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Abstract

The grounding accuracy of existing video captioners is still
behind the expectation. The majority of existing methods
perform grounded video captioning on sparse entity anno-
tations, whereas the captioning accuracy often suffers from
degenerated object appearances on the annotated area such
as motion blur and video defocus. Moreover, these meth-
ods seldom consider the complex interactions among entities.
In this paper, we propose a comprehensive visual grounding
network to improve video captioning, by explicitly linking
the entities and actions to the visual clues across the video
frames. Specifically, the network consists of spatial-temporal
entity grounding and action grounding. The proposed entity
grounding encourages the attention mechanism to focus on
informative spatial areas across video frames, even if the en-
tity is annotated in only one frame of a video. The action
grounding dynamically associates the verbs to related sub-
jects and the corresponding context, which keeps fine-grained
spatial and temporal details for action prediction. Both entity
grounding and action grounding are formulated as a unified
task guided by a soft grounding supervision, which brings ar-
chitecture simplification and improves training efficiency as
well. We conduct extensive experiments on two challenging
datasets, and demonstrate significant performance improve-
ments of +2.3 CIDEr on ActivityNet-Entities and +2.2 CIDEr
on MSR-VTT compared to state-of-the-arts.

Introduction

Video captioning aims to describe the visual content in the
video using natural language sentences. It remains a chal-
lenging task as it requires a deep understanding of the ob-
jects and their interactions.

Existing methods for video captioning usually employ at-
tention mechanisms, which are expected to ground correct
visual regions for proper word generation. Although these
models have achieved remarkable performance, previous re-
searches (Zhou et al. 2019, 2020; Fei 2022) have shown that
attention mechanisms are incapable of correctly associat-
ing generated words with meaningful visual regions, which
makes the model less interpretable.

To address this problem, recent works (Liu et al. 2017;
Jiang et al. 2022) have exploited region-phrase annotations
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several people are watching a man in a white hat on a tennis court

Figure 1: Examples of ActivityNet-Entities dataset. The
frames with grounding annotations are marked in red. Only
one bounding box per entity is labeled for each video.

in the training stage and designed diverse objective functions
to guide the attention module to ground on appropriate vi-
sual areas. These methods achieve desirable improvements
in still images. However, directly applying these grounding
modules for video captioning is highly challenging due to
the following reasons:

1. Relevant visual regions corresponding to the object enti-
ties can span several frames. However, carefully labeling
the bounding box of each entity frame by frame is labor-
consuming. As is exemplified in Fig. 1, existing datasets
provide only sparse annotations (Zhou et al. 2019), i.e.,
annotating each entity with a bounding box in one frame
of the video. Recent grounded video captioning mod-
els then perform spatial-level grounding within the an-
notated frame (Zhou et al. 2019; Wan, Jiang, and Fang
2022), ignoring the temporal dynamics of the entities
across video frames.

2. Unlike image captioning that emphasizes the prediction
of nouns, video descriptions are featured for the com-
plex actions and interactions of objects. However, due
to the lack of explicit visual annotations of verbs, ac-
tion grounding remains challenging. Several methods (Ye
et al. 2022; Zheng, Wang, and Tao 2020) associate verbs
with global motion features, which may cause consider-
able spatial details missing.

To fully explore the spatial and temporal correlations
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among the video to achieve accurate grounded video cap-
tions, we propose a comprehensive visual grounding net-
work. It performs spatial-temporal grounding on both enti-
ties and actions, aiming to predict accurate nouns and verbs.

For entity grounding (EG), our observation is that the an-
notated entities may suffer from deteriorated appearances in
videos, such as motion blur, inappropriate viewpoint, etc.
As a result, the labeled visual clues may not be informative
enough to generate the target word. In contrast, recognizing
the entities in adjacent frames can be easier (see Fig. 1 for
illustrations). Therefore, we propose dynamic label propa-
gation from the labeled frame to adjacent frames using “de-
tection by tracking” strategy. The generated entity tracklet
enables spatial-temporal entity grounding.

For action grounding, we are motivated by the syntax
triplet (subject, predicate, object), where actions are always
associated with subjects and objects. We therefore automati-
cally generate grounding annotations of actions by referring
to the union of the areas related to the subject, objects and
corresponding context, and encourage the attention mecha-
nism to ground on these areas.

To achieve video grounding, we further propose a soft
grounding supervision (SGS) which encourages the atten-
tion mechanism grounding on informative spatial-temporal
areas softly. The attention mechanism supervised by SGS
enables the generated caption to have a reasonable meaning.
More importantly, SGS unifies entity grounding and action
grounding. The task unification not only simplifies the cap-
tioning architecture, but also improves training efficiency.

We evaluate our method on ActivityNet-Entities and
MSR-VTT (Xu et al. 2016). Both quantitative and quali-
tative comparisons verify that our method significantly im-
proves video captioning. Notably, our method achieves the
CIDEr scores of 51.8 and 60.2 on ActivityNet-Entities and
MSR-VTT, respectively, which are +2.3 and +2.2 higher
than the best competitors.

In sum, the contributions of this work are threefold:

* Propose spatial-temporal entity grounding (EG) which
dynamically focuses on informative spatial areas across
video frames, albeit the entity is annotated in only one
frame. EG strengthens the temporal context and im-
proves visual nouns prediction.

» Propose action grounding that associates the actions to
object-related spatial-temporal areas. To the best of our
knowledge, there has not been any deep exploration of
action grounding for video captioning.

* Propose a soft grounding supervision (SGS) that en-
courages the captioner grounding on informative spatial-
temporal areas softly. SGS simplifies the grounding ar-
chitecture and makes the captioning model interpretable.

Related Work

Video Captioning. Most recent video captioning meth-
ods employ an encoder-decoder framework. The encoder ex-
tracts video representations from a set of video frames, and
the decoder generates the sentence word-by-word according
to the video representation.
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To improve vision-word alignment for precise word gen-
eration, Yao et al. (Yao et al. 2015) introduce a temporal at-
tention mechanism into video captioning, which allows the
decoder to automatically focus on the most relevant frames
conditioned by the LSTM hidden state. Other representa-
tive methods (Yan et al. 2019; Chen and Jiang 2021; Tang
et al. 2022) combine spatial and temporal attention. The spa-
tial attention emphasizes important regions in each video
frame for word generation. Meanwhile, the temporal atten-
tion is used to derive a subset of frames that is correlated to
the video caption. More recently, researchers have exploited
spatial and temporal attention simultaneously to build cross-
modal associations. For example, LSRT (Li et al. 2022)
builds spatial-temporal relationships between adjacent ob-
jects and proposes a coarse-to-fine decoder that attends to
relevant objects spatially and temporally. SwinBERT (Lin
et al. 2022) exploits Video Swin Transformer to encode
spatial-temporal visual tokens and adopt a multimodal trans-
former that simultaneously attends to sparse visual tokens
within the video to perform precise decoding. Although
these works have significantly promoted video captioning, it
is widely acknowledged that existing attention-based mod-
els are not correctly grounded.

Video Grounding. Video grounding aims to localize the
starting and ending time of the target video segment that cor-
responds to the given text. Conventional methods (Liu et al.
2022a) firstly generate candidate proposals, then semanti-
cally match a given query text with each candidate through
video-text matching. Yang et al. (Yang et al. 2022) further
study spatio-temporal video grounding, which aims at lo-
calizing a spatio-temporal tube corresponding to the given
text. Different from video grounding that leverages provided
video captions for spatial-temporal localization, our work
exploits video grounding as an intermediate step to improve
captioning.

Recent efforts have been put into improving visual
grounding for captioning. As a representative work,
GLIPv2 (Zhang et al. 2022) takes visual grounding as model
pre-training and takes image captioning as the downstream
task. Different from GLIPv2, our work directly builds the
connection between video grounding and video captioning.
Other works focus on grounded captioning. Conventional
methods (Jiang et al. 2022; Liu et al. 2017; Zhou et al. 2019)
introduce an auxiliary task that builds correct correlations
between object words and the corresponding image regions
during the caption generation. For example, GVD (Zhou
et al. 2019) explicitly links each noun phrase with the cor-
responding bounding box in one of the frames of a video.
However, it only emphasizes the prediction of objects in the
video, while ignoring the rich actions and events implied in
the video. In addition, GVD only focuses on grounding on a
single sampled frame, ignoring the temporal dynamics of the
objects across frames. In contrast, SAAT (Zheng, Wang, and
Tao 2020) and HMN (Ye et al. 2022) improve action predic-
tion by associating actions with motion features. However,
they only focus on temporal action correspondences, which
disregard spatial details.
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Figure 2: Overview of our comprehensive visual grounding for video captioning. Dynamic label propagation generates entity
and action annotations for all video frames. Soft grounding supervision guides the attention mechanism dynamically attending
to the relevant spatial-temporal regions of the input video for both entities and actions. Dynamic label propagation and soft
grounding supervision are only employed in the training phase, and thus would not impact inference efficiency.

Proposed Method

Overview

The grounded video captioning model takes a sequence of
raw video frames as inputs and outputs a caption Y. We
denote the ground truth sentence with 7" words as ¥ =
(yt, 92, ...,yT). Each noun y' is associated with one bound-
ing box annotation B? that indicates its appearance in one
of the video frames. A captioning model is learned to max-
imize the conditional probability p(Y'|I; ) for each video,
where 6 denotes the model parameters.

The overall framework is shown in Fig. 2. We follow
the conventional encoder-decoder pipeline, which consists
of three modules, feature encoding, video grounding, and
caption generation. The feature encoder extracts grid-level
features to retain spatial-wise information of the video. The
visual grounding module performs spatial-temporal entity
grounding and action grounding, leading to an improved at-
tention mechanism. We introduce dynamic label propaga-
tion to estimate target entities and action areas across the
video frames. Both entity grounding and action grounding
are formulated as a unified task guided by a soft grounding
supervision and are learned to dynamically focus on the rele-
vant spatial-temporal regions. The grounding module finally
forms a high-level impression of the video content and feeds
it for caption generation. We describe each module in detail
as follows.
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Video Encoding

The video encoder detects informative visual clues from the
video. We employ a vision transformer as the video en-
coder to extract the visual feature V and motion feature M.
Specifically, we uniformly sample F' frames from each video
segment. These frames are then processed by the Video
Swin Transformer to compute temporal-aware visual fea-
tures. Each frame f produces N grid feature vectors V =
[v;, vjzc7 vjcV ]. To obtain the visual feature of the video, we
concatenate the feature vectors from all frames, where the
visual feature vector represented as V. = [v1,Va, ..., vg],
where G is the total number of visual grid vectors extracted
from the entire video and G = F' x N. Meanwhile, we uti-
lize Text4Vis model (Wu, Sun, and Ouyang 2023) to extract
grid-level motion features M; = [m}, m?c, ey m?] ] from
the sampled frames. Similar to the visual features, we obtain
the motion features as M = [mj, ma, ..., mpg], where H
denotes the total number of motion vectors extracted from
the whole video.

Video Grounding

Attention Mechanism. The video attention learns to se-
lectively attend to relevant visual areas for sentence gener-
ation. Following GVD (Zhou et al. 2019), we employ the
widely used additive attention on visual features and motion
features, respectively. Formally, at decoding time step ¢, an
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Figure 3: Illustration of dynamic label propagation. (a)Entity label propagation. (b)Action label generation.

attention LSTM first takes the visual feature, motion feature
and word embedding of input word »~! as inputs, and out-
puts a hidden state hi:

hi = LSTM, ([V + M; Wy '], hi™ 1) (1)
where V.= L7 viM = LS m;, W, denotes
the word embedding matrix. Then, conditioned on the hid-

den state ht, we can calculate the attention distribution o
and 3¢ for V and M as follows:

o' = softmax(W [tanh(WV 4+ W hi)])
Bt = softmax(W? [tanh(WgM + Wghﬁ)])

where W, W and W, are the embedding matrices, al =
[af,ab,...,ak] and Bt = [B%, B, ..., BY;] denote the atten-
tion weights for V and M, respectively. For simplicity, we
drop the superscript ¢ in the rest of the paper unless explicitly
mentioned.

@)

Dynamic Label Propagation. As a and 3 are learned as
latent variables without explicit supervision, the attention
models are criticized for the “deviated focus” problem (Fei
2022; Jiang et al. 2022). The most straightforward way to
overcome this issue is to introduce grounding supervision.
However, existing video captioning datasets annotate only
one bounding box for each entity throughout the video se-
quence, which provides insufficient visual clues in case of
small object scale and inappropriate viewpoint. Moreover,
no action annotation is provided. To fully leverage the spa-
tial and temporal correlations among the video, we propose
dynamic label propagation (DLP).

