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Abstract
Existing works on goal recognition design (GRD) consider
the underlying domain as a classical planning domain and
apply modifications to the domain to minimize the worst case
distinctiveness. In this paper, we propose replacing existing
modifications with blocks, which group several closely re-
lated modifications together such that a block can modify a
region in a search space with respect to some design con-
straints. Moreover, there could be blocks within blocks such
that the design space becomes hierarchical for modifications
at different levels of granularity. We present 1) a new ver-
sion of pruned-reduce, a successful pruning rule for GRD,
for block-level GRD, and 2) a new pruning rule for pruning
some branches in both hierarchical and non-hierarchical de-
sign space. Our experiments show that searching in hierarchi-
cal design spaces greatly speeds up the redesign process.

Introduction
In goal recognition, an observer infers the goal of an agent
acting in an environment from online observations of the
agent’s behavior (Kautz 1987; Carberry 2001; Ramirez and
Geffner 2010; Sukthankar et al. 2014; Vered and Kaminka
2017; Pereira, Oren, and Meneguzzi 2017). Goal recogni-
tion design (GRD) aims to redesign an environment such
that an observer can recognize an agent’s goal as early as
possible (Keren, Gal, and Karpas 2014, 2020). A popular
performance measure in GRD is the worst case distinctive-
ness (WCD), which is the number of observations an ob-
server needs to ascertain an agent’s goal in the worst case.
Minimizing the WCD has practical usage in real-world ap-
plications. For example, in the airport security domain as
described in (Keren, Gal, and Karpas 2014, 2020), we want
to redesign the layout of an airport such that a security guard
can be one step ahead of an intruder by recognizing an inap-
propriate goal pursued by the intruder as soon as possible.

Existing works on GRD consider environments as classi-
cal planning domains and redesign environments by modi-
fying the actions in the planning domains using action re-
movals (Keren, Gal, and Karpas 2014) or action condition-
ing (Keren, Gal, and Karpas 2018). In some environments,
however, several modifications must be applied simultane-
ously to achieve the desired effect for goal recognition. For
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Figure 1: An example of block-level GRD. An agent can
choose one of the four legal paths (the red lines) to reach
either g1 or g2. The blue lines are the walls.

example, Figure 1 extends the example in (Keren, Gal, and
Karpas 2014) by including all the walls such that an agent is
not allowed to deviate from the given paths (the red lines).
We can substitute one of the three yellow blocks for the red
region in the grid to prevent an agent from choosing some of
the given paths. All walls in a yellow block must be added to
the red region simultaneously; otherwise, an agent could de-
viate from the given paths via some missing walls in the red
region. Action removals and action conditioning ignore this
design constraint, causing the GRD algorithms to enumerate
all combinations of the modifications for adding these walls.

In this paper, we introduce block-level GRD that uses
blocks as the primary mean of environmental modifications.
A block is a group of closely related modifications that can
simultaneously modify multiple edges in the search space
of classical planning problems. In Figure 1, there are three
blocks, each of which modifies every edge in the red region
in the grid. A block-level GRD algorithm chooses one of
these blocks to minimize the WCD. If it chooses b1, the re-
maining paths an agent can choose are p2, p3 and p4, and the
WCD is 6, which is the length of the longest common prefix
of p2 and p3. If the algorithm chooses b2, the WCD is also 6.
But if it chooses b3, the remaining paths are p1 and p4, and
the WCD is 3. Therefore, the algorithm should choose b3.

We formulate a hierarchical design model that allows
blocks within blocks. The block at the top level of the hi-
erarchy lays out the structure of the environment, whereas
the blocks at the bottom level implement the design. The
hierarchical design model resembles hierarchical task net-
work (HTN) planning (Erol, Hendler, and Nau 1996; Nau
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et al. 2003, 2005) and can greatly reduce the search space
of the GRD algorithms, making our approach suitable for
large-scale GRD problems.

In summary, our contributions are:
• We define a hierarchical design model for block-level

goal recognition design.
• We modify pruned-reduce (Keren, Gal, and Karpas

2014), a highly successful pruning rule for GRD, for
block-level GRD, and state the sufficient condition for
returning an optimal design in breadth-first search.

• We introduce a new pruning rule that avoids the ex-
pansion of some regions in a hierarchical design space.
This pruning rule is applicable to non-hierarchical design
models as well.

• We devise a local search algorithm to solve much larger
GRD problems than breadth-first search.

This paper is organized as follows. After presenting
the related work, we define the problem of block-level
goal recognition design. Next, we describe the block-based
pruned-reduce and the design subtree pruning rule. Lastly,
we present the experimental results and conclude this paper.

Related Work
GRD is a special case of environment design (Zhang, Chen,
and Parkes 2009). Keren et al. proposed using the WCD as
a performance measure in GRD (Keren, Gal, and Karpas
2014, 2019). Subsequently, many works extended the WCD-
based GRD model to deal with non-optimal agents (Keren,
Gal, and Karpas 2015), non-observable actions (Keren, Gal,
and Karpas 2016a), privacy preserving in GRD (Keren,
Gal, and Karpas 2016b), stochastic domains (Wayllace
et al. 2016; Wayllace, Hou, and Yeoh 2017), game-theoretic
GRD (Ang et al. 2017), GRD for plan libraries (Mirsky
et al. 2019), partially-observable states (Wayllace et al.
2020), incomplete information (Keren 2019), information
shaping (Keren et al. 2020), stochastic domains with sub-
optimal agents (Wayllace and Yeoh 2022), interleaving be-
tween agents and observers (Gall, Ruml, and Keren 2021),
and agents with multiple goals (Au 2022). (Keren, Gal, and
Karpas 2020) is a survey of the works on GRD before 2020.

Some works focus on improving the performance of GRD
algorithms. Keren et al. introduced pruned-reduce in their
seminal paper on WCD-based GRD (Keren, Gal, and Karpas
2014). Son et al. proposed solving GRD problems by An-
swer Set Programming solvers, which outperforms the ex-
isting approaches for fully observable models with optimal
agents (Son et al. 2016). Ang et al. formulated the prob-
lem of computing optimal strategies as a mixed integer pro-
gram in game-theoretic settings of GRD (Ang et al. 2017).
Keren et al. framed existing pruning methods in the con-
text of strong stubborn sets (Keren, Gal, and Karpas 2018).
However, we still need better techniques to solve large GRD
problems.

Our hierarchical design model resembles hierarchical task
network (HTN) planning, which is more expressive than
classical planning and can achieve an exponential speedup
with sufficient domain knowledge to guide the planning pro-
cess (Erol, Hendler, and Nau 1996). Our hierarchical design

model also contains domain knowledge of which blocks fit a
region. Like methods in SHOP2 (Nau et al. 2003, 2005), this
knowledge can reduce the design space tremendously. How-
ever, our hierarchical design model provides little guidance
on reducing the WCD.

Preliminary Definition: Classical Planning
This work is based on STRIPS planning for fully observable
and deterministic environments (Fikes and Nilsson 1971). A
state s is a set of fluents, each of which is a ground, func-
tionless atom that is true in s. A planning problem is a tuple
⟨F , s0,A, G, cost⟩, where F is a set of fluents, s0 ⊆ F is
the initial state, G is a set of goal states, A is a set of ac-
tions and cost is the cost function of actions. Each action is
a triple a = ⟨pre(a), add(a), del(a)⟩, where pre(a) ⊆ F ,
add(a) ⊆ F , del(a) ⊆ F are the precondition, the add list,
and the delete list, respectively. a is applicable to state s if
and only if pre(a) ⊆ s. The resultant state of applying a
to s is apply(s, a) = (s \ del(a)) ∪ add(a). For simplic-
ity, we assume the costs of all actions are the same (i.e.,
cost(a) = 1 for all a ∈ A). A plan π is a sequence of
actions ⟨a1, a2, . . . , ak⟩, where ai ∈ A for 1 ≤ i ≤ k.
π is valid if and only if ai+1 is applicable to si where
si+1 = apply(si, ai+1) for 0 ≤ i < k. The path of a valid
π is the sequence of states p(π) = ⟨s0, s1, . . . , sk⟩ visited
by an agent when executing π. We say a state s is reachable
by a valid plan π if and only if s ∈ p(π). Hence, a goal
state g ∈ G is reachable by π if and only if g ∈ p(π). Let
prefix(p1, p2) be the longest common prefix of p1 and p2.

Our GRD problem revolves around modifications to the
search space of classical planning problems. Let S be the
set of all states reachable by some valid plans in a plan-
ning problem ⟨F , s0,A, G, cost⟩. The search space of the
planning problem is a directed graph (V,E), where V is a
set of vertices and E is a set of directed edges. Each state
s ∈ S has a vertex v in V , and we denote v by v[s]. Like-
wise, we denote s by s[v] for a given v. There is an edge
(v1, v2) in E whose cost is cost[v1, v2] if there is an ac-
tion a ∈ A applicable to s[v1] and the resultant state is
s[v2] = apply(s[v1], a). We denote a by a[v1, v2]. Then we
can formulate the planning problem as a graph search prob-
lem (V,E, v0, Vgoal, cost), where (V,E) is the search space,
v0 = v[s0] ∈ V is the initial vertex, and Vgoal is the set of
goal vertices representing the goal states in G. The objective
is to find a path p that connects v0 to one of the goal vertices
while minimizing the total cost of the path. Then, we can
convert p into a plan π that solves the planning problem.

Block-Level Goal Recognition Design
This section defines the goal recognition design problem that
uses blocks as environmental modifications.

Blocks and Regions
Previous works introduced two modifications for fully ob-
servable domains: action removals (Keren, Gal, and Karpas
2014) and action conditioning (Keren, Gal, and Karpas
2018). An action removal removes an action in A, whereas
an action conditioning adds additional fluents to pre(a). The
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effect of these modifications to the search space is the re-
moval of some edges such that some legal plans become
infeasible. In this paper, we consider modifications that di-
rectly update a search space by a block, which represents a
search space that can be put in a region of another search
space. A block can alter multiple connectivity in a search
space at once. Typically, only a few configurations in a re-
gion conform to the design constraints in an environment
(see Figure 1). A block can produce these configurations di-
rectly, making the modification process more efficient.

