves as one explanation justifying the successes of
foundation models and the big learning principle.

• Comprehensive clustering experiments are conducted to
demonstrate the superiority of the BigLearn-EM and its
robustness to the scarcity of training data.
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Preliminaries
We briefly review the preliminaries that lay the foundation
of the presented technique, i.e., mixture models, the EM al-
gorithm, and the big learning principle.

Mixture Models
Mixture modeling leverages a mixture (i.e., convex combi-
nation) of K simple distributions pi(x|νi) with parameters
νi and i ∈ {1, · · · ,K} to construct a more powerful mix-
ture model pθ(x) for a random variable x ∈ Rd, i.e.,

pθ(x) =
∑K

i=1
πipi(x|νi), (1)

where the mixture weights πi > 0,
∑K

i=1 πi = 1 and θ =
{πi,νi}Ki=1 denotes the model’s parameters.

Among various mixture models (Li et al. 2020; Li, Yu,
and Mandic 2020), the Gaussian Mixture Model (GMM),
also called Mixture of Gaussians (MoG), is the most popular
one; its probability density function is

pθ(x) =
∑K

i=1
πiN (x|µi,Σi), (2)

where µi,Σi are the mean vector and the covariance matrix
of the ith Gaussian component, respectively.

The Expectation-Maximization Algorithm
The Expectation-Maximization (EM) algorithm (Dempster,
Laird, and Rubin 1977) is the prominent way of estimating
a (Gaussian) mixture model pθ(x) from a collection of data
sampled from an underlying data distribution q(x).

Based on the variational inference framework with latent
code z ∈ {1, · · · ,K} and an inference arm q(z|x) (Bishop
2006; Dieng and Paisley 2019), the EM algorithm (termed
Joint-EM hereafter) maximizes the log-likelihood1

Eq(x) log pθ(x) = Eq(x)

[
Eq(z|x) log

pθ(x, z)

q(z|x)

+ KL[q(z|x)||pθ(z|x)]
] (3)

via alternatively updating q(z|x) with an E-step and maxi-
mizing over θ with an M-step, that is,

E-step: q(z|x) = pθ(z|x) =
πzN (x|µz,Σz)∑K
i=1 πiN (x|µi,Σi)

M-step: µz =
Eq(x)[q(z|x)x]
Eq(x)[q(z|x)]

Σz =
Eq(x)[q(z|x)(x− µz)(x− µz)

T ]

Eq(x)[q(z|x)]
πz = Eq(x)[q(z|x)].

(4)
Maximizing the log-likelihood in (3) is equivalent
to minimizing the Kullback-Leibler (KL) divergence
KL[q(x)||pθ(x)], leading to the KL-based joint matching
in the joint x-space, or informally pθ(x) → q(x).

1In practice, Eq(x)[·] is estimated with data samples from q(x).

Big Learning
Foundation models (Stickland and Murray 2019; Brown
et al. 2020; He et al. 2021; Ramesh et al. 2022; Bao et al.
2023; OpenAI 2022; Ouyang et al. 2022) have demonstrated
ground-breaking successes across diverse domains, thanks
mainly to their large-scale pretraining on big data.

Observing that the pretraining strategies of foundation
models share the similar underlying principle of compre-
hensively exploiting data information from diverse perspec-
tives, Cong and Zhao (2022) condenses those strategies into
a unified big learning principle that contains most of them
as special cases. Specifically, the big learning leverages one
universal model with parameters θ to simultaneously match
many/all joint, marginal, and conditional data distributions
across potentially diverse domains, as defined below.

Definition 1 ((Uni-modal) big learning (Cong and Zhao
2022)). Given data samples x ∈ RL from the underlying
data distribution q(x), the index set L = {1, · · · , L}, and
any two non-overlapping subsets S ⊂ L and T ⊆ L,T ̸= ∅,
the (uni-modal) big learning leverages a universal model
pθ(xT|xS), ∀(S,T) to model many/all joint, conditional,
and marginal data distributions simultaneously, i.e.,

pθ(xT|xS) −→ q(xT|xS), ∀(S,T) ∈ Ω, (5)

where Ω is the set that contains the (S,T) pairs of interest.
Given different settings for (S,T), q(xT|xS) may represent a
joint/marginal/conditional data distribution, whose samples
are readily available from the training data. The actual ob-
jective measuring the distance/divergence (or encouraging
the matching) between both sides of (5) should be selected
base on the application of interest.

Based on Remark 3.5 of Cong and Zhao (2022), one may
alternatively or additionally do big learning in transformed
domains, e.g., via pθ(x̂T|x̂S) −→ q(x̂T|x̂S) with transfor-
mation x̂ = g(x).

Below we will combine the above big learning principle
in Definition 1 and Remark 3.5 of Cong and Zhao (2022) to
upgrade the Joint-EM in (4) into its big-learning extension,
where the universal model pθ(xT|xS) has an analytical mix-
ture expression for any (S,T) pair.

Big Learning Expectation Maximization
We first reveal a simple but somewhat counter-intuitive fact
that lays the foundation of the proposed Big Learning EM
(BigLearn-EM) algorithm. Then, based on that fact and the
flexible big learning principle, we design a tailored big-
learning task that consists of diverse matchings between data
and model distributions. Finally, we summarizes and present
the easy-to-use BigLearn-EM with only EM-type analytical
parameter update formulas.

Marginal/Conditional Matching Gets Joint
Matching Out of Bad Local Optima
It’s well-known that the Joint-EM in (4) (i.e., joint match-
ing pθ(x) → q(x)) often converges to a bad local optimum
that could be arbitrarily worse than the optimal with an ex-
ponentially high probability (Bishop 2006; Jin et al. 2016;
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Kolouri, Rohde, and Hoffmann 2018), when the number of
mixture components exceeds three. Fig. 1a illustrates an ex-
ample bad local optimum when implementing the Joint-EM
on simulated data sampled from a GMM with 25 compo-
nents (abbreviated as 25-GMM hereafter).

Next, with notations x ∈ RL and the index set
L = {1, · · · , L}, let’s consider the relationships among
joint matching with pθ(x) → q(x), marginal matching
with pθ(xT) → q(xT), and conditional matching with
pθ(xT|xS) → q(xT|xS), where T ⊆ L, T ̸= ∅, S ⊂ L,
S∩T = ∅, and xT is the marginal vector of x indexed by T.

Intuitively, one may anticipate that performing joint
matching (with e.g., the Joint-EM in (4)) will automati-
cally lead to the convergences of both marginal matching
(with e.g., the following Marginal-EM in (6)) and condi-
tional matching (via e.g., maximizing the follow-up condi-
tional log-likelihood in (7)).

Marginal Matching Eq(xT) log pθ(xT)

E-step: q(z|xT) = pθ(z|xT) =
πzN (xT|µzT,ΣzTT)∑K
i=1 πiN (xT|µiT,ΣiTT)

M-step: µzT =
Eq(xT)[q(z|xT)xT]

Eq(xT)[q(z|xT)]

ΣzTT =
Eq(xT)[q(z|xT)(xT − µzT)(xT − µzT)

T ]

Eq(xT)[q(z|xT)]

πz = Eq(xT)[q(z|xT)],
(6)

where µzT and ΣzTT represent the T-indexed marginal vec-
tor/matrix of µz and Σz , respectively.

Conditional Matching Eq(xS)q(xT|xS)logpθ(xT|xS) (7)

However, we empirically reveal below that the above in-
tuition will not hold true when joint matching (or Joint-EM)
gets stuck at a bad local optimum.

Specifically, we conduct two-stage experiments on sim-
ulated data from a 25-GMM q(x) (see Fig. 1a), where the
model pθ(x) is also a 25-GMM with random initialization2,
Stage 1 implements joint matching (with Joint-EM in (4)),
and, directly following Stage 1, Stage 2 either implements
marginal matching (with Marginal-EM in (6)) or conditional
matching (via maximizing the conditional log-likelihood in
(7) with gradient accent).

Fig. 1 demonstrates the results. It’s clear from Fig. 1a that
joint matching gets stuck at a bad local optimum. As shown
in Fig. 1b, the convergence of joint matching in Stage 1 does
not necessarily result in the convergence of marginal match-
ing, because continually performing Marginal-EM in Stage
2 further improves marginal matching. Similar phenomena
are observed in Fig. 1c for conditional matching. That means
bad local optima where joint matching gets stuck are not lo-
cal optima for marginal/conditional matching, as illustrated
in the left and right dashed lines of the schematic diagram

2Different from prior methods initializing parameters {µi}Ki=1

with uniformly sampled training data, we use the more challenging
Gaussian random initialization for {µi}Ki=1 to highlight the power
of the proposed BigLearn-EM.

in Fig. 1d. Alternatively, that inconsistency among joint,
marginal, and conditional matchings may be leveraged, e.g.,
to detect bad local optima of each matching or to help each
other get out of bad local optima.

It’s worth highlighting that the center dashed line in
Fig. 1d is located at a consistent local optimum for joint,
marginal, and conditional matchings; more importantly, that
consistency property is what the optimal solution must sat-
isfy. The above analysis serves as an example justification
for simultaneous joint, marginal, and conditional matchings,
i.e., the big learning principle in (5) that underlies most suc-
cessful foundation models.

On Tailoring a Big-Learning Task to Produce an
Easy-To-Use BigLearn-EM
Based on what’s revealed in the previous section, one may
naively follow the vanilla big learning principle in (5) to con-
duct multitasking joint, marginal, conditional matchings in
the original x-space, i.e.,

maxθ Eq(S,T)Eq(xS)q(xT|xS)logpθ(xT|xS), (8)
where q(S,T) represents the sampling process of (S,T).
Note q(S,T) actually determines the relative weightings
among joint, marginal, and conditional matchings. However,
it’s not easy to design EM-type analytical update formulas
for conditional matching in (7), even though such formulas
are readily available for both joint and marginal matchings,
as given in (4) and (6), respectively.

To avoid a hybrid algorithm that contain both EM-type
and gradient accent updates and thus may not easy to use, we
leverage the flexibility of big learning discussed in Remark
3.5 of Cong and Zhao (2022) to further combine marginal
matchings in randomly transformed y domains with the joint
and marginal matchings in the original x domain, to form
the tailored big-learning task.

Specifically, we employ orthogonal transformations y =
Ax, where A is a randomly sampled orthogonal matrix.
Correspondingly, the transformed training data y ∼ q̄A(y)
are generated via y = Ax,x ∼ q(x), the model in a trans-
formed domain p̄θ,A(y) is also a GMM with the analytical
expression of

p̄θ,A(y) = pθ(x)
∣∣∂x
∂y

∣∣ = ∑K

i=1
πiN (y|µ̄i, Σ̄i), (9)

where µ̄i = Aµi, Σ̄i = AΣiA
T , and the transformed

marginal matching has EM-type analytical update formulas
Randomly Transformed

Marginal Matching Eq̄A(yT)
log p̄θ,A(yT)

E-step: q̄A(z|yT) = p̄θ,A(z|yT) =
πzN (yT|µ̄zT, Σ̄zTT)∑K
i=1 πiN (yT|µ̄iT, Σ̄iTT)

M-step: µ̄zT =
Eq̄A(yT)

[q̄A(z|yT)yT]

Eq̄A(yT)
[q̄A(z|yT)]

Σ̄zTT =
Eq̄A(yT)

[q̄A(z|yT)(yT − µ̄zT)(yT − µ̄zT)
T ]

Eq̄A(yT)
[q̄A(z|yT)]

πz = Eq̄A(yT)
[q̄A(z|yT)]

Update θ: µz = AT µ̄
′

z, Σz = AT Σ̄
′

zA,
(10)
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(a) (b) (c) (d)

Figure 1: Marginal/Conditional matching gets joint matching out of bad local optima. The simulated data distribution q(x) is
set as a GMM with 25 components (i.e., a 25-GMM); the model pθ(x) is also a 25-GMM with random initialization. (a) The
Joint-EM of joint matching converges to a bad local optimum. (b) Continuing joint matching in Stage 1, marginal matching
in Stage 2 may be further improved and get joint matching out of that bad local optima. (c) Similar results are observed when
Stage 2 implements conditional matching. (d) Schematic diagram of what happens in (b) and (c) from the loss perspective.

where µ̄
′

z/Σ̄
′

z is the T-partially updated µ̄z/Σ̄z after the M-
step. Note any joint matching in the transformed y domain
will deliver the same update formulas as in (4).

To summarize, the tailored big-learning task contains
three kinds of matching, that is, joint, marginal, and trans-
formed marginal matchings, each of which has EM-type an-
alytical formulas for parameter updates, i.e., (4), (6), and
(10), respectively.

Finalizing the BigLearn-EM
Before finalizing our BigLearn-EM, an issue of the EM-type
updates should be addressed. It’s easy to verify that, during
the EM iterations, once a mixture weight πz becomes zero, it
stays zero thereafter. Empirically, this issue hinders the EM-
type updates in (4), (6), and (10) from making full use of
the available mixture components, even though the occupied
components have no enough modeling capacity.

To address that issue, we leverage the Maximum a pos-
teriori (MAP) estimate in place of the vanilla maximum
log-likelihood estimate on the mixture weights π following
Bishop (2006). Accordingly, taking Joint-EM in (4) as an
example, the update rule for π is replaced by

πz =
Eq(x)[q(z|x)] + η

1 +Kη
, (11)

where η > 0 is a small constant. Similar modifications are
also applied to (6) and (10), respectively. Detailed deriva-
tions are given in Appendix A. See the arXiv version of the
paper for the Appendix.

Based on the aforementioned tailored big-learning task
and the MAP modification on π, we finalize the training ob-
jective of the BigLearn-EM as

maxθ Eq(S,T)q(A)Eq̄A(yS)q̄A(yT|yS)
logp̄θ,A(yT|yS)

+ γ log pα(π),
(12)

where q(S,T) and q(A) represent the sampling process of
(S,T) and the orthogonal matrix A, respectively. pα(π)
is the prior for π. γ is a hyper-parameter. Joint/Marginal
matching may be recovered with S = ∅,A = I.

Algorithm 1 summarizes the presented BigLearn-EM,
where only easy-to-use EM-type updates are employed. We

Algorithm 1: Big Learning Expectation Maximization

Input: Training data, the number K of mixture com-
ponents, probabilities [P1, P2] for joint and marginal
matchings, and the number W of local updates.

Output: A consistent local optimum θ∗ =
{π∗

i ,µ
∗
i ,Σ

∗
i }Ki=1.

1: Randomly initialize θ = {πi,µi,Σi}Ki=1
2: while Not Mixing do
3: With probability P1,
4: do Joint-EM with (4)/(11) for W iterations
5: With probability P2,
6: (i) uniformly sample an index subset T, and
7: (ii) do Marginal-EM with (6)/(11) for W iters
8: With probability 1− P1 − P2,
9: (i) uniformly sample an orthogonal matrix A

10: ▷ scipy.stats.ortho group
11: (ii) uniformly sample an index subset T, and
12: (iii) do Transformed Marginal-EM with
13: (10)/(11) for W iterations
14: end while

associate the stopping criterion with “mixing” following the
MCMC literature because of the random implementation of
joint, marginal, or transformed marginal matchings; in the
experiments, we run Algorithm 1 for a fixed number of it-
erations. Besides, it’s worth highlighting that the BigLearn-
EM can naturally handle incomplete data (via its marginal
matchings) thanks to its big learning nature.