For entities, the DLP generates pseudo box annotations
in adjacent video frames using “detection by tracking” strat-
egy. Specifically, as shown in Fig. 3(a), for each entity with
a labeled bounding box B, we leverage ToMP (Mayer et al.
2022), a high-performing object tracker, to generate a track-
let over the entire video. TOMP eventually outputs a pseudo
annotation By for each unlabeled frame. Each By is also
associated with a score sy ranging from 0 to 1, indicating
the confidence of the identified box. As ToMP may gener-
ate boxes with wrong locations and false positives, we apply
confidence-based thresholding to further reduce potentially
wrong pseudo boxes, i.e., only pseudo annotations with con-
fidence scores higher than s;; are maintained.
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A critical issue for action grounding is the lack of vi-
sual annotations for action words. We observe that action
words are always associated with entities (i.e., subjects and
objects). We therefore automatically generate grounding an-
notations for actions by referring to the union of the areas
related to the entities of the action. The procedure is exem-
plified in Fig.3(b). Formally, for video frame f, given K as-
sociated entities and the corresponding boxes { B}/, we
generate the tightest bounding rectangle that covers these
boxes as the annotation for the action, denoted by B}. We
also generate a confidence score for B} by aggregating the
scores from action-related entities:

3)

The generated action annotations allow us to build entity
grounding and action grounding as a unified model easily.

s = miin{sjc}

Soft Grounding Supervision. Subsequently, we propose
a soft grounding supervision (SGS) that encourages the
attention mechanism grounding on informative spatial-
temporal areas for both entities and actions. We take an
example of grounding an entity word for illustration. The
motivation behind the supervision is that « and S should
be more concentrated on the annotated spatial-temporal ar-
eas with higher sy. To that end, we construct a sequence
of heatmaps I' = [I',T's,...,T'r] on visual grid features,
where I'y = [7}, yj%, e 'yjcv | has the same spatial resolution
as V ;. We encourage the attention model to focus on anno-
tated areas by setting I'; with soft scores':

i {O otherwise @
In order to facilitate calculation, we flatten heatmaps T°
into a vector v = [y1,72, ..., V¢|. Similarly, we construct

heatmaps on motion features and flatten them into a vector
0. The per-word grounding loss function is defined as fol-
lows:

G
Evg = 1Og(z rYjO‘j)

Jj=1

H
—log()_4;8;) %)
j=1

"We set the confidence score of the labeled box B to 1.
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Eq.(5) encourages most grid features located inside an-
notated boxes to output high attention scores. Here y and §
serve as soft voters. B¢ with higher sy is more likely to be
concentrated since a larger «y; enforces a larger o;.

The same loss is applied to action words. The only dif-
ference is to use B}- instead of By for heatmaps generation.
The final loss on L, is the average of losses on all visu-
ally groundable words. In contrast to previous methods (Ye
et al. 2022; Zheng, Wang, and Tao 2020) that refine entity
prediction and action prediction with different designs, our
work unifies entity and action grounding, which simplifies
the captioning architecture and improves training efficiency.

Caption Generation

For caption generation, we apply the widely used attention-
enhanced LSTM decoder. The video grounding module fi-
nally forms a high-level impression of the visual content by
accumulating V and M with the attention weights:

q' =) v+ Bim,

j=1 j=1

(6)

where q' corresponds specifically to individual words being
generated, and is fed into a language LSTM to predict the
next word y;:

hj = LSTMz([q"; hy], hi ") )

y; ~ p' = softmax(Wh) )

where W is the embedding matrix, p* denotes the output
probability distribution of the decoder, and the generated
word y; is sampled from p’.

Training Objectives
We formulate the grounded video captioning as a joint opti-

mization over the language and grounding tasks. The overall
objective function is defined as follows:

L= £cap + >\£vg 9

where L., denotes the caption generation loss, which com-
pares the output sentence with the ground truth. Specifically,
we employ the cross-entropy loss as follows:

T

Leap =— Y log(p'(y'|y™"1)) (10)
t=1

L., 4 corresponds to the soft grounding supervision. A is used

to balance the two types of losses. L, serves as a word-

region alignment regularization, which assists the captioning

model in attending to informative regions.

