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Abstract

For generative learning tasks, there are three crucial criteria
for generating samples from the models: quality, coverage/-
diversity, and sampling speed. Among the existing generative
models, Generative adversarial networks (GANs) and dif-
fusion models demonstrate outstanding quality performance
while suffering from notable limitations. GANs can gener-
ate high-quality results and enable fast sampling, their draw-
backs, however, lie in the limited diversity of the generated
samples. On the other hand, diffusion models excel at gener-
ating high-quality results with a commendable diversity. Yet,
its iterative generation process necessitates hundreds to thou-
sands of sampling steps, leading to slow speeds that are im-
practical for real-time scenarios. To address the aforemen-
tioned problem, this paper proposes a novel Consistency-
GAN model. In particular, to aid in the training of the
GAN, we introduce instance noise, which employs consis-
tency models using only a few steps compared to the conven-
tional diffusion process. Our evaluations on various datasets
indicate that our approach significantly accelerates sampling
speeds compared to traditional diffusion models, while pre-
serving sample quality and diversity. Furthermore, our ap-
proach also has better model coverage than traditional adver-
sarial training methods.

Introduction
Generative models are evaluated based on three primary per-
formance indicators: sampling quality, diversity, and sam-
pling speed of the generated samples. Upon their introduc-
tion, GANs (Goodfellow et al. 2014; Radford, Metz, and
Chintala 2016; Brock, Donahue, and Simonyan 2018; Wu
et al. 2019; Karras, Laine, and Aila 2019; Karras et al. 2020;
Pang et al. 2021a,b; Sauer et al. 2021; Sauer, Schwarz, and
Geiger 2022) demonstrate remarkable capabilities in gener-
ating realistic and high-quality samples. However, GANs-
generated samples often lack diversity, indicating that the
generator network tends to produce a limited range of pat-
terns from the data distribution during training, thereby fail-
ing to cover the entire data space. This phenomenon is com-
monly referred to as the “model collapse” (Kodali et al.
2017) problem. To address this issue, Salimans et al. (Sal-
imans et al. 2016) propose a method of injecting noise in
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Model High quality Fast sampling High diversity
GANs ✓ ✓ #

DMs ✓ # ✓
Ours ✓ ✓ ✓

Table 1: Comparison of GANs, diffusion models, and our
proposed method in terms of three essential criteria for de-
sired sample generation.

the process of training GANs. This approach introduces a
certain level of randomness in the input of the generator net-
work, enabling the generation of more diverse samples. Nev-
ertheless, noise injection complicates the adversarial train-
ing between the generator and the discriminator, making it
more challenging for them to estimate the gradient during
backpropagation when updating parameters. Consequently,
this can lead to gradient disappearance, gradient explosion,
and other related problems, ultimately affecting the model’s
stability and the effectiveness of the training process.

Diffusion models (DMs) (Ho, Jain, and Abbeel 2020;
Song et al. 2020; Song, Meng, and Ermon 2020; Karras et al.
2022) generate samples by reversing the diffusion process.
In comparison to GANs, diffusion models exhibit signifi-
cant improvements in diversity while maintaining compara-
ble sample quality. The reverse diffusion process empowers
the diffusion models to generate samples with a wide range
of diversity from initial noisy samples. However, due to the
reliance on an iterative generative process, diffusion mod-
els suffer from slow sampling speed, which limits their ap-
plicability in real-time and interactive scenarios. To tackle
this issue, a few attempts have recently been made. For in-
stance, Song et al. (Song, Meng, and Ermon 2020; Song
et al. 2022b,a) propose to expedite the sampling process by
extending the diffusion model to encompass non-Markovian
diffusion processes, while the authors (Wang et al. 2022) in-
corporate the forward diffusion process to introduce Gaus-
sian mixed-distributed instance noise into the adversarial
network. Although these above-mentioned methods can bet-
ter capture the diversity of samples, the iterative generation
process still imposes limitations on sampling efficiency, and
cannot completely eliminate the limitation of slow sampling
speed of the traditional diffusion models.

