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Abstract

Over the past two decades, there has been a tremendous in-
crease in the growth of representation learning methods for
graphs, with numerous applications across various fields, in-
cluding bioinformatics, chemistry, and the social sciences.
However, current dynamic network approaches focus on
discrete-time networks or treat links in continuous-time net-
works as instantaneous events. Therefore, these approaches
have limitations in capturing the persistence or absence of
links that continuously emerge and disappear over time for
particular durations. To address this, we propose a novel
stochastic process relying on survival functions to model the
durations of links and their absences over time. This forms
a generic new likelihood specification explicitly accounting
for intermittent edge-persistent networks, namely GRAS2P:
Graph Representation with Sequential Survival Process. We
apply the developed framework to a recent continuous time
dynamic latent distance model characterizing network dy-
namics in terms of a sequence of piecewise linear move-
ments of nodes in latent space. We quantitatively assess the
developed framework in various downstream tasks, such as
link prediction and network completion, demonstrating that
the developed modeling framework accounting for link per-
sistence and absence well tracks the intrinsic trajectories of
nodes in a latent space and captures the underlying character-
istics of evolving network structure.

1 Introduction
In diverse fields spanning physical and social sciences, enti-
ties ranging from minuscule scales like microorganisms and
proteins to larger scales such as humans to scales of celestial
objects like planets and galaxies always exert influence upon
and interact with one another. These evolving and intricate
interconnections inherently translate into networks, provid-
ing a versatile framework to encapsulate the subtle interplay
of relationships. In this regard, networks (or graphs) have
become essential for investigating and comprehending the
intricate dynamics of these complex systems evolving over
time (Newman 2003).

Representation learning models on graphs have gained
popularity due to their ability to effectively extract knowl-
edge from networks and achieve various objectives like pre-
dicting linkage and node properties (Hamilton 2020; Zhang
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et al. 2020). However, their primary emphasis has been
on static networks. The early works relied either on ran-
dom walks (Perozzi, Al-Rfou, and Skiena 2014; Grover and
Leskovec 2016; Tang et al. 2015) or matrix factorization
techniques (Qiu et al. 2018, 2019). In recent years, Graph
Neural Network (GNN) architectures have become a promi-
nent way to address network embedding problems (Wu et al.
2021), and a plethora of methods have also been developed
to address a variety of network types, such as signed net-
works (Li et al. 2020; Nakis et al. 2023) and knowledge
graphs (Dai et al. 2020), or to serve diverse purposes like
encoding the hierarchical structure of networks in learning
node embeddings (Bhowmick et al. 2020; Nakis et al. 2022).

Lately, there has been a growing interest in modeling and
learning latent representations of temporal networks, en-
compassing the transient nature of node interactions (Xue
et al. 2022). The evolving focus seeks to unveil a richer un-
derstanding of node interactions throughout time, account-
ing for relationships’ complex and evolving dynamics. