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Abstract
Knowing a prerequisite structure among skills in a subject
domain effectively enables several educational applications,
including intelligent tutoring systems and curriculum plan-
ning. Traditionally, educators or domain experts use intuition
to determine the skills’ prerequisite relationships, which is
time-consuming and prone to fall into the trap of blind spots.
In this paper, we focus on inferring the prerequisite structure
given access to students’ performance on exercises in a sub-
ject. Nevertheless, it is challenging since students’ mastery of
skills can not be directly observed, but can only be estimated,
i.e., its latency in nature. To tackle this problem, we propose
a causal-driven skill prerequisite structure discovery (CSPS)
method in a two-stage learning framework. In the first stage,
we learn the skills’ correlation relationships presented in the
covariance matrix from the student performance data while,
through the predicted covariance matrix in the second stage,
we consider a heuristic method based on conditional indepen-
dence tests and standardized partial variance to discover the
prerequisite structure. We demonstrate the performance of the
new approach with both simulated and real-world data. The
experimental results show the effectiveness of the proposed
model for identifying the skills’ prerequisite structure.

Introduction
With the burgeoning development of online learning plat-
forms, a large amount of data on students’ learning perfor-
mance are accumulated, which provides a good opportunity
for better education, e.g., educational data mining (EDM).

A crucial educational task in EDM is skill prerequisite
structure discovery, aiming to dig out the relations among
skills that have strict constraints on the order in which skills
should be mastered (Chen, González-Brenes, and Tian 2016;
Han, Yoon, and Yoo 2017). Obtaining the skills prerequisite
structure is pivotal for a variety of educational applications,
such as intelligent tutoring systems, student cognitive model-
ing, and curriculum planning. For example, it is superfluous
to provide students with activities to solve linear equation
exercises if they have not mastered fractions or other key
prerequisite skills (Brunskill 2011).

Usually, building a skill order in a given subject domain is
often hand-engineered by educators or experts (Liang et al.
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Figure 1: An example of the process to solve a fraction-
subtraction exercise by applying three skills.

2017). But making the learning sequence choices is less than
straightforward, because the experts may be susceptible to
the “blind spot” (Nathan and Koedinger 2000), and some
relationships may be neglected due to their non-intuitive
structure (Chen, González-Brenes, and Tian 2016). Instead,
some data-driven methods are made to discover prerequisite
structures from student performance data, e.g., data likeli-
hood (Brunskill 2011; Han, Yoon, and Yoo 2017), association
rule mining (Chen, Wuillemin, and Labat 2015), and struc-
tural maximization (Chen, González-Brenes, and Tian 2016).
However, such methods either focus on pairwise relationships
or are labor-intensive and rarely available in practice.

Intuitively, if skill A is a prerequisite to skill B, then A
can help students to learn B, thus A might be considered as
a cause of B. Considering the example in Fig. 1, learning
how to separate a whole number from a fraction (S1) can
deepen the understanding of fraction properties, which further
aids in mastering fraction operations, such as converting a
whole number to a fraction (S2). Hence, S1 can be respected
as one of the causes of S2. Regardless of the interpretation,
prerequisite and causal relationships share similar conditional
independence in the data (Scheines, Silver, and Goldin 2014).
Therefore, we can adapt techniques used for causal structure
learning to discover prerequisite relationships

Unfortunately, toward this goal, there are still some chal-
lenges. A major obstacle is that the variables of interest are la-
tent/unmeasured. Although the relationships can be estimated
by observing the student’s performance on exercises that refer
to these skills, most causal learning-based approaches either
are originally designed to estimate causal effects between the
observed variables or mainly focus on the pure measurement
model (Silva et al. 2006), while in our domain, exercises usu-
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ally load on more than one skill. In addition, data deficiency
in student response logs commonly occurs because there exist
some exercises that the students have never encountered.