In light of the above, we propose a new adversarial train-
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ing network, dubbed Consistency-GAN, which is able to
ensure high sample quality, high diversity, and fast sam-
pling speed simultaneously in sample generation. As shown
in Table 1, the proposed Consistency-GAN could address
the limitation of poor coverage (low diversity) in GANs,
as well as the slow sampling speed in diffusion models. In
Consistency-GAN, a novel consistency mapping module is
introduced into the generative adversarial network, which
enables the instance noise to be injected into the adversarial
training process efficiently and safely, thus striking a balance
between model stability and sample diversity. Furthermore,
the consistency mapping module is capable of reversibly
mapping points along the diffusion trajectory of the proba-
bility flow ordinary differential equation (ODE) (Song et al.
2020) back to their origins, which could significantly reduce
the time and computational resources required for learning
diffusion trajectories through iterative generation processes.

In summary, the contributions of this paper are presented
as follows:

• A new adversarial training network, i.e., Consistency-
GAN, is proposed, which is the first work concurrently
satisfying the three essential criteria for desired sam-
ple generation, i.e., high sample quality, high diversity,
and fast sampling speed. Consistency-GAN addresses the
limitation of low diversity in GANs, as well as the slow
sampling speed in diffusion models.

• A novel consistency mapping module is designed, which
efficiently injects instance noise into real and generated
data distributions to improve sample diversity. Further-
more, a conditional discriminator dependent on the map-
ping step is developed to fit the consistency mapping
module, which differentiates the original data distribu-
tion and the generated data distribution perturbed by
noise.

• Qualitative and quantitative experiments are conducted
on multiple real-world image datasets, which demon-
strate the superior performance of the proposed method
over the state-of-the-art GANs and diffusion models, in
terms of sample quality, diversity, and sampling speed.

Related Works
Generative Adversarial Networks
GANs represent a class of generative models specifically de-
signed to learn the underlying distribution of data. This is
accomplished through a min-max game between generator
and discriminator, thereby facilitating the target data distri-
bution. The generator component takes a random noise vec-
tor as input and endeavors to produce synthetic samples that
closely resemble the target data. Conversely, the discrimina-
tor component receives real data samples and fake samples
generated by the generator, with the purpose of accurately
discriminating between them. The two components compete
against each other such that the generator strives for gener-
ating realistic-looking samples that fool the discriminator.

Recently, some GANs have attempted to introduce noise
or penalty terms into the generator and discriminator, in or-
der to regularize the training and mitigate the overfitting

problem. Salimans et al. (Salimans et al. 2016) weaken the
discriminator by introducing label noise, i.e., randomly flip-
ping training labels, so as to perturb the optimal decision
boundary of the generator. Kodali et al. (Kodali et al. 2017)
incorporate an additional gradient penalty term into the ob-
jective of the discriminator to restrain its optimization speed
during training, thus stabilizing the model training. Karras
et al. (Karras et al. 2017; Karras, Laine, and Aila 2019; Kar-
ras et al. 2020) add random noise progressively at different
layers of the generator, which aims to prevent the training
of the generator from converging to local optima. However,
the random noise added by these methods can concurrently
introduce a level of uncertainty in the resulting outputs. This
lack of predictability may prove unfavorable in certain appli-
cation scenarios where users seek meticulous command over
the consistency of the generated outcomes. By contrast, our
consistency mapping module can avoid this problem by di-
rectly adding instance noise to the generated samples during
the adversarial training process.

Diffusion Models

Diffusion models (Ho, Jain, and Abbeel 2020; Song, Meng,
and Ermon 2020; Kingma et al. 2023; Yang et al. 2023;
Meng and Kabashima 2023) consists of two main compo-
nents: the forward diffusion process and the reverse denois-
ing process. The forward diffusion process involves the sys-
tematic addition of Gaussian noise to the data, progressively
transforming it into random noise. In this process, numerous
diffusion steps are performed with Gaussian noise continu-
ously added to the original data. The forward diffusion pro-
cess can be conceptualized as a Markov chain. Whereas, the
reverse denoising process aims to gradually restore the orig-
inal data distribution from a standard Gaussian distribution.

A major drawback of diffusion models lies in the slow
sampling speed due to the large number of iterative sampling
steps. To alleviate this issue, some attempts have recently
been made, including performing knowledge distillation
(Luhman and Luhman 2021), learning adaptive noise plan
(San-Roman, Nachmani, and Wolf 2021; Pei et al. 2020,
2022), introducing non-Markov diffusion process (Song,
Meng, and Ermon 2020; Kong and Ping 2021), and using
a better stochastic differential equation solver (SDE) (Song
and Ermon 2019; Jolicoeur-Martineau et al. 2020; Meng
et al. 2022; Song et al. 2023) for continuous-time mod-
els. Lu et al. (Lu et al. 2022) introduce a fast training-free
solver (Song, Meng, and Ermon 2020; Jolicoeur-Martineau
et al. 2021; Bao et al. 2022) of diffusion ordinary differential
equations (ODEs) (Song et al. 2020; Karras et al. 2022) for
fast sampling by leveraging the semi-linearity of diffusion
ODEs. Most recently, Wang et al. (Wang et al. 2022) pro-
pose a novel Diffusion-GAN model, which utilizes the dif-
fusion chain to generate Gaussian mixed distributed instance
noise and adds it to the real and generated data distributions
during training, so as to stabilize the training process. Al-
though this new way of adding noise mitigates the discrim-
inator over-fitting, it still cannot completely eliminate the
limitation of slow sampling speed in Diffusion-GAN due to
the iterative generation process.
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Figure 1: The flowchart of Consistency-GAN.

The Proposed Method
As illustrated in Figure 1, the proposed Consistency-GAN
model consists of three key modules: the consistency map-
ping module, the generator module, and the step-dependent
discriminator module. Specifically, the first module is used
to add instance noise into both the real and generated data
distributions, while the latter two modules play an adversar-
ial game to generate samples of the target distribution. The
training of Consistency-GAN involves two steps, i.e., con-
sistency mapping training and adversarial training, which
are presented in Algorithm 1.

Consistency Mapping Training
To achieve a more robust and diverse sample generation
task, we introduce a novel consistency mapping module into
the generative adversarial network, which enables the in-
stance noise to be injected into the adversarial training pro-
cess efficiently and safely.

The training process of the consistency mapping module
corresponds to Step I in Algorithm 1. Specifically, the con-
sistency mapping module introduces the SDE (Song et al.
2020; Karras et al. 2022) to simulate the diffusion process of
original data distribution p(x) in continuous-time diffusion
models. Furthermore, it utilizes a score-based model (Song
et al. 2021) to compute the gradient field of data distribu-
tions at each mapping step, thus facilitating effective noise
injection. Then, we use probability flow ODE to solve the
reverse-time SDE, providing trajectories for the data distri-
bution pt(x) at a given moment t,

dxt = [g(x, t)− 1

2
h(t)2∇ log pt(x)]dt, (1)

where g(x, t) is drift coefficient of xt , h(t) is diffusion co-
efficient of xt, ∇ log pt(x) is the score function of pt(x).

For any point xt on the trajectory of probability flow ODE,
our target is to train a function f(·) mapping points on the
same probability flow ODE to the original point, which can
be written as f(xt, t) = x0. We introduce parameter k to
divide the trajectory into k + 1 time points t1, t2, · · · , tk+1,
in each of which we minimize L(·) to ensure the strong con-
sistency of our module function f(·). Parameterizing it with
a neural network as fγ(xt, t), the loss function for training
the consistency module is given as follows:

L(γ, γ−) = E[d(fγ(xk+1 + tk+1z, tk+1),

fγ−(xk + tkz, tk))],
(2)

where z ∼ N(0, I) is the standard Gaussian noise, k ∼
U [1, T − 1] denotes the uniform distribution. x ∼ p(x) is
the initial sample, xk ∼ N(x, t2I), d(·, ·) represents the dis-
tance metric function, γ− denotes the updated value of pa-
rameter γ after each optimization step, and E(·) denotes the
expectation over all relevant random variables. Note that the
mapping function fγ is differentiable, allowing us to mini-
mize the objective function L(γ, γ−) through stochastic gra-
dient descent on the parameter γ. Given a decay rate µ, we
update the parameter γ− using exponential moving average
(EMA) as follows:

γ− ← µγ− + (1− µ)γ. (3)

Subsequently, we use the well-trained consistency map-
ping module to inject instance noise into the generated sam-
ple xg . The mapping process starts from the original sample
x and the generated sample xg , and reaches the desired noise
level after N steps. Samples from the consistency mapping
module can be partitioned based on the current mapping
steps n, and the mixture distribution y represents noisy ver-
sions of real samples and generated samples.
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Algorithm 1: Training of Consistency-GAN
Input: Random noise z ∼ p(z), Original data x ∼ p(x)
Parameter: Initial training parameter θ and γ, Sequence of
time points t1, t2, . . ., tk+1, Inference step N
Output: Generated samples xg = G(z), Noise mixture
samples y = fγ(x, t)

1: Step I: Consistency mapping training
2: k ← 0
3: repeat
4: Sample x ∼ p(x)
5: Sample z ∼ N(0, I)
6: Update γ using Equation (2) and (3)
7: k ← k + 1
8: until convergence
9: Step II: Adversarial training

10: while i <= number of training iterations do
11: Sample noise samples: z ∼ p(z).
12: Sample from original data: x ∼ p(x).
13: Obtain generated samples: xg ∼ G(z).
14: Obtain pretrained consistency module fγ(·).
15: Noise injection:
16: for j = 1 to N do
17: y ← f(x, j)
18: yg ← f(xg, j)
19: end for
20: Update θ in Equation (4).
21: end while

Adversarial Training
Before the introduction of the adversarial training objective
of the proposed Consistency-GAN, we briefly review the ad-
versarial training process of traditional GANs to facilitate
understanding. Given the original data distribution p(x) and
a simple prior distribution p(z), random noise z is sampled
from the prior distribution and inputted into the generator
G to obtain generated samples G(z). Real data samples x
extracted from the original distribution and G(z) produced
by the generator are inputted into the discriminator. The ob-
jective of adversarial training is to enable the discriminator
D to correctly discriminate whether the input comes from
p(x) or G(z), while simultaneously allowing the generator
to generate samples that can deceive the discriminator.

In comparison to traditional GANs, the adversarial train-
ing objective of Consistency-GAN is to train a discriminator
D that is dependent on the number of mapping steps n, and
can distinguish between real and generated noisy perturbed
samples. Additionally, we also aim to train a generator G
that is capable of fitting the real noise sample distribution
to the generated noise sample distribution. The adversarial
training process with the inclusion of the mapping module
corresponds to Step II in Algorithm 1.

Formally, the objective functions for adversarial training
are defined by the following equation,

V (G,D) = Ex∼p(x),y∼f(x)[logD(y, n)]

+ Eyg∼f(Gθ(z))[log(1−D(yg, n))],
(4)

where p(x) represents the true data distribution, n ∼

U [1, N − 1] denotes uniform distribution, and y ∼ f(x) de-
notes our consistency mapping module. The objective func-
tion encourages the discriminator to classify noisy perturbed
samples from the original data as real and those from the
generated data as fake. The generator, on the other hand,
strives to generate samples yg ∼ f(Gθ(z)) that can deceive
the discriminator at each mapping step. The generator’s dif-
ferentiable parameters θ in the objective function can be op-
timized using gradient descent.

During the adversarial training process, random noise is
input into the generator to generate new samples. The in-
stance noise injected through the consistency mapping en-
sures that our discriminator converges in a more robust man-
ner at each training step. The impact of this noise injection
approach on training will be further analyzed in conjunction
with the experimental results in the subsequent sections.

Experiments
Datasets
We conduct a series of experiments on datasets ranging
from low to high resolutions, including CIFAR-10 (32×32)
(Krizhevsky et al. 2009), STL-10 (64×64) (Coates, Ng, and
Lee 2011) and CelebA (256×256) (Liu et al. 2015). The
CIFAR-10 dataset consists of 50, 000 training images with
a resolution of 32×32, while the STL-10 dataset contains
100, 000 images with a resolution of 96×96. During the
data preprocessing stage, we centrally crop the STL-10 im-
ages to a resolution of 64×64. We also partition the CelebA
dataset based on resolution. Subsequently, we select a sub-
set of 30, 000 images of resolutions 256×256 for training
the model.