We introduce a new type of vertices called regional ver-
tices, which represent regions that can be substituted by
blocks. Let us extend the definition of search spaces to in-
clude regional vertices. An extended search space is G =
(V, V r, E,Er), where V is a set of ordinary vertices that
represents a set S of states (i.e., s[v] exists for all v ∈ V ),
V r is a set of regional vertices that do not represent any state
(i.e., s[v] does not exist for any regional vertex v ∈ V r), E
is a set of edges that represents actions applicable to the or-
dinary states in S (i.e., a[v1, v2] exists for any (v1, v2) ∈ E
if v1 ∈ V ), and Er is a set of outgoing edges of the re-
gional vertices in V r that do not represent any action (i.e.,
a[v1, v2] does not exist for any (v1, v2) ∈ Er if v1 ∈ V r

is a regional vertex). In short, an extended search space is a
graph in which the set of vertices is (V ∪ V r) and the set
of edges is (E ∪Er). Moreover, E is the set of all outgoing
edges of the vertices in V , and Er is the set of all outgo-
ing edges of the regional vertices in V r. We shall assume
the root vertex vroot and the goal vertices in Vgoal are not re-
gional vertices. All extended search spaces must satisfy the
following condition in order to maintain the semantics of the
planning problem: for all edge (v1, v2) such that both v1 and
v2 are ordinary vertices, s[v2] = apply(s[v1], a[v1, v2]).

Substituting Blocks for Regional Vertices
The specification of a block b1 is (V1, V

r
1 , E1, E

r
1 , V

entry
1 ,

V exit
1 ), where G1 = (V1, V

r
1 , E1, E

r
1) is an extended search

space, V entry
1 ⊆ (E1 ∪ Er

1) is a set of entry vertices, and
V exit
1 ⊆ (E1 ∪ Er

1) is a set of exit vertices. Let us consider
another extended search space G2 = (V2, V

r
2 , E2, E

r
2) with

a regional vertex vr ∈ V r
2 , and we are going to substitute

b1 for vr. Let E in
r = {(v1, vr)}v1 ∈ (V2 ∪ V r

2 ) be the set of
incoming edges of vr and Eout

r = {(vr, v2)}v2 ∈ (V2 ∪ V r
2 )

be the set of outgoing edges of vr in G2. Let V in
r =

{v1}(v1,vr)∈E in
r

and V out
r = {v2}(vr,v2)∈Eout

r
be the sets of

vertices on the edges, excluding vr, in E in
r and Eout

r , respec-
tively. We say the vertices in V in

r and V out
r the incoming ver-

tices of r and the outcoming vertices of r, respectively.
After the substitution of b1 for vr, G1 and G2 are merged

into a new search space G3 in which vr is replaced with the
G1 with some new edges between V in

r and V entry
1 as well as

between V exit
1 and V out

r . These new edges are specified by
three given parameters: 1) K in ⊆ V in

r × V entry
1 is a set of

edges that enter b1; 2) Kout ⊆ V exit
1 × V out

r is a set of edges
that leave b1; and 3) Kaction is a mapping from Kout

ordinary to
A, where Kout

ordinary = Kout ∩ (V1 × V out
r ) is the set of edges

in Kout whose start vertices are ordinary vertices in V1.

Definition 1 We say b1 is fit for vr in G2 with K in, Kout,
and Kaction if and only if 1) for all (v1, v2) ∈ K in s.t.
v1 ∈ V2 and v2 ∈ V1, apply(s[v1], a[v1, vr]) = s[v2];
and 2) for all (v1, v2) ∈ Kout s.t. v1 ∈ V1 and v2 ∈ V2,
apply(s[v1],K

action((v1, v2)) = s[v2].
These conditions are used to maintain the semantics of the
planning problem: for any edge (v1, v2) in K in or Kout, if
both v1 and v2 are ordinary vertices, the resultant state af-
ter applying the action represented by the edge must be the
same as s[v2]. Note that there is no restriction on any edge
(v1, v2) in K in or Kout if either v1 or v2 is a regional vertex.

Given a block b1 that is fit for vr in G2 with K in, Kout, and
Kaction, we can substitute b1 for vr to create a new extended
search space G3 = (V3, V

r
3 , E3, E

r
3), where

V3 = V1 ∪ V2,

V r
3 = (V r

1 ∪ V r
2 ) \ {vr},

E3 = [(E1 ∪ E2) \ E4] ∪ (E6 ∪ E7),

Er
3 = [(Er

1 ∪ Er
2) \ (Er

4 ∪ Er
5)] ∪ (Er

6 ∪ Er
7),

E4 = {(v1, vr)}(v1, vr) ∈ E in
r and v1 ∈ V2

Er
4 = {(v1, vr)}(v1, vr) ∈ E in

r and v1 ∈ V r
2

Er
5 = {(vr, v1)}(vr, v1) ∈ Eout

r

E6 = {(v1, v2)}(v1, v2) ∈ K in and v1 ∈ V2

Er
6 = {(v1, v2)}(v1, v2) ∈ K in and v1 ∈ V r

2

E7 = {(v1, v2)}(v1, v2) ∈ Kout and v1 ∈ V1

Er
7 = {(v1, v2)}(v1, v2) ∈ Kout and v1 ∈ V r

1

(1)

This substititon removes the edges in E4, Er
4 , and Er

5 from
G1 and G2, and then adds the edges in E6, Er

6 , E7, and Er
7

to G3. The only vertex that is removed is vr. We denote this
substitution by G3 = Subst(G2, vr, b1,K

in,Kout,Kaction).