To tackle this problem, in this paper, we propose a causal-
driven skill prerequisite structure discovery (CSPS) model
that primarily works through a two-stage framework. In the
first stage, we model skills and exercises as latent variables
and observed variables, which are jointly combined via a
proposed linear-Gaussian latent variable model (LGLVM).
Using Bayes’ theorem, the covariance matrix of skills that
implicitly contains the correlation relationships is produced.
Given the covariance matrix, in the second stage, we pro-
pose a heuristic method with the causal Markov and faithful-
ness conditions to learn the skills’ prerequisite structure. The
method contains two phases, the former designs the neighbor
search (NB-Search) algorithm, which iteratively finds out the
neighbors for each skill, aiming to form the undirected skele-
ton of the skills’ structure; and the latter proposes a direction
search based on the standardized partial variance (DS-SPV)
algorithm for orienting edges. The virtue of CSPS is that it
can handle not only the data deficiency of students’ response
logs but also the binary scores of objective exercises and
the continuous scores of subjective problems simultaneously.
The main contributions are listed as follows:

• We propose a causal-driven framework (CSPS) with full
structure optimization and high efficiency to infer skill
prerequisite structures from students’ performance data.

• We develop LGLVM to extract latent skills’ partial corre-
lation from observed performance on exercises and design
the NB-Search algorithm and DS-SPV algorithm to build
the skills’ skeleton and orient the edges, respectively.

• We compare CSPS against all student data-based methods
in recent years, including most prototypical approaches.
The experimental results show the CSPS’ ability to learn
skill prerequisite structures.

To the best of our knowledge, this work is the first at-
tempt to both discover the skill prerequisite structure based
on causal structure learning algorithms and demonstrate the
model’s effectiveness in real-world data sets.

Related Work
Prerequisite Structure Learning
The design of data-driven methods to learn skill prerequi-
site structures from student performance data is explored in
multiple works. Prior work by (Desmarais and Pu 2005) in-
vestigates prerequisite relationships between questions; while
it does not consider the items’ mapping into skills (Q-matrix).
Benefiting from the Q-matrix, authors use the data likeli-
hood (Brunskill 2011) or association rule mining (Chen,
Wuillemin, and Labat 2015) to seek skills’ pairwise prereq-
uisites. Unfortunately, the local approaches fail to uncover
the global structure. To address this issue, several advanced
methods are proposed, including the structural maximiza-
tion (Chen, González-Brenes, and Tian 2016), the Bayesian
estimation (Han, Yoon, and Yoo 2017), and the restricted
Bayesian inference (Saarinen, Cater, and Littman 2020).
However, establishing the structure by tentatively adding

a precondition relationship between any two skills is labor-
intensive and rarely available in practice.

In addition, Scheines, Silver, and Goldin (2014) introduce
causal structure discovery algorithms for the prerequisite
learning task. Despite the good performance in customized
simulated data, it does not give an off-the-shelf solution not
only because the model is not evaluated in real-world data,
but also because the method can not handle cases where there
are few exercises per skill. Notwithstanding, the study hints
at a way for us to study the skill prerequisite relationships.

Bayesian Network Learning and Causal Structure
Discovery with Latent Variables
Historically, Bayesian networks have been useful to model
skill prerequisite structures (Mislevy et al. 1999; Käser et al.
2014). Instead of learning pairwise relationships, Bayesian
networks aim to model a full structure. Although discovering
the structure of a Bayesian network is NP-hard (Chicker-
ing 1996), there are three types of heuristic learning tech-
niques: constrained-based models (e.g., PC (Spirtes et al.
2000) and PC-CS (Marella and Vicard 2022)), search-and-
score methods (e.g., K2 (Cooper and Herskovits 1992) and
MAHC (Constantinou et al. 2022)), and hybrid approaches
(e.g., MMHC (Tsamardinos, Brown, and Aliferis 2006) and
CCHM (Chobtham and Constantinou 2020)).

Many learning algorithms that are designed for discrete
variables can not be directly applicable in the presence of
continuous variables. To remedy the void in the continuous
domain, various algorithms are developed, including TC (Pel-
let and Elisseeff 2008), NOTEARS (Zheng et al. 2018), and
DAG-NoCurl (Yu et al. 2021). The above algorithms work
under the assumption that variables are Gaussian, which is a
special case of the structural equation model (SEM) (Pearl
2000). Beyond the usual focus of structure learning among
observed variables, SEM is also widely used for causal struc-
ture discovery with latent variables. In SEM, some efforts are
made to discover a measurement model (Silva et al. 2006;
Bandalos and Finney 2018), and others are introduced to learn
relations between latent variables in a structural model (Cui
et al. 2018; Rahmadi, Groot, and Heskes 2019).