Related Work
Analysis and Improvements of the EM Algorithm In gen-
eral settings, the (Joint-)EM algorithm only have local con-
vergence guarantee, that is, it converges to the optimal only
if the parameters are initialized within a close neighborhood
of that optimal (Yan, Yin, and Sarkar 2017; Zhao, Li, and
Sun 2020; Balakrishnan, Wainwright, and Yu 2017). Al-
though Xu, Hsu, and Maleki (2016); Daskalakis, Tzamos,
and Zampetakis (2017); Qian, Zhang, and Chen (2019) have
established the global convergence for Joint-EM on learning
GMMs with two components, a global convergence guaran-
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tee is generally impossible for GMMs with K ≥ 3 com-
ponents, where Joint-EM converges to a bad local optimum
with an exponentially high probability (Jin et al. 2016). To
deal with that bad-local-optima challenge, many efforts have
been made to improve Joint-EM, most of which focus on
clever parameter initialization, seeking to help Joint-EM by-
pass bad local optima before E-M iterates (Bachem et al.
2016b,a; Scrucca et al. 2016; Bachem, Lucic, and Krause
2018; Exarchakis, Oubari, and Lenz 2022; Tobin, Ho, and
Zhang 2023). By contrast, the proposed BigLearn-EM, with
random initialization, directly tackle the bad-local-optima
challenge with diverse joint, marginal, transformed marginal
EM updates, empirically delivering boosted performance
than the Joint-EM (see the experiments).

Other Methods for Learning Mixture Models Besides
the popular EM algorithm, many other methods for learn-
ing GMMs have also been developed based on, e.g., Markov
chain Monte Carlo (MCMC) (Rasmussen 1999; Favaro and
Teh 2013; Das 2014), moments (Ge, Huang, and Kakade
2015; Kane 2021; Pereira, Kileel, and Kolda 2022), adver-
sarial learning (Lin et al. 2018; Farnia et al. 2023), and opti-
mal transport (Kolouri, Rohde, and Hoffmann 2018; Li et al.
2020; Yan, Wang, and Rigollet 2023). Specifically, the SW-
GMM (Kolouri, Rohde, and Hoffmann 2018) leverages the
Radon transform to randomly project the high-dimensional
GMM learning task into one-dimensional sliced subspace,
where the sliced Wasserstein distance between the pro-
jected data and model distributions is minimized. How-
ever, the computational complexity of the SW-GMM grows
exponentially as the number of dimensions, rendering it
unsuitable for modeling high-dimensional data (Li et al.
2020; Deshpande et al. 2019; Kolouri et al. 2019). Differ-
ent from the aforementioned methods resorting to expensive
moment-matching, unstable adversarial learning, or compli-
cated Wasserstein distances, the presented BigLearn-EM is
both easy-to-understand and easy-to-use, since it’s a direct
big-learning upgrade of the EM algorithm with only EM-
type analytical formulas for parameter updates (and thus the
same computational complexity as that of the EM).

Experiments
We first present the detailed ablation study that produces the
BigLearn-EM from the vanilla Joint-EM. Then, we demon-
strate the effectiveness of the BigLearn-EM in compre-
hensive real-world clustering applications. Finally, modified
clustering experiments are conducted to reveal its robustness
to data scarcity.

Ablation Study That Produces the BigLearn-EM
Based on the 25-GMM simulation setup in Fig. 1, we
first present the detailed ablation study that produces the
BigLearn-EM in Algorithm 1. Specifically, we start with the
Joint-EM in (4) and test the performance when gradually in-
troducing additional MAP estimate for π (marked as “+Pr”),
Marginal Matching in (6) (“+MM”), Conditional Match-
ing in (7) (“+CM”), and Randomly Transformed Marginal
Matching in (10) (“+RTMM”) with different number W of
local updates in Algorithm 1 (marked as “+W”).

Method
Test Joint KL Divergence

Mean Standard
Deviation

Joint-EM 0.263 0.035

+ Pr 0.225 0.073
+ Pr + MM 0.141 0.054
+ Pr + MM + CM 0.124 0.044
+ Pr + MM + RTMM + W1 0.077 0.034
+ Pr + MM + RTMM + W5

(BigLearn-EM) 0.030 0.006

+ Pr + MM + RTMM + W10 0.031 0.007

Table 1: Ablation study on the 25-GMM simulated datasets.
“+Pr” means employing the MAP estimate for π with
(11). “+MM/+CM/+RTMM” means introducing additional
Marginal Matching, Conditional Matching, and Randomly
Transformed Marginal Matching, respectively. “+W5” indi-
cates employing W = 5 local updates in Algorithm 1.

The results from 10 different runs (with different random
seeds) are summarized in Table 1, where introducing prior
for π (i.e., “+Pr”) improves the test joint KL divergence
by 14.4% on average, despite with a doubly worsened stan-
dard deviation. By additionally employing marginal/condi-
tional matching (i.e., “+MM/+CM”), both the mean and
standard deviation improve steadily, highlighting the bene-
fits of the implicit diverse inter-regularization among various
learning objectives of big learning. Further, boosted perfor-
mance emerges from employing the Randomly Transformed
Marginal Matching (i.e., “+RTMM”), thanks to its signifi-
cantly expanded diversity of matching, highlighting the ef-
fectiveness of the big learning principle as well as the im-
portance of the diversity of big-learning tasks.

For explicit comparisons between the Joint-EM and the
BigLearn-EM, Fig. 2a demonstrates the local optima where
both methods converge. As expected, Joint-EM fails to make
full use of the available 25 mixture components, suffering
from bad local optima that could be arbitrarily worse than
the optimal solution (Jin et al. 2016). By contrast, the pre-
sented BigLearn-EM, thanks to its big-learning nature, man-
ages to fully exploit the 25 mixture components by placing
each component to one data mode, delivering global optima
with high probability in this simulation (refer to Fig. 2b). By
considering that the BigLearn-EM merely uses the Gaussian
random initialization for {µi}Ki=1, it’s therefore interesting
to theoretically verify whether big learning could contribute
to a global convergence guarantee for GMMs with K ≥ 3
components; we leave that as future research.

BigLearn-EM for Real-World Data Clustering
Clustering stands as a representative application of GMM,
addressing the task of categorizing unlabeled data into co-
herent and distinct clusters.

To validate the effectiveness of the BigLearn-EM in
real-world clustering applications, we conduct comprehen-
sive experiments on diverse clustering datasets, includ-
ing Connect-4, Covtype, Glass, Letter, Pendigits, Satim-
age, Seismic, Svmguide2, and Vehicle (see Appendix B for
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Joint-EM

BigLearn-EM

(a)

(b)

(c)

Figure 2: Comparisons between the Joint-EM and the BigLearn-EM. (a) Explicit demonstrations of the local optima from both
methods w.r.t. different random seeds of 5079, 6395, and 3325, respectively. (b) Boxplot of the test joint KL divergences from
100 runs of both methods with different random seeds. (c) An example state where the BigLearn-EM wanders around for many
iterations.

Dataset Metric K-Means WM-GMM SW-GMM Joint-EM BigLearn-EM

Connect-4
NMI 0.0025± 0.0014 0.0016± 0.0084 0.0016± 0.0097 0.0028± 0.0015 0.0022± 0.0012
ARI 0.0003± 0.0011 0.0003± 0.0042 0.0005± 0.0047 0.0013± 0.0049 0.0017± 0.0031

Joint-LL — 88.568± 3.45 85.659± 7.498 91.254± 4.8061 95.324± 3.2022

Covtype
NMI 0.145± 0.0647 0.101± 0.0158 0.138± 0.0341 0.119± 0.0272 0.171± 0.0143
ARI 0.032± 0.0147 0.065± 0.0497 0.037± 0.0658 0.057± 0.0216 0.070± 0.0151

Joint-LL — 70.957± 0.059 70.268± 1.632 72.194± 1.9089 74.002± 0.8828

Glass
NMI 0.431± 0.0567 0.419± 0.0726 0.426± 0.0534 0.436± 0.0644 0.459± 0.0440
ARI 0.164± 0.0758 0.198± 0.0511 0.195± 0.0479 0.220± 0.0526 0.228± 0.0423