Hierarchical Design Models
We define a hierarchical design model based on blocks
and regions as follows. If the extended search space G =
(V, V r, E,Er) of a block b has some regional vertices (i.e.,
|V r| ≥ 1), every vi ∈ V r can be substituted by another
block bj fit for vi with given K in

j , Kout
j , and Kaction

j . We say
bj is a feasible block for vi, and bj is a child block of b. In our
design model, the set of all feasible blocks for vi, together
with the corresponding K in, Kout, and Kaction that make the
feasible blocks fit for vi, is given. We denote the set of feasi-
ble blocks for vi by dom(vi), called the domain of vi. We as-
sume the domain of a regional vertex must have at least one
feasible block. We also assume each block can be uniquely
identified. Hence, each block bj belongs to the domain of
only one regional vertex that is denoted by v[bj ]. Since K in

j ,
Kout

j , and Kaction
j for every bj are given, we shall omit them

when we substitute bj ∈ dom(v[bj ]) for v[bj ] from now
on. Thus, we write Subst(G, v[bj ], bj ,K in

j ,K
out
j ,Kaction

j ) as
Subst(G, bj).

Figure 2 shows a hierarchical design model. At the top
level, there is a root block broot. For the completeness of our
definition, we define a special vertex vdummy = v[broot] and
its domain contains broot only. In the specification of broot,
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Figure 2: A hierarchical design model. The red arrows rep-
resent a design tree in the model. The blue arrows denote the
inclusion of non-open regional vertices in the design tree.

we set V entry = {v0}, V exit = {v[g]}g∈G, V in
r = {vdummy}

and V out
r = {vdummy}, where v0 = v[s0] is the initial ver-

tex. Note that v0 and the goal vertices in Vgoal must be ordi-
nary vertices in broot. Every block b except broot has a parent
parent[b]. Similarly, every block can have child blocks un-
less the block is a terminal block with no regional vertex.
We shall assume there is no cycle of “blocks within blocks”;
thus, a hierarchical design model is finite.

A design path from b0 to bm is a sequence
⟨b0, b1, . . . , bm⟩ of blocks, where bi = parent[bi+1]
for 1 ≤ i < m. Since every block b is uniquely identified,
there is one and only one design path ⟨broot, b1, . . . , bm−1, b⟩
from broot to b. Let ancestor[b] = ⟨broot, b1, . . . , bm−1⟩ be
the ancestors of b, where parent[b] = bm−1.

A design tree Θ is a set of blocks such that Θ contains
all blocks on the design path from broot to every block in Θ.
Another way to define Θ is that Θ is a design tree if and only
if parent[b] ∈ Θ for every b ∈ (Θ \ {broot}). In Figure 2,
a red arrow (v, b) denotes the choice of a feasible block b
in dom(v) of a regional vertex v. The set of all red arrows
constitutes a design tree. A design tree’s root is always broot.
By contrast, the root of a design subtree can be any block.
A design subtree of b is Θ(b), which is a set of blocks that
contains all blocks on the design path from b to every block
in Θ(b). If Θ(b) is a design subtree of b, parent[b′] ∈ Θ(b)
for every b′ ∈ (Θ(b)\{b}). A design tree is a design subtree
of broot.

We denote the set of child blocks of a block b′ in Θ(b)
by children[b′] = {b′′}b′ ∈ Θ(b) and parent[b′′] = b′ . We say b′ is
full if |children[b′]| = |V r| where V r is the set of regional
vertices in b′. A terminal block b is always full since it has
no regional vertex and children[b] is empty. A design subtree
Θ(b) is full if every block in Θ(b) is full; otherwise, Θ(b) is
partial. The design tree in Figure 2 is full since all outgoing
arrows of all blocks in the design tree are blue arrows.

We say the blocks in Θ(b), excluding b, are subblocks of
b in Θ(b). A block b′ is a possible subblock of b if and only
if there exists a design subtree Θ(b) such that b is a subblock
of Θ(b). Let Bsub(b) be the set of all possible subblocks of
b. We can construct Bsub(b) by depth-first search in the hier-
archical design model starting from b: whenever the depth-
first search visits a block b′ for the first time, it adds b′ to
Bsub(b) if b′ ̸= b, and then visits all child blocks of b′. Let
Ball = Bsub(broot) ∪ {broot} be the set of all blocks.

A design tree Θ specifies which feasible block in dom(v)

should substitute for the corresponding regional vertex v in
Θ. The result of the substitutions is a new extended search
space G(Θ). G(Θ) can be constructed by depth-first search
in Θ starting from the root of Θ. Initially, G is the extended
search space of broot. Whenever the depth-first search visits
a new block b in Θ, it replaces G with Subst(G, b). The re-
placement would succeed since all ancestors of b have been
visited previously, and v[b] must be present in G. Ultimately,
the depth-first search returns G(Θ). If Θ is full, G(Θ) has no
regional vertex. If Θ is partial, we say the regional vertices
in G(Θ) are open in Θ. For any open regional vertex v in Θ,
we can extend Θ by adding a feasible block b ∈ dom(v) to
Θ to form Θ′ = Θ ∪ {b}, which is also a design tree.

Legal Paths
An assumption in GRD research is that an agent cannot
move freely but follow a given set Πleg of legal plans whose
paths can be either the shortest paths to some goals (Keren,
Gal, and Karpas 2014), some feasible paths subject to phys-
ical constraints (Au 2022), or some paths in a path li-
brary (Mirsky et al. 2019). Note that legal plans do not have
to be optimal or near-optimal. Let P leg be the set of legal
paths traversed by an agent when executing the legal plans
in Πleg starting at the initial state s0. The last state last[p] of
a legal plan p ∈ Πleg must be a goal state, denoted by g[p].
By the definition of goal states, no two goal states share the
same state. Hence, each vertex on a legal path p ∈ P leg has
at most one goal state. We assume an agent who chooses
p aims for g[p] in the last state last[p] only and ignores the
other goal states before last[p] on p. We also assume that a
legal path p has no cycle (i.e., v1 ̸= v2 for any v1, v2 ∈ p).

Given a design tree Θ, a legal path p ∈ P leg is valid in
Θ if and only if p exists in G(Θ) = (V, V r, E,Er), i.e.,
(v1, v2) ∈ E for all (v1, v2) ∈ edges(p) where edges(p)
is the set of edges in p. Given a valid legal path p in
Θ, we say the goal g(p) is reachable by p in Θ. A de-
sign tree Θ is encompassing if every goal in G is reach-
able by some valid legal path p ∈ P leg in Θ, i.e., G =
{g[p]}p ∈ P leg and p is valid in Θ. The encompassment of design
trees is important because we only consider design trees
where all goals are reachable by some legal paths.

The Block-Level GRD Problem
According to (Keren, Gal, and Karpas 2020), a goal recog-
nition design (GRD) model is a pair T = ⟨R0, D⟩, where
R0 is an initial goal recognition model, and D is a design
model, which is a tuple ⟨M, δ, ϕ,U⟩, where M is a set of
atomic modifications, δ is a modification transition func-
tion, ϕ is a constraint indicator, and U is an evaluation func-
tion for the goal recognition models. In this paper, a goal
recognition model R is a design tree Θ, which can be ei-
ther full or partial. The initial goal recognition model R0 is
Θ0 = {broot}. In our context, D is ⟨M, δ, ϕ,U⟩, where 1)
M = (Ball \ {broot}) is the set of all blocks except broot; 2)
δ is a transition function that maps a design tree Θ to a new
design tree after adding a new block to Θ to replace an open
regional vertex in Θ; 3) ϕ checks whether a block adding to
Θ is in the domain of an open regional vertex in Θ; and 4)
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U is the worst case distinctiveness WCD(R) = WCD(Θ),
which represents the maximal cost of a non-distinctive path,
which is a path an agent can follow without revealing its
goal (Keren, Gal, and Karpas 2020). In this paper, we as-
sume the costs of all actions are the same, and therefore the
WCD is the maximal length of a non-distinctive path. More
precisely,

WCD(Θ) = WCD(Θ, P leg
valid) = (2)

maxp1, p2 ∈ P leg
valid and p1 ̸= p2

|prefix(p1, p2)|
if Θ is encompassing

∞ otherwise,

where P leg
valid is the set of all valid legal paths in Θ and

prefix(p1, p2) is the longest common prefix of the paths p1
and p2. The objective of a design algorithm is to find an op-
timal design tree Θ∗ such that WCD(Θ) is minimized (i.e.,
for all Θ ̸= Θ∗, WCD(Θ∗) ≤ WCD(Θ)).

Block-Based Pruned-Reduce
The seminal paper on GRD introduced two algorithms for
finding an optimal design with the minimum WCD (Keren,
Gal, and Karpas 2014). The first algorithm is a breadth-first
search (BFS) called exhaustive-reduce, and the second al-
gorithm extends exhaustive-reduce with pruned-reduce, a
pruning rule that avoids expanding nodes that cannot reduce
the WCD. This section presents a new version of pruned-
reduce for block-level GRD problems.

First, we devise a BFS to explore the space of design trees.
Initially, the queue in the BFS contains Θ0 = {broot}. In
each iteration, the BFS extracts the first design tree Θ from
the queue. If Θ is encompassing (i.e., all goals are reachable
in Θ) and WCD(Θ) < WCD(Θ∗) where Θ∗ is the current
best design tree, the BFS sets Θ∗ to Θ. Next, if Θ is par-
tial, the BFS creates a new design tree Θ′ for every feasible
block for every open regional vertex in Θ, and adds Θ′ to
the end of the queue. The BFS continues until the queue is
empty and then returns Θ∗ whose WCD(Θ∗) is minimum.
The algorithm’s time complexity is O(mh), where m is the
maximum number of regional vertices in a block and h is
the maximum height of design trees. The pseudocode of the
BFS can be found in the technical appendix.

Pruned-reduce is an effective pruning rule for GRD algo-
rithms. According to Theorem 5 in (Keren, Gal, and Karpas
2014), a successor node in a BFS with pruned-reduce is cre-
ated only for actions that appear in the legal paths that yield
the WCD. However, we cannot directly apply pruned-reduce
to block-level GRD due to two issues. First, pruned-reduce
is applicable only when modifications do not add new ac-
tions to the goal recognition model because the new edges
in the search space could increase the WCD. However, when
a block substitutes for a region, the block can contain new
edges that are added to the search space. Second, even if a
block b does not contain any action that can modify the le-
gal paths that yield the WCD, some of its possible subblocks
may contain such action. Therefore, it is necessary to look
into the possible design subtrees of b to decide whether b can
reduce the WCD.