The CSPS Model
We first describe the learning task, followed by an overview
of our solution. After that, we detail the CSPS model.

Skill Prerequisite Structure Learning Task
Given an exercise set Ex = {Ex1,Ex2,⋯,ExN} and a skill
set Sk = {Sk1,Sk2,⋯,SkK}, we have a question matrix
(Q-matrix) Q ∈ RN×K, where Qnk = 1 denotes Exn is
related to Skk, and zero is not. Also given a student set
St = {St1,St2,⋯,StD}, all students’ performance on exer-
cises are recorded in a response log, where the scores are
normalized into values in [0,1]. Note that students’ perfor-
mance may contain missing values since there exist some
exercises that the students have never done. Given a student
response log and the corresponding Q-matrix, we aim to learn
potential prerequisite structures among skills.
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Framework Overview
Fig. 2 describes the process for discovering the skill prereq-
uisite structure, and we focus on the first two stages.
(Left) Given the student response log and the Q-matrix (top
left), we first use latent variables and observed variables to de-
note the skills and exercises, respectively. Next, we propose
a linear-Gaussian latent variable model (LGLVM), in which
each observation is assigned a linear Gaussian distribution
based on the latent skills (middle left). The corresponding
fitted parameters in the model contribute to forming the co-
variance matrix of skills, which sets the stage for searching
the skill prerequisite structure (bottom left).
(Middle) Armed with the covariance matrix, for each skill,
we develop a heuristic method to explore its prerequisite rela-
tions with other skills, which forms the subgraph of the pre-
requisite structure. The method relies on two search phases:
the skeleton search and the direction search. The former finds
potential neighbors for each skill and the latter determines
directions between the target skill and its neighbors.
(Right) We construct the skill prerequisite structure by com-
bining all the fragments, each of which is the directed sub-
graph of one skill with its neighbors.

Skill Correlation Relationships Recovery
In the first stage, we formalize LGLVM, of which the param-
eter learning details refer to the supplemental material.

For a specific student, we cannot directly observe his/her
mastered state of skills; fortunately, the student’s performance
on exercises provides clues to their knowledge states. Let
Z = [Z⊺1 , Z

⊺
2 ,⋯, Z

⊺
K]
⊺

be the latent variables, where Zk is a
multidimensional latent variable representing the skill Skk.
We choose a Gaussian prior that Zk ∼N (µk, Ik), where Ik
is an identity matrix. We set the number of dimensions for
Zk to be T, i.e., µk ∈ RT×1 and Ik ∈ RT×T. Hence, the joint
probability distribution of Z is a multivariate Gaussian as

P (Z) =N (Z ∣ µZ, I) , (1)

where µZ = [µ
⊺
1,µ

⊺
2,⋯,µ

⊺
K]
⊺
, I = diag(I1, I2,⋯, IK).

Also let O = [O1,O2,⋯,ON]
⊺ be the observed variables,

where On is the observed variable of a student’s performance
on Exn. Based on the latent variables Z, the joint probability
distribution of the observed variables O is built by assuming
that there exists a linear mapping from the space describing
the skills to the numerical performance scale, which gives

P (O ∣ Z) =N (O ∣Q⊙WZ +Φ,Θ) . (2)

In Eq. (2), W is a loading matrix, where Wnk is the 1×T
vector, indicating the average proficiency level of students
on Skk with respect to Exn. Note that Wnk ≠ 0 if and only
if Qnk ≠ 0. Φ = [ϕ1, ϕ2,⋯, ϕN]

⊺ is a constant vector, where
ϕn represents the average complexity of Exn. Θ ∈ RN×N is a
diagonal matrix, where the n-th element on the diagonal is
θn. Given an observed variable On, we have

P (On ∣ Z) =N (On ∣
K

∑
k=1

QnkWnkZk + ϕn, θn) .