Joint-LL — 7.142± 0.8023 7.148± 0.9546 7.008± 1.0364 7.140± 1.0025

Letter
NMI 0.368± 0.0064 0.279± 0.0033 0.478± 0.0186 0.492± 0.0169 0.532± 0.0121
ARI 0.130± 0.0056 0.012± 0.0032 0.190± 0.0202 0.193± 0.0181 0.244± 0.0165

Joint-LL — 12.38± 0.1024 19.045± 0.1548 19.297± 0.1877 19.664± 0.1404

Pendigits
NMI 0.716± 0.0059 0.782± 0.0233 0.744± 0.0385 0.771± 0.0323 0.823± 0.0202
ARI 0.596± 0.0180 0.679± 0.0487 0.600± 0.0663 0.626± 0.0622 0.724± 0.0392

Joint-LL — 10.068± 0.1824 9.870± 0.2198 9.960± 0.2545 10.266± 0.0979

Satimage
NMI 0.586± 0.0012 0.575± 0.0256 0.598± 0.0542 0.587± 0.0311 0.617± 0.0291
ARI 0.487± 0.0007 0.498± 0.0451 0.505± 0.1562 0.470± 0.0765 0.527± 0.0621

Joint-LL — 39.214± 0.0035 39.384± 0.092 39.387± 0.0062 39.430± 0.1109

Seismic
NMI 0.121± 0.0015 0.167± 0.0145 0.196± 0.0090 0.198± 0.0259 0.212± 0.0243
ARI 0.106± 0.0033 0.113± 0.1584 0.0892± 0.0426 0.057± 0.0292 0.129± 0.0265

Joint-LL — 41.958± 0.2185 42.234± 0.1441 42.050± 0.8780 42.449± 0.8896

Svmguide2
NMI 0.105± 0.0504 0.098± 0.0372 0.108± 0.0638 0.085± 0.0746 0.196± 0.0722
ARI 0.087± 0.0576 0.061± 0.0348 0.087± 0.0911 0.050± 0.0820 0.206± 0.0869

Joint-LL — 10.248± 0.0546 10.416± 0.4158 10.404± 0.4240 10.371± 0.3993

Vehicle
NMI 0.169± 0.0282 0.218± 0.0152 0.178± 0.0545 0.197± 0.0655 0.249± 0.0641
ARI 0.089± 0.0250 0.102± 0.0131 0.085± 0.0533 0.094± 0.0476 0.131± 0.0471

Joint-LL — 22.2998± 1.0494 22.473± 1.0635 22.896± 1.3036 23.738± 1.1594

Table 2: Clustering performance on real-world benchmark datasets. All the compared methods share the same settings for the
GMM model pθ(x). The results are calculated based on 100 runs with different random seeds. Higher is better for all metrics.
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Method ACC NMI
K-Means (Bottou and Bengio 1994) 0.474 0.512
DEC (Xie, Girshick, and Farhadi 2016) 0.590 0.601
IDEC (Guo et al. 2017) 0.592 0.604
VaDE (Jiang et al. 2017) 0.578 0.630
JULE (Yang, Parikh, and Batra 2016) 0.563 0.608
DAC (Chang et al. 2017) 0.615 0.632
VaGAN-GMM

(Yang, Fan, and Bouguila 2020) 0.638 0.633

EDESC (Cai et al. 2022) 0.631 0.670
BigLearn-EM 0.624 0.681

Table 3: Comparisons with deep clustering methods on the
FashionMNIST dataset. The baseline results are taken from
Cai et al. (2022) and ACC stands for clustering accuracy.

details). The BigLearn-EM is systematically benchmarked
against representative established clustering techniques, i.e.,
the K-Means (Bottou and Bengio 1994), the SW-GMM
(Kolouri, Rohde, and Hoffmann 2018), and the WM-GMM
(Li et al. 2020), and the Joint-EM algorithm. Three testing
metrics are adopted for performance evaluation, including

1. the normalized mutual information (NMI) (Strehl and
Ghosh 2002), which quantifies how much the predicted
clustering is informative about the true labels;

2. the adjusted rand index (ARI) (Hubert and Arabie 1985;
Steinley 2004), which measures the agreement between
an estimated clustering and a reference clustering; and

3. the test joint log-likelihood (Joint-LL), which reflects
how well the learned model describes the testing data
from the joint KL divergence perspective.