Based on our definition of blocks and regional vertices,
the first issue does not exist. Since regional vertices do not
invalidate any legal paths, a regional vertex can be consid-
ered an empty search space that allows legal paths to pass
through. When we substitute a block b for a regional vertex
v, the “new” edges in b still permit the legal paths that rely
on the edges to pass through. By contrast, if an edge e in a
legal path p is missing in b and e does not present in some
possible subblocks of b even e is in the subpath of p that lies
inside b, the legal path will be invalidated. Therefore, the ef-
fect of the substitution is like removing these missing edges
from the search space covered by the regional vertex. When
the BFS extends the first design tree Θ in the queue where Θ
is partial and has some open regional vertex v, the substitu-
tion of a feasible block b ∈ dom(v) for v is like the removal
of these missing edges in b simultaneously. If an edge e in a
legal path p is missing in b and e presents in some possible
subblocks of b, the BFS will later expand the design sub-
trees that contain these possible subblocks of b unless these
design subtrees are pruned.

Possible Invalidation of Legal Paths
To address the second issue, we consider the exact con-
dition under which a block could remove some actions
in legal paths. A block b with an extended search space
G = (V, V r, E,Er) supports a path p if and only if for all
(v, v′) ∈ edges(p) s.t. v ∈ V , (v, v′) ∈ (E ∪Kout). That is,
if the start vertex of an edge in p is in G, the edge should also
be in G or Kout. Note that b still supports p even if no edge
in edges(p) has a start vertex in V . By contrast, b invalidates
p if and only if b does not support p. More precisely,

Definition 2 b invalidates a legal path p if and only if there
exists (v, v′) ∈ edges(p) s.t. v ∈ V but (v, v′) ̸∈ (E∪Kout).

If b invalidates p and b is added to a full design tree Θ, p
cannot exist in G(Θ) due to the missing edges in b.

Even if a block b does not invalidate a path p, some of the
possible subblocks of b may still invalidate p if p has edges
that enter the regional vertices of b. Hence, the exact con-
dition under which a block will certainly invalidate a legal
path p regardless of the choice of the design subtree of b is:

Definition 3 A block b necessarily invalidates p if and only
if there exists at least one subblock b′ in every possible de-
sign subtree Θ(b) such that b′ invalidates p.

We can use necessary invalidation for pruned-reduce:
when the BFS creates a new design tree Θ′ = Θ∪{b} where
b ∈ dom(v) for an open regional vertex v in Θ, the BFS
chooses not to add Θ′ to the queue if b does not necessar-
ily invalidate the legal paths that yield the WCD in Θ since
Θ′ cannot reduce the WCD. In fact, WCD(Θ′) = WCD(Θ)
according to Theorem 5 in (Keren, Gal, and Karpas 2014).

However, it is costly to check the condition of necessary
invalidation since this involves an enumeration of all possi-
ble design subtrees of b. Hence, we propose a weaker con-
dition that can be computed quickly. A block b necessarily
supports a path p if and only if all the blocks in all possible
design subtrees of b support p. By contrast, b possibly inval-
idates p if b does not necessarily support p. More precisely,
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Definition 4 A block b possibly invalidates a legal path p if
and only if there exists a design subtree of b in which there
exists a block that invalidates p.

We can precompute the set Binvalid(p) of blocks that pos-
sibly invalidate a legal path p ∈ P leg . Initially, Binvalid(p)
is empty for all p ∈ P leg . For all block b ∈ Ball,
find P leg

invalid(b) ⊆ P leg , which is the subset of legal
paths invalidated by p according to Definition 2. For every
p ∈ P leg

invalid(b), we add b and all blocks in ancestor[b] to
Binvalid(p). Finally, we obtain Binvalid(p) for every p ∈ P leg .

We use Binvalid
wcd =

⋃
p∈Pwcd

Binvalid(p) for pruned-reduce,
where Pwcd is the current set of legal paths that yield the
current minimum WCD. As shown in its pseudo-code, the
BFS prunes the new design tree Θ′ = (Θ ∪ {bk}) if bk is
not in Binvalid

wcd . If Θ′ is not pruned, bk possibly invalidates
the legal paths that yield the WCD but does not necessarily
invalidate these legal paths, and Θ′ may or may not reduce
the WCD. However, it is safe to keep more design subtrees
in the queue so that the BFS can later find out whether some
extensions of these design subtrees can reduce the WCD.

Pruning Design Subtrees
In this section, we devise a new pruning rule to avoid the
expansion of the design subtrees for some regional vertices.

The Lower and Upper Bounds of Relative WCDs
Let P be a set of subpaths of legal paths that go through the
extended search space of b s.t. all subpaths in P enter b from
the same entry v1 of b and exit b from some exits of b. We
combine the subpaths in P to form a legal path tree T by
merging the longest common prefix prefix(p1, p2) of every
pair of subpaths (p1, p2) in P . The root of T is v1, whereas
the terminal vertices of T are some exits of b. We say the last
vertex of prefix(p1, p2) a junction in T for any p1, p2 ∈ P .