Again, we need to underline that given P (Z), P (O∣Z) has
a mean that is a linear function of Z, and a covariance being

independent of Z. Armed with P (Z) and P (O∣Z), using the
Bayes’ theorem, the conditional distribution P (Z∣O) is also
Gaussian, which can be expressed as

P (Z∣O) =N (Z∣µc
Z,Σ

c
),

where µc
Z and Σc are the conditional mean vector and co-

variance matrix, respectively. Here, Σc is given by

Σc
= [I−1 + (Q⊙W )⊺Θ−1(Q⊙W )]

−1
. (3)

It is worth taking a moment to study the covariance matrix
in Eq. (3). Before observing the student performance data
(i.e., O), the skill relations remain unknown, so we assume
that the latent variables are mutually independent, i.e., the
identity covariance matrix in Eq. (1). After the observation
O = o, we obtain an updated distribution for Z, where Eq. (3)
determines the updated covariance matrix Σc of the updated
distribution. Note that Σc is non-diagonal, which indicates
the observations O offer the information of the correlation
relationships among skills via W and Θ.

Skill Prerequisite Structure Learning
In the second stage, we turn the spotlight on modeling the
skill prerequisite structure. To this end, we design a heuristic
method in a two-phase process under the causal Markov
condition and the faithfulness assumption, i.e., the skeleton
search (Phase I) and the direction search (Phase II).
Phase I: Skeleton Search. The skeleton search aims to iden-
tify the undirected subgraph for latent skills, which is based
on the proposed local discovery algorithm called NB-search.
The NB-search on target latent variable Zk provides a way
to select potential neighbors (the set of parents and children)
for Zk, denoted NB(Zk). By employing the NB-search with
every latent variable as the target one, we can identify all the
edges (in an unoriented fashion) for the skills’ network, i.e.,
identifying a skeleton of the skill prerequisite structure.

The basic idea of the NB-search is to invoke a function
for testing whether the target variable Zk is (conditionally)
independent of Zi(Zi ≠ Zk) given the subset Y ⊆ Z, i.e.,
ZiáZk ∣Y holds. The function is given by (Tsamardinos,
Brown, and Aliferis 2006)

Assoc(Zi, Zk ∣ Y) = 1 − p(Zi, Zk ∣ Y),

where Assoc(Zi, Zk ∣ Y) is an estimation of the strength
of association (dependency) of Zi and Zk given Y , and
we assume that ZiáZk ∣Y ⇔ (Assoc(Zi, Zk ∣ Y) = 0).
p(Zi, Zk ∣ Y) is the p-value returned by the Fisher’s z-
test, which uses the covariance matrix Σc in Eq. (3) 1. It
also can be seen that Assoc(⋅) ranges from 0 to 1, and the
value increases monotonically with the decreasing of the
p-value, and reaches a peak as the p-value is zero, which
indicates the strongest connection between the variables.
Given the target latent variable of interest Zk (1≤k≤K), we
present the pseudocodes of the NB-search procedure in Al-
gorithm 1 (Tsamardinos, Brown, and Aliferis 2006).

1We treat the estimated latent covariance matrix (i.e., Σc in
Eq. (3)) as a sample correlation matrix among observed variables,
and then use Σc to make decisions about whether the (conditional)
independence constraints over Σc hold. For this, we intuitively
assume that the sample size of the estimated covariance matrix is D,
which lacks statistical guarantees notwithstanding.
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Figure 2: The new framework includes (a) a linear-Gaussian latent variable model, (b) the skill prerequisite structure search via
two phases, and (c) a combination of the learned subgraphs.

Algorithm 1: The NB-Search Algorithm

Input: Zk, Z, Σc

Output: NB(Zk)

1: Initialize CS = ∅, NB = ∅
2: for i← 1 to K, and i≠k do
3: Calculate Assoc(Zi, Zk)

4: CS← CS ∪ {Zi}

5: end for
6: while CS≠∅ do
7: Find Zi ∈ CS that maximizes the Assoc(Zi, Zk) value
8: NB← NB ∪ {Zi}

9: if ∃Zj ∈ NB and Y ⊆ NB ∖ {Zj , Zk}, s.t. ZjáZk ∣Y

then
10: NB← NB ∖ {Zj} and do not consider Zj

11: end if
12: CS← CS ∖ {Zi}

13: end while
14: return NB(Zk)

Phase II: Direction Search. After identifying the potential
neighbors of Zk (1≤k≤K), a second critical step is determin-
ing the directions between Zk and its neighbors NB(Zk).
Here, we use a heuristic to orient the edges by multiple
tests of the log-ratio of the SPV (Opgen-Rhein and Strimmer
2007), which measures the proportion of the variance that
remains by regressing against all other related variables.

Before calculating the SPV value of Zk, we need to find
all variables that may influence Zk. In this paper, we con-
sider the potential Markov blanket of Zk, denoted PMB(Zk).
The important bonus of the Markov blanket is that it stores
all the information that can not be obtained from any other
variables (Pellet and Elisseeff 2008), which covers all inde-

pendent variables of Zk that are to be regressed away. Hence,
the SPV value of Zk can be calculated as follows

SPVZk
=
σ2
Zk ⋅PMB(Zk)

σ2
Zk

, (4)

where σ2
Zk

is the variance of Zk, σ2
Zk ⋅PMB(Zk) is the partial

variance of Zk given all variables in PMB(Zk). Again, the
two values can be obtained via Σc in Eq. (3).

Based on the SPV, we propose the DS-SPV algorithm to
search the directions between the target Zk and its neighbors
NB(Zk), which contributes to form the (partial) directed
acyclic graph of Zk, denoted G(Zk) (see Algorithm 2). As
observed, the DS-SPV begins with an empty graph G(Zk),
and then adds nodes including Zk and its neighbors into
G(Zk)

2 (lines 1-2). Next, the DS-SPV calls Algorithm 3 to
detect a potential Markov blanket of Zk (line 3), which is fol-
lowed by calculating the SPV value of Zk using Eq. (4) (line
4). After this, the algorithm repeatedly compares the SPV
value between Zk and its neighbors (lines 5-16). Specif-
ically, we use the log-ratio log (SPVZk

/SPVZi) to deter-
mine the edge direction between Zi and Zk. All edges are
directed in such a fashion that the direction of the arrow
from Zk to Zi if log (SPVZk

/SPVZi) > 0 (lines 9-10),
which means that we impose the directionality from the
more “exogenous” variable to the more “endogenous” vari-
able. Similarly, if log (SPVZk

/SPVZi) < 0, the direction is
from Zi to Zk (lines 11-12). Note that the other edges with
log (SPVZk

/SPVZi) ≈ 0 remain undirected (lines 13-14), it
can be interpreted as the existence of the mutual influence of
the two variables in the underlying regression system. The

2In the context of the skills’ prerequisite structure, if not other-
wise specified, variables are also interchangeably called nodes.
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Algorithm 2: The DS-SPV Algorithm

Input: Zk, NB(Zk), Σc

Output: G(Zk)

1: Initialize G(Zk) = (V ,E), where V = ∅, E = ∅
2: V ← {Zk} ∪NB(Zk)

3: PMB(Zk)← PMB-Search(Zk,NB(Zk))

4: Calculate SPVZk
by Eq. (4)

5: for every neighbor Zi ∈ NB(Zk) do
6: NB(Zi)← NB-Search(Zi)

7: PMB(Zi)← PMB-Search(Zi,NB(Zi))

8: Calculate SPVZi by Eq. (4)
9: if log (SPVZk

/SPVZi) > 0 then
10: Add the directed edge Zk → Zi to E
11: else if log (SPVZk

/SPVZi) < 0 then
12: Add the directed edge Zi → Zk to E
13: else
14: Add the undirected edge Zi −Zk to E
15: end if
16: end for
17: return G(Zk)

Algorithm 3: The PMB-Search Algorithm

Input: Zk, NB(Zk)

Output: PMB(Zk)

1: Initialize PMB(Zk) = ∅

2: for every neighbor Zi ∈ NB(Zk) do
3: NB(Zi)← NB-Search(Zi)

4: PMB(Zk)← PMB(Zk) ∪NB(Zi)

5: end for
6: return PMB(Zk)

iterations are repeated until we finish testing all the log ra-
tios, and the partially directed acyclic graph of Zk with its
neighbors is returned (line 17).