The detailed results on the tested real-world clustering
datasets are summarized in Table 2, where the BigLearn-
EM delivers overall boosted performance over the compared
techniques, especially on the NMI and ARI values. When
compared to the Joint-EM, the BigLearn-EM demonstrates
significantly improved performance, even though both of
them are based on E-M iterations; that further substantiates
the effectiveness of the big learning principle in address-
ing the bad-local-optima challenge inherent in the vanilla
Joint-EM algorithm; more importantly, the BigLearn-EM
also delivers smaller standard deviations across the major-
ity of tested datasets, demonstrating the potential of the big
learning to bring better learning stability and consistency.
When compared to the WM-GMM and SW-GMM tech-
niques that are developed based on complicated Wasser-
stein distances, the BigLearn-EM, which yields better per-
formance, is clearly much easier to understand in theory and,
simultaneously, easier to use in practice. See the arXiv ver-
sion of the paper for additional explanatory demonstrations.

We also challenge the BigLearn-EM by comparing it with
popular deep clustering methods. We follow the experimen-
tal setup in Cai et al. (2022) and conduct an experiment on
the FashionMNIST dataset. The results are shown in Table 3,
where the BigLearn-EM delivers a comparable performance
to SOTA deep clustering methods, without employing pow-
erful deep neural networks, highlighting its effectiveness.
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Figure 3: Demonstration of the BigLearn-EM’s robustness
to the scarcity of its training data.

BigLearn-EM Is More Robust to the Scarcity of Its
Training Data
Noticing that, in scenarios with limited data, like the
Svmguide2 dataset with 391 data samples in Table 2, the
BigLearn-EM exhibits remarkably superior NMI/ARI per-
formance than other clustering techniques. We posit that the
BigLearn-EM is more robust to the scarcity of its training
data, because its big-learning operation is expected to sig-
nificantly increase the utilization of the information within
each sample. We then design modified real-world cluster-
ing experiments to verify that hypothesis. Specifically, based
on the Pendigits dataset, we randomly select its 80%, 60%,
40%, 20%, 10%, and 5% training data to form a series
of modified clustering datasets with gradually increased
scarcity, where the BigLearn-EM is compared to the Joint-
EM to highlight the influence of the big learning principle.

Fig. 3 demonstrates the experimental results, which verify
that the BigLearn-EM is more robust to the scarcity of its
training data than the Joint-EM, even though both of them
utilize similar EM-type parameter update formulas, high-
lighting the effectiveness of the big learning.

Conclusions
Leveraging the big learning principle that underlies ground-
breaking foundation models, we upgrade the vanilla EM
algorithm to its big-learning extension that is termed the
BigLearn-EM. The BigLearn-EM simultaneously performs
joint, marginal, and randomly transformed marginal match-
ings between data and model distributions, empirically
demonstrating great potential in addressing the long-lasting
bad-local-optima challenge of the EM. Comprehensive ex-
periments on real-world clustering datasets demonstrate its
boosted performance and its robustness to data scarcity.

Although the BigLearn-EM perform better than existing
techniques in the tested scenarios, some issues remain un-
solved. For example, (i) whether the BigLearn-EM theoreti-
cally addresses the bad-local-optima challenge of the EM is
unanswered, (ii) the consistency among joint, marginal, and
transformed marginal matchings is not fully exploited, e.g.,
to form a suitable stopping criteria for Algorithm 1, and (iii)
the exploration power of the BigLearn-EM may need further
strengthening, as we find it may wander around a state like
the one in Fig. 2c for many iterations.
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