We want to compute the lower and upper bounds of the
relative WCD of every vertex v in T regardless of design
trees. The relative WCD is defined as follows:

Definition 5 The relative WCD of a vertex v in a legal
path tree T for a given design tree Θ is RWCD(Θ, v) =
WCD(Θ, P ′)+1, where P ′ is the set of subpaths in the sub-
tree T ′ of v in T such that every p′ ∈ P ′ is a path from v to
a terminal vertex in T ′ and p′ is valid in Θ.

If v is the initial vertex vroot and the legal path tree T is
formed by P leg , we have WCD(Θ) = RWCD(Θ, vroot)−1.

Suppose the relative WCDs of the terminal vertices of T
for a design tree Θ are given. We can recursively compute
the relative WCDs of the internal vertices of T for Θ as fol-
lows. Let P ′ ⊆ P be the set of subpaths that are valid in Θ.
Let T ′ be a legal path tree formed by merging the subpaths
in P ′. For every v ∈ (T \ T ′), RWCD(Θ, v) is undefined
since v is unreachable from v1 in Θ. The relative WCD of a
vertex v in T ′ is:

RWCD(Θ, v) = (3){
1 + maxv′∈children[v] RWCD(Θ, v′) if |P ′(v)| > 1
0 otherwise,

where children[v] is the child vertices of v in T ′ and P ′(v)
is the set of paths in P ′ s.t. v ∈ p ∈ P ′. Note that P ′(v)
is non-empty since v is in T ′. Since RWCD(Θ, v′′) is given
for every terminal vertex v′′ in T ′, we can use Equation 3
to compute RWCD(Θ, v) for every internal vertex v in a
bottom-up fashion by depth-first search. If |P ′(v)| > 1, the
paths in P ′(v) cannot be distinguished at v yet, and hence
the relative WCD of v is one plus the maximum of the rela-
tive WCDs of its children. If |P ′(v)| = 1, there is only one
path p in P ′ that goes through v, and p can be identified at v
and the relative WCD of v is 0.

If we do not know the relative WCDs of the terminal ver-
tices of T ′ given a design tree Θ, we cannot calculate the
relative WCDs by Equation 3. However, if we are given
the lower bound Li and the upper bound Ui of the relative
WCDs of every terminal vertex vi in T , we can use Equa-
tion 3 to compute the lower and upper bounds of the relative
WCDs of the internal vertices in T . Let Bsub(b) be the set
of all possible subblocks of b. Bsub(b) can be constructed
by depth-first search as described previously. Let Pmin ⊆ P
be the subset of subpaths in P that are not invalidated by
any block in Bsub(b). Let Tmin be the legal path tree formed
by merging the subpaths in Pmin. Since Pmin is the smallest
set of subpaths in P that is not invalidated by any block in
any design tree, the relative WCDs of every internal vertex
vj ∈ Tmin computed by Equation 3 using Li as the relative
WCDs of every terminal vertex vi is the lower bound Lj of
the relative WCD of vj in any design tree. For every vertex
vj in T but not in Tmin, we set the lower bound Lj of the
relative WCD of vj to 0. By contrast, since P is the largest
set of subpaths before considering any invalidation, the rel-
ative WCDs of every internal vertex vj ∈ T computed by
Equation 3 using Ui as the relative WCDs of every terminal
vertex vi is the upper bound Uj of the relative WCD of vj in
any design tree. The technical appendix contains an example
illustrating the calculation of the lower and upper bounds.

The calculation of Lj and Uj depends on the Li and Ui

of every terminal vertex vi in T . Both Li and Ui can be
calculated by Equation 3 using the lower and upper bounds
of the relative WCDs of the vertices children(vi) in the legal
paths that go through vi. If we compute the bounds of the
relative WCDs of the blocks in the hierarchical design model
in a top-down fashion, parent[b] of a block b is evaluated
before b. Then we can obtain the lower and upper bounds of
the relative WCDs of the vertices in children(vi) from V out

of the regional vertex v(b) in parent[b].

Design Subtree Pruning Rule
We can use the lower and upper bounds of relative WCDs in
b to avoid the expansion of the design subtrees in b. Let Li

and Ui be the lower bound and the upper bound of a vertex
vi in T formed by a set P of subpaths of legal paths that go
through the extended search space of b. Let T compact be the
compact path tree of T . T compact is like T except that some
ordinary vertices in T are replaced by regional vertices in
b when these ordinary vertices lie inside these regional ver-
tices. Due to space limits, we put the discussion on how to
construct T compact from T in the technical appendix. First,
for every junction v in T , if there are v1, v2 ∈ children(v)
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such that L1 > U2, we mark all regional vertices in the
subtree of v2 in T compact as “pruned”. For every regional
vertex vr that is marked as “pruned”, if all instances of
vr in T compact are also marked as “pruned”, we insert vr
into a set PrunedRegions(b). Then, the BFS prunes the de-
sign subtrees by not extending any open regional vertex in
PrunedRegions(b). We can avoid extending these regional
vertices because the relative WCD of v2 is always lower than
the relative WCD of v1 regardless of the design subtrees
of the regional vertices in PrunedRegions(b). Therefore, the
vertex that yields the minimum WCD will not be found in
the subtree of v2 in T . Hence, there is no need to expand the
design subtrees of the pruned regional vertices in the subtree
of v2 in T . If we can avoid expanding some large design sub-
trees, the GRD algorithms can speed up tremendously. The
pseudocode of the BFS with the design subtree pruning rule
can be found in the technical appendix.