Parameter Setting
We implement Consistency-GAN using PyTorch. During
training, we utilize a consistent mapping module to map
the features obtained from a pre-trained feature network and
feed them back into the conditional discriminator based on
the current mapping step n for training. The parameters for
training the consistency mapping module are empirically set
as follows: µ0 = 0.9 (for consistency regularization weight),
distance metric function d using the L2 metric. During ad-
versarial training, the consistency mapping is performed for
N = 5 steps, and Gaussian noise with a standard devia-
tion of σ = 0.5 is added. The training is conducted using 4
NVIDIA A800 GPUs, with a batch size of 64 and a total of
20, 000 training iterations.

Evaluation Protocol
To assess the quality of the generated samples, we em-
ploy commonly used metrics, including Inception Score (IS)
(Salimans et al. 2016) and Fréchet Inception Distance (FID)
(Heusel et al. 2017; Bińkowski et al. 2018) to evaluate their
fidelity to the real data distribution, where higher IS scores
and lower FID scores indicate better fidelity. For the cal-
culation of metrics, we compare 50, 000 generated samples
from our model against the 50, 000 images in the CIFAR-
10 training set. In addition, we utilize Recall Score (Sajjadi
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(a) Discriminator loss

(b) Generator loss

Figure 2: The impact of introducing instance noise.

Model IS↑ FID↓ Recall↑
BigGAN 9.22 14.7 0.36

StyleGAN2 9.18 11.1 0.41
TransGAN 9.05 9.26 0.40

Projected GAN 8.82 3.39 0.42
Consistency-GAN (ours) 9.76 3.16 0.47

Table 2: The results on CIFAR-10 compared with GANs.

et al. 2018; Kynkäänniemi et al. 2019) to evaluate the sam-
ple diversity, where a higher recall score indicates greater
diversity in the generated samples. As for sampling speed, a
widely recognized metric is the Number of Function Evalu-
ations (NFE).

Comparison with GANs and Diffusion Models
We conduct a comprehensive comparison and analysis be-
tween our method and other existing methods including both
GANs and diffusion models, on the CIFAR-10 dataset,

In Table 2, we present the quantitative comparison results
of our method against a bunch of GANs, including BigGAN
(Brock, Donahue, and Simonyan 2018), StyleGAN2 (Kar-
ras et al. 2020), TransGAN (Jiang, Chang, and Wang 2021),
Projected GAN (Sauer et al. 2021). We observe that, com-
pared to these GANs, our method has better IS and FID per-
formance. In addition, our method also achieves a higher Re-

(a) Model performance

(b) Convergence speed

Figure 3: Model performance and convergence speed.

Model IS↑ FID↓ NFE↓
DDPM 9.46 3.21 1000
DDIM 9.18 8.23 10

Diffusion-GAN 9.54 4.92 30
Consistency-GAN (ours) 9.76 3.16 5

Table 3: The results on CIFAR-10 compared with diffusion
models.

call. Therefore, we claim that our method significantly im-
proves the model diversity, as well as improving the sample
quality, compared to other GANs. This observation validates
the effectiveness of our consistency mapping module in en-
hancing diversity.

In Table 3, we compare our method with other diffu-
sion models, including DDPM (Ho, Jain, and Abbeel 2020),
DDIM (Song, Meng, and Ermon 2020) and the state-of-the-
art Diffusion-GAN (Wang et al. 2022), in terms of sample
quality and sampling efficiency. It is observed that, in con-
trast to the traditional diffusion models that require hundreds
or thousands of steps for sampling, our method surpasses
both DDPM and DDIM in terms of all three criteria. For
the Diffusion-GAN, which allows for dynamic adjustment
of the diffusion process time steps, our method achieves bet-
ter IS and FID when the NFE of our Consistency-GAN is
only 1/6 of that of Diffusion-GAN.
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(a) BigGAN (FID=14.7) (b) TransGAN (FID=9.26) (c) Diffusion-GAN (FID=4.92) (d) Ours (FID=3.16)

Figure 4: Sampling results on CIFAR-10 dataset.

(a) ProjectedGAN (FID=7.76) (b) Diffusion-GAN (FID=6.91) (c) Ours (FID=6.8)

Figure 5: Sampling results on STL-10 dataset.

(a) Diffusion-GAN (FID=4.75)

(b) Ours (FID=3.93)

Figure 6: Sampling results on CelebA (256×256) dataset.