Complexity Analysis
We discuss the time complexity of CSPS, which involves
two stages. In the first stage, the total time complexity is
O(#iter×(DNK2)), and the second stage is bounded by
O(K2×(∣NB∣4 +K2)), where #iter is the number of itera-
tions for convergence, and NB is the largest set of neighbors
over all variables. The proposed model is efficient since we
construct the full structure by only considering the Markov
blanket of variables and using local learning operations that
capture (conditional) independence between skills. The anal-
ysis details refer to the supplemental material.

Experimental Study
We evaluate the effectiveness of CSPS in recovering the pre-
requisite structure of skills with both simulated data (Sync1
and Sync2) and real-world data (FrcSub and Alg0506).

Experimental Setup
Evaluation Metrics. Evaluating the prerequisite structure is
non-trivial (Vuong, Nixon, and Towle 2011), here, we use

the metrics that are designed for Bayesian network structure
learning (Xie et al. 2020). Specifically, we use the adjacency
score (F1-AR) and orientation score (F1-OR), which mea-
sure how well we can recover the connections between nodes
and directions of the edges, respectively (Chen, González-
Brenes, and Tian 2016). In both cases, the score reaches its
best value at 1 and worst at 0. The formulas are

TPAR =
#of correct adjacencies in learned network

#of adjacencies in true network
,

TDAR =
#of correct adjacencies in learned network

#of adjacencies in learned network
,

F1-AR = 2 ×
TPAR × TDAR
TPAR + TDAR

,

TPOR =
#of correctly directed edges in learned network

#of directed edges in true network
,

TDOR =
#of correctly directed edges in learned network

#of directed edges in learned network
,

F1-OR = 2 ×
TPOR × TDOR
TPOR + TDOR

.

Baseline Approaches. We consider baseline approaches as:

• EPS-ND (Brunskill 2011) aims to discover the plausible
precondition relationship among each pair of skills.

• CITS (Scheines, Silver, and Goldin 2014) models the
prerequisite relations among skills as a causal graph via
the PC algorithm (Spirtes et al. 2000).

• PARM (Chen, Wuillemin, and Labat 2015) is a data min-
ing approach to discover the (pair) relations of skills.

• CMPD (Chen, González-Brenes, and Tian 2016) learns
the skill prerequisite relations using the Bayesian network
structure learning technique.

• BE-NMC (Han, Yoon, and Yoo 2017) uses the likelihood
ratio test based on the pseudo-Bayes factor to explore the
prerequisite relationship between given two skills.

• DIDACT (Saarinen, Cater, and Littman 2020) is a fast
discrete model that blends the expressive capability and
dependency modeling from the Bayesian network with
the fast inference of item response theory.

Implementation Details. In the following experiments, all
the numerical computations are conducted on an Ubuntu
server with a Core i9-1090K 3.7 GHz and 128 GB memory.
In terms of the baseline implementations, we use the follow-
ing protocol: (a) The authors’ implementation is preferred;
(b) If the condition is not met, we employ the best publicly
available implementation of the model. (c) Otherwise, we re-
implement the model and use our version. For example, we
use the semopy (Igolkina and Meshcheryakov 2020) Python
package to estimate all structural equation models required
in the CITS, and the PC algorithm is implemented in the
Python package pcalg. Unless stated, we report the average
experimental results over 10 repeated trials.

Evaluation
Simulated Test Data. We first conduct a simulated study
to evaluate the effectiveness of CSPS. For this, we engineer
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Sk1 Sk2 Sk3

(a) Sync1

Sk1 Sk2

Sk3

Sk4

(b) Sync2

Figure 3: Two skill structures for generating the simulation
data. Exercise nodes are omitted for conciseness.

two prerequisite structures, each of which encodes different
causal relations between skills in Fig. 3. Since all baselines
except for the CITS are restricted to the implementation with
discrete variables, for each structure, we consider the simu-
lated binary data with different numbers of observations (i.e.,
D = 150,500,1000,2000)3. Thus, we generate 8 synthetic
data sets, i.e., 2 structures × 4 sample sizes.