Experiments
Experimental Setups

Datasets. We conduct our experiments on ActivityNet-
Entities and MSR-VTT. The ActivityNet-Entities not only
contains the video caption annotation of the video but also
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EG DLP AG SGS| B@l B@4 S M C

- - - - 246 31 160 11.7 519
v - - - 250 32 161 11.8 526
v v - - 248 31 160 11.7 530
- - v - | 250 32 160 11.8 528
v - v v 251 33 163 11.8 53.1
v v v - 250 32 162 11.8 535
v v v v |251 33 16.6 119 545

Table 1: Ablation studies on ActivityNet-Entities val set.
B@N, M, S, and C stand for BLEU@N, METEOR, SPICE,
and CIDEr, respectively. The symbol “v"” indicates the in-
clusion of the following component. Bold for the best.

provides the box annotation of the noun phrase in the cap-
tion. The dataset contains 15,000 videos, including 52,000
video segments, and 1 caption annotation for each video
segment. The dataset provides a total of 158,000 valid box
annotations of 432 classes. The MSR-VTT contains 10,000
video clips from YouTube. There are 20 human descriptions
for each video clip. The dataset contains 6,573 samples for
training, 497 samples for validation, and 2,990 for testing.

Evaluation Metrics. Following the standard video cap-
tioning evaluation protocol, we use 5 common cap-
tioning metrics to evaluate the captioning quality, i.e.,
CIDEr (Vedantam, Lawrence Zitnick, and Parikh 2015),
BLEU (Papineni et al. 2002), METEOR (Denkowski and
Lavie 2014), ROUGE-L (Lin 2004) and SPICE (Anderson
et al. 2016).

Implementation Details. For ActivityNet-Entities, we
uniformly sample 10 frames for each video segment. For
MSR-VTT, 32 video frames are sampled from the video
clip. We employ Video Swin Transformer (Liu et al. 2022c)
pre-trained on ImageNet (Deng et al. 2009) to extract visual
features. Besides, we use Text4Vis (Wu, Sun, and Ouyang
2023) model pre-trained on Kinetics-400 (Carreira and Zis-
serman 2017) to extract motion features.

The same model hyperparameters and data preprocessing
step as GVD are adopted. The word embedding size is set
to 512. Empirically, A is set to 0.1. During training, we opti-
mize the model with Adam for 25 epochs. The learning rate
is initialized to be 5e-4 and decayed by a factor of 0.8 every
three epochs.

Ablation Studies

To quantify the impact of different components for video
captioning, we conduct ablation studies on the ActivityNet-
Entities val set.

Effectiveness of Grounding Modules. To show the ef-
fectiveness of the grounding modules, we compare differ-
ent variants of the proposed model. For clarity, we dis-
able the soft grounding supervision. We start from the base-
line model without any grounding modules, then we gradu-
ally incorporate entity grounding (EG) and action grounding
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Figure 4: The impact of sy, on grounded captioning perfor-
mance. A large s;;, indicates high precision but low recall
of the generated annotations. Experiments are conducted on
ActivityNet-Entities val set.

(AG) to examine the effectiveness. As shown in Table 1, per-
forming entity grounding on the labeled boxes solidly pro-
motes the baseline. With dynamic label propagation (DLP),
the entity grounding further improves the captioning perfor-
mance overall metrics substantially, which suggests that the
spatial-temporal entity grounding can exploit more tempo-
ral contexts to better solve video captioning. We also notice
that action grounding alone improves the video captioning
baseline significantly, which verifies that action grounding is
critical for predicting verbs. Finally, when we integrate both
grounding modules together, we obtain a CIDEr of 53.5,
which outperforms the baseline by 1.6, thus demonstrating
the superiority of the proposed grounding model.