As depicted in Figure 2, we illustrate the impact of in-
troducing instance noise during the adversarial training pro-
cess on the loss curves of the generator and discriminator
networks. The blue line represents the adversarial training
process without any noise perturbation. Initially, the losses
of both the generator and discriminator converge rapidly to-
wards their respective target values. However, as the training
progresses, the loss curves deviate from their target values,
indicating a phenomenon known as mode collapse. This sce-
nario hinders the generator from producing diverse samples
and prevents the discriminator from accurately distinguish-
ing between real and generated samples, ultimately ham-
pering the network from reaching the desired performance
level. On the other hand, the orange line represents the con-

trol group where instance noise is injected through the con-
sistency mapping module during the training process. The
injected noise increases the burden on the discriminator,
leading to a slightly slower convergence speed. However,
this enhances the model’s robustness against disturbances
and allows it to focus more on the underlying data charac-
teristics. In the later stages of training, the loss curves of the
generator and discriminator fluctuate near their target values,
demonstrating excellent model stability.

In Figure 3, we show the FID curves for both our ap-
proach and Diffusion-GAN. We can see that our model has
a much faster convergence speed with respect to both steps
and time. For example, to reach an FID of 5, Diffusion-GAN
requires 20, 000 iterations (more than 60 hours) while our
Consistency-GAN only needs 3, 000 steps (around 4 hours).
Furthermore, our approach achieves a FID as low as 3.16.

In Figures 4-5, we present the qualitative sampling results
associated with the FID values on the CIFAR-10 dataset
(32×32) and STL-10 dataset (64×64). It can be observed
that our Consistency-GAN model generates a wide vari-
ety of lifelike image samples and achieves better FID re-
sults compared to diffusion-GAN and other GANs, indicat-
ing that our model generates samples closer to the real ones.
Furthermore, in Figure 6, we compare samples generated by
our model and Diffusion-GAN using the same random seeds
in the CelebA dataset with higher resolutions (256×256).
We find that our model still achieves better and more stable
performance than Diffusion-GAN in terms of face genera-
tion, with generated faces being less prone to deformity and
appearing more realistic and natural. The above experiments
validate the superiority of our model in generating images at
different resolutions.
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(a) Accuracy

(b) Convergence

Figure 7: Accuracy and convergence speed under different
learning rates.

Parameter Sensitivity Study
This subsection conducts a series of experiments on the
CIFAR-10 dataset to investigate the impact of various pa-
rameters during the training process.

Initially, we study the impact of training the consistency
mapping module with different learning rates on model ac-
curacy and convergence speed. As shown in Figure 7 (a) and
(b), setting the learning rate to 0.02 results in a more stable
training process and maintains higher accuracy on the test
set. The results in Figure 8 validate the convergence speed
of training the consistency mapping module using different
distance metrics: L1 distance (d(x, y) = ∥x− y∥1), L2 dis-
tance (d(x, y) = ∥x− y∥22), and LPIPS (Zheng et al. 2023).
When selecting L2 as the distance metric, the model exhibits
a faster convergence speed.

We also explore the effects of using different numbers of
mapping steps. From Figure 9 (a) and (b), we observe that
when increasing the number of mapping steps, both the sam-
ple quality and diversity of the model improve. The best re-
sults in terms of FID and IS are achieved at T = 5, with
a relatively high Recall as well. This confirms the advan-
tages of incorporating multiple mapping steps during the ad-
versarial training process, as it significantly enhances sam-
ple quality and diversity. However, increasing the number of
mapping steps beyond a certain threshold may even lead to

(a) Sample quality

(b) Diversity

Figure 8: Performance under different mapping steps.

Figure 9: Convergence speed with different distance metrics.

a worse Recall performance.

Conclusion
In this paper, we propose the Consistency-GAN, which in-
troduces an efficient approach to add instance noise to both
the real and generated distributions of GANs through con-
sistency mapping with only a few steps. Through experi-
mental validation, our Consistency-GAN demonstrates com-
parable sample quality and diversity to the latest diffusion
models, while achieving a significant improvement in sam-
pling speed. Compared to traditional GANs, our model ex-
hibits superior model coverage and sample diversity. The
proposed Consistency-GAN in this paper largely overcomes
the trilemma of generative learning, which could be applied
to generative learning tasks with high performance and low
computational costs.
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