Empirical Evaluation
We conducted two experiments to evaluate the pruning rules
and compare the BFS with a local search algorithm. The
local search algorithm is based on the min-conflict heuris-
tics (Minton et al. 1992; Sosič and Gu 1994), a highly effec-
tive heuristics for constrained optimization problems, and it
can return a suboptimal design tree quickly. The local search
algorithm’s pseudocode can be found in the technical ap-
pendix. Experiment 1 compared the local search algorithm
with the original BFS in (Keren, Gal, and Karpas 2014) and
our BFS. Experiment 2 evaluated the performance of the
pruned-reduce and the design subtree pruning rule.
Experimental Setup We adopted four domains in the In-
ternational Planning Competition: LOGISTICS, GRID, DE-
POTS, and DRIVERLOG. We selected these domains because
we could easily add hierarchical design models to them. For
each domain, we implemented a problem generator that can
also generate a hierarchical design model for each prob-
lem instance. In each domain, we generated 30 problem in-
stances of different sizes, and for each problem instance, we
generated n goals, where 2 ≤ n ≤ 10 and n increases with
the problem size. Then, we used a planner called Fast Down-
ward (Helmert 2006) to find a legal plan and the correspond-
ing legal path for each goal. We randomly deleted some ac-
tions on the legal plans and ran Fast Downward again to
find legal plans that were slightly different from the pre-
vious ones. Ultimately, the number of legal paths in P leg

was around 5 × n. In Experiment 1, we used three GRD
algorithms: 1) the original BFS with pruned-reduce as de-
scribed in (Keren, Gal, and Karpas 2014), 2) our BFS that
utilizes hierarchical design models and uses both pruned-
reduce and design subtree pruning, and 3) the local search
algorithm with design subtree pruning and a pruned-reduce-
like heuristic. We ran the algorithms to solve the problem
instances and reported the average execution times and the
average minimum WCDs in Tables 1. In Experiment 2, we
ran our BFS in three scenarios: 1) without pruning rules,
2) with pruned-reduce only, and 3) with both pruned-reduce
and design subtree pruning. We ran the algorithm to solve
the problem instances and reported the average execution
times in Table 2. Both experiments were conducted on an

Original BFS Our BFS Local Search
Time WCD Time WCD Time WCD

LOGISTICS 23.67 8.0 2.48 8.0 0.43 8.5
DEPOTS 17.29 4.2 0.80 4.2 0.24 4.2
GRID 37.64 8.5 3.24 8.5 0.52 8.6
DRIVERLOG 16.80 7.7 0.77 7.7 0.15 7.9

Table 1: The average execution times of the BFS (in second)
and the average minimum WCDs in Experiment 1.

No Pruning Pruned-reduce P.R. + D.S.P.
LOGISTICS 20.80 2.61 2.48
DEPOTS 5.25 0.89 0.80
GRID 33.02 3.55 3.24
DRIVERLOG 5.17 0.82 0.77

Table 2: The average execution times of the algorithms (in
second) in Experiment 2.

Apple laptop with an M1 CPU and 16GB RAM.

Results In Table 1, we can see that our BFS with pruned-
reduce and design subtree pruning outperforms the original
BFS with pruned-reduce by around an order of magnitude.
Hence, our hierarchical design model can substantially re-
duce the size of the search space. The local search algorithm
was much faster than the original BFS and our BFS, whereas
its average minimum WCDs were not much larger. In Ta-
ble 2, we can see that both pruning rules can speed up the
BFS, but the performance improvement from design subtree
pruning was much smaller than that from pruned-reduce.
The effectiveness of design subtree pruning depends on how
many design subtrees are pruned and how large the pruned
design subtrees are. Perhaps there were not many junctions
in the legal path trees that satisfy the condition of the de-
sign subtree pruning rule in our hierarchical design models.
Therefore, the performance gain of the design subtree prun-
ing rule is less than that of block-based pruned-reduce.

Conclusions and Future Work
In this paper, we introduced the concept of blocks, which
allows us to enforce some design constraints among modifi-
cations in deterministic GRD. Based on blocks and regions,
we defined a hierarchical design model that can greatly re-
duce the search space of GRD problems. Our block-based
prune-reduce is highly effective, whereas the effectiveness
of the design subtree pruning rule depends on the locations
of junctions in the legal path trees and the size of the design
subtrees. Despite its name, the design subtree pruning rule
is also applicable to non-hierarchical design models, which
can be viewed as hierarchical design models with one layer
of blocks, each of which contains exactly one modification.
For many years, pruned-reduce has been the only pruning
rule we know for GRD. Our design subtree pruning rule is
another pruning rule for hierarchical and non-hierarchical
design models. Block-level GRD offers a new way to think
about the structure of environments for GRD. In the future,
we intend to combine our hierarchical design model with hi-
erarchical plans in HTN planning and extend our model with
sensing actions for partial observability.
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