The Impact of Label Propagation. We further investi-
gate the importance of the proposed dynamic label propaga-
tion (DLP). Towards this goal, we adjust s, to see how la-
bel propagation impacts video grounding. We notice that en-
tity label propagation with varying s;; achieves consistently
better captioning performance compared with the baseline.
Specifically, when sy, varies from O to 0.5, the performance
monotonically increases. The reason is that a high s, en-
sures the accuracy of generated pseudo annotations, while
the defective annotations may mislead the attention mod-
ule conversely. Then the captioning performance reaches the
peak when s reaches 0.5. Finally, the performance drops
as sy, continues increasing. This is probably due to infor-
mative entities in adjacent frames being filtered as s;;, goes
higher. In an extreme case, setting s, to 1.0 is equivalent to
disabling entity label propagation. In the following experi-
ments, we set sy, to 0.5 if not otherwise specified.

Effectiveness of Soft Grounding Supervision. To ex-
plore the effect of soft grounding supervision (SGS), we
compare it with baseline supervision which treats all gen-
erated annotations as equally important. As reported in Ta-
ble 1, soft grounding further promotes the performance of
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Method B@l B@4 S M C
Mask-TF 229 241 13.7 10.6  46.1
BiLSTM+TA | 22.8  2.17 11.8 102 422
Cyclical 234 243 14.3 10.8  46.6
GVD 23.6 235 14.7 11.0 455
KNN-HAST - 2.61 15.1 11.3 485
IAS 242 276 - 11.3 495
SwinBERT* | 214 1.97 16.2 105 393
VIOLETvV2* | 21.4 1.83 15.2 10.7 385
Ours 248 300 163 11.8 518

Table 2: Comparisons of the state-of-the-art methods
on ActivityNet-Entities test set. * denotes our re-
implementation.

video captioning substantially. Specifically, we achieved a
performance of 54.5 for CIDEr score, which is 4+2.6 higher
than the baseline. Consistent performance boosts are ob-
served on all other metrics. The reason is that soft grounding
reduces the noise brought by generated pseudo annotations.

Comparison with State-of-the-art

Results on ActivityNet-Entities. We compare our model
with several recent methods, including Mask-TF (Zhou et al.
2018), BILSTM+TA (Zhou et al. 2018), Cyclical (Ma et al.
2020), GVD (Zhou et al. 2019), KNN-HAST (Shen et al.
2020), IAS (Wan, Jiang, and Fang 2022), SwinBERT (Lin
et al. 2022) and VIOLETV2 (Fu et al. 2023).

Table 2 shows the detailed comparisons. It is clear that
our model consistently exhibits better performance than the
other competitors in terms of all metrics by a large mar-
gin. To be specific, our method achieves the performance
of 51.8 for CIDEr score, which is +2.3 higher than that of
IAS, the best-performing grounded video captioning model.
We observe similar improvements in other evaluation met-
rics. It is worth noticing that our method achieves more sig-
nificant improvements over recent video captioning models,
e.g., SWInBERT (+9.9 on CIDEr) and VIOLETV2 (+13.3
on CIDEr). The reason is that SwinBERT and VIOLETv2
only employ Video Swin Transformer as the video encoder,
which may lack explicit motion information that is valuable
for predicting the complex actions in ActivityNet-Entities.

Results on MSR-VTT. We further conduct analysis
on the challenging MSR-VTT dataset. As MSR-VTT
does not include any grounding annotations, we employ
GLIPv2 (Zhang et al. 2022), a prevailing open-vocabulary
object detector, to generate the most confidence bounding
box as the seed label for each entity.

Table 3 summarizes the performance of our method and
existing state-of-the-art methods, including MARN (Pei
et al. 2019), OA-BTG (Zhang and Peng 2019),
SAAT (Zheng, Wang, and Tao 2020), ORG-TRL (Zhang
et al. 2020), UniVL (Luo et al. 2020), LSRT (Li et al.
2022), SwinBERT (Lin et al. 2022), HMN (Ye et al.
2022), BME-WCO (Liu et al. 2022b), MELTR (Ko et al.
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Method B@l B4 M R C
MARN - 404  28.1 60.7  47.1
OA-BTG - 414 282 - 46.9
SAAT 79.6 399 2777 612 510
ORG-TRL - 43.6  28.8  62.1 50.9
UniVL - 41.8 289 60.8 500
LSRT - 426 283 61.0 495
SwinBERT 83.1 419 299 621 53.8
HMN 81.3 435 290 627 515
BME-WCO - 40.6  28.1 61.2 534
MELTR - 442 293 624 528
MAN - 413 28.0 614 498
RSFD - 434 293 623 531
VL-Prompt - 432 30.1 62.7 553
VIOLETv2 - - - - 58.0
Ours 848 465 312 646 60.2

Table 3: Comparisons of the state-of-the-art methods on
MSR-VTT test set.