Table 1 and Table 2 provide the final results, where “-” de-
notes no edges in the learned graph. Here we use the boldface
to highlight the best results, and the top 2 performances are in
the shade. As observed, CSPS consistently obtains the top-2
performance in terms of the adjacency score (F1-AR) and ori-
entation score (F1-OR) in most sample-size cases, especially
achieving the highest value of F1-AR when the sample sizes
are 500 and 2000. Further observations reveal that Bayesian
inference methods including CMPD, BE-NMC, and DIDACT
perform well in both data sets. As for PARM, the rule-based
model performs poorly, we guess the possible reason is that
PARM is limited to discovering pair-wise prerequisite rela-
tionships, instead of constructing the full structure. Taken
together, these results indicate the effectiveness of CSPS in
discovering the skills’ prerequisite structure.
Real-World Test Data. We turn to evaluate CSPS using the
real-world test data (FrcSub), which is made of binary test
responses (right or wrong) of 535 examinees on 20 fraction-
subtraction exercises measuring 8 skills. For a better illustra-
tion, Fig. 4 provides the prerequisite structure of the skills.

We compare CSPS with the baseline approaches in Fig. 5.
Considering the adjacency score first (Fig. 5a), CSPS shows
the best performance in discovering the adjacencies (see F1-
AR). The value of TPAR achieves 0.84, which means that we
recover 84% adjacencies for FrcSub. Note that EPS-ND and
PARM perform well in terms of TPAR, however, they pay a
price for the highest true positive adjacency rate because their
values of TDAR are lower, which means that EPS-ND and
PARM tend to allow for a lot of redundant edges, blurring the
true prerequisite structure. Besides, it is apparent from Fig. 5a
that CITS fails to find out the true prerequisite relationships as
the TPAR approaches zero. The poor results also confirm the
limitation mentioned in (Chen, González-Brenes, and Tian
2016), that is, the technique is not suitable for the real-world
data featured in complexity and variability.

Similar results also hold in terms of the orientation score
in Fig. 5b, which shows our model possesses a satisfying
ability for edge orientations. However, all models do not
perform well compared with the performance in adjacency

3We also compare CSPS with CITS in the continuous version of
the data sets (see supplemental materials).
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Figure 4: Skill prerequisite structure of the FrcSub.
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Figure 5: Comparison of CSPS with the baseline approaches
for discovering the prerequisite relationships in FrcSub.

score. There are two main reasons: first, an edge can only
be correctly oriented if the adjacency has been successfully
discovered; second, since the orientation decisions involve in-
teraction between nearby edges, the adjacency errors from the
nearby edges also produce additional orientation errors. Thus,
in this sense, orientation is more difficult than adjacency.
Real-World Log Data. We now evaluate CSPS with the
public real-world log data of the 2005-2006 curriculum “Al-
gebra I” 4, abbreviated as Alg0506, which is collected from
the interactions between students and computer-aided tutor-
ing systems. After the data processing, the pre-processed data
set includes 438 students, 185 exercises, and 12 skills, and the
prerequisite structure of skills is shown in Fig. 6. Note that
the data density of the student response log is 21.05%, which
means that there are approximately 80% of the exercises that
each student has never done.

In the pre-processed Alg0506, since all baselines except
for CITS are not applicable due to the observations being
continuous, we only experiment on the structure discovery
performance between CSPS and CITS, and Fig. 7 shows
the comparison results. From Fig. 7, we have the following
observations:
(a) The CSPS model obtains good performance for the dis-
covery of the prerequisite structure (see the adjacency score
in Fig. 7a and the orientation score in Fig. 7b, respectively);
(b) Compared with the performance of CITS in FrcSub, the
causal-based model yields similar results, which further con-
firm that the CITS is not applicable to real-world data; and (c)
In FrcSub, CSPS yields nearly 80% and 60% of F1-AR and
F1-OR, of which are only 70% and 45% in Alg0506. The
results can be explained by:

4https://pslcdatashop.web.cmu.edu/KDDCup/
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Model Sample Size (Sync1) Sample Size (Sync2)

150 500 1000 2000 150 500 1000 2000

EPS-ND 1.000±.000 1.000±.000 1.000±.000 1.000±.000 0.667±.000 0.667±.000 0.667±.000 0.667±.000
CITS - 0.800±.000 0.667±.000 0.667±.000 0.120±.193 0.571±.000 0.857±.000 0.667±.000
PARM 0.667±.000 0.667±.000 0.667±.000 0.667±.000 0.461±.000 0.444±.000 0.462±.000 0.667±.000
CMPD 0.800±.183 0.980±.063 0.980±.063 1.000±.000 0.753±.078 0.732±.056 0.699±.061 0.725±.040
BE-NMC 0.667±.000 0.750±.000 0.667±.000 0.667±.000 1.000±.000 0.667±.000 1.000±.000 0.462±.000
DIDACT 1.000±.000 0.667±.000 0.667±.000 0.667±.000 0.600±.000 0.750±.000 0.600±.000 0.667±.000
CSPS 0.930±.163 1.000±.000 1.000±.000 1.000±.000 0.500±.163 0.750±.000 0.750±.000 0.750±.000

Table 1: Comparison of CSPS with the baselines in terms of F1-AR

Model Sample Size (Sync1) Sample Size (Sync2)

150 500 1000 2000 150 500 1000 2000

EPS-ND 0.000±.000 0.667±.000 0.667±.000 1.000±.000 0.444±.000 0.444±.000 0.444±.000 0.444±.000
CITS - 0.000±.000 0.667±.000 0.667±.000 0.120±.193 0.286±.000 0.286±.000 0.444±.000
PARM 0.667±.000 0.667±.000 0.667±.000 0.667±.000 0.461±.000 0.444±.000 0.462±.000 0.667±.000
CMPD 0.577±.310 0.740±.252 0.813±.228 0.640±.237 0.182±.126 0.404±.125 0.431±.091 0.483±.027
BE-NMC 0.800±.000 0.500±.000 0.667±.000 0.667±.000 0.333±.000 0.667±.000 0.333±.000 0.462±.000
DIDACT 1.000±.000 0.667±.000 0.667±.000 0.667±.000 0.600±.000 0.500±.000 0.600±.000 0.667±.000
CSPS 0.623±.094 0.667±.000 0.900±.061 0.667±.000 0.450±.227 0.500±.000 0.700±.105 0.500±.000

Table 2: Comparison of CSPS with the baselines in terms of F1-OR
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Figure 6: Skill prerequisite structure of the Alg0506.

• Alg0506 contains a lot of noise. We observe that some
students may wander around several steps by repeatedly
using some skills. Although the students finished these
exercises finally, the hesitancy impairs the inference of
the true prerequisite relationships.

• There exist some exercises, where the skills are error-
tagging or miss-labeled.

• For complex exercises, there may be multiple solutions.
• Some skills could be mastered if the students have taken

sufficient training, even though some prerequisites are not
previously learned (Chen, Wuillemin, and Labat 2015).

Conclusion
In this paper, we provide a focused study on discovering the
skill prerequisite structure from student performance data.
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Figure 7: Performance comparison of CSPS with CITS in
Alg0506. We do not give the results of the other models
because the observations in Alg0506 are continuous.

Here, we take inspiration from techniques originally designed
for learning causal structures. However, the variables of in-
terest are latent in nature, and it is not immune to the un-
certainty in measuring the mastery status of students’ skills
from performance data. To tackle this problem, we introduce
a model based on the causal structure learning technique
namely CSPS. CSPS works through a two-stage framework,
i.e., skill correlation relationships recovery and skill prereq-
uisite structure learning. We evaluate the CSPS on both the
simulated and real-world data. Experimental results demon-
strate the ability of our model to recover skills prerequisite
structures. Further research can be conducted on investigat-
ing efficient search methods in the context of having more
latent variables, as long as we collect enough exercise data
of students in the knowledge-learning settings.
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