2023), MAN (Jing et al. 2023), RSFD (Zhong et al.
2023), VL-Prompt (Yan et al. 2023) and VIOLETv2 (Fu
et al. 2023). As it can be observed, our method reaches
60.1 in terms of CIDEr and 46.5 in terms of BLEU @4,
surpassing all other approaches significantly. Notably, our
method significantly outperforms HMN (+8.7 on CIDEr
score), which is designed to enhance entity and predicate
generation. Our model also advances UniVL, MELTR and
VIOLETV2 across all metrics, which leverage large-scale
vision and language pretraining. These results solidly verify
the superiority of the proposed method.

Qualitative Results

Fig. 5 showcases qualitative examples of the captions gen-
erated by SwinBERT, IAS and our method. The advantages
of our method can be divided into two primary categories.
Firstly, our method can recognize the entities more accu-
rately. For example, in the first example, the “exercise equip-
ment” is wrongly recognized as “a couch” in SwinBERT and
“a bed” in IAS, while our method depicts the entity more
precisely. In addition, our method provides fine-grained de-
scriptions of the entities, benefiting from the rich tempo-
ral information of the entities across frames. For example,
in the second example, our method enriches “a baby” with
the attribute “smiling to the camera”. Secondly, our method
provides richer and more accurate content about the ac-
tions. As illustrated in the third example, our method pre-
dicts “put makeup”, which is more informative than “hold
up a brush”,“looking off into the distance” provided by other
methods. The reason is that our method is learned to focus
on informative regions related to the subjects to predict ac-
tions. In the last example, our method provides comprehen-
sive description of the actions as “jumps off the beam” and
“lands on the mat”. More examples are presented in the sup-
plementary.
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GT:
Ours:

A small boy is rocking back and forth on a piece of exercise equipment.

A young child is seen sitting on a piece of exercise equipment and looking
to the camera.

Base: A little boy is sitting on a couch.
TAS: A little boy be sit on a bed.
SwinB: A young boy is seen sitting on a couch with a vacuum.

A baby is laughing as he swings in a swing set.
A baby is seen sitting on a swing set and smiling to the camera.
A baby is sitting on a swing set.

A baby be sit on a swing.

Ours:
Base:
IAS:

SwinB: A baby is seen sitting in a swing.

A young girl is seen looking at the camera and leads into her putting
eyeliner on as well as mascara.

Ours: A young girl is seen speaking to the camera and leads into her putting
makeup on her face.

Base: A young girl is seen sitting on a chair and looking off into the distance.

TAS: A woman be see speak to the camera and lead into she hold up a brush
and rub it down.

SwinB:She then puts mascara on her eye and then puts it on her eye.

A woman jumps off the balance beam onto a blue mat.

GT:

Ours: The woman jumps off the beam and lands on the mat.
Base: The girl flips on the beam.
IAS:  The woman then take the stick and walk away.

SwinB: The girl flips and lands on the mat.

Figure 5: Examples of captions generated by our method and
several state-of-the-art methods, as well as the correspond-
ing ground-truths.

Conclusion

In this work, we aim to enhance the accuracy of grounded
video captioning by introducing a comprehensive vi-
sual grounding network. This network comprises spatial-
temporal entity grounding and action grounding. The en-
tity grounding is responsible for directing attention to rel-
evant spatial areas over the entire video, leveraging entity
labels in only one frame of the video. In this meanwhile, the
action grounding dynamically associates actions with rele-
vant subjects and their respective contexts. This association
allows the model to capture fine-grained spatial and tem-
poral details necessary for accurate action prediction. Both
entity grounding and action grounding are guided by a soft
grounding supervision (SGS). SGS encourages the attention
mechanism grounding on informative spatial-temporal areas
softly. More importantly, SGS unifies entity grounding and
action grounding, which simplifies the captioning architec-
ture and improves training efficiency. Extensive experiments
have demonstrated the superiority of our method compared
with the state-of-the-arts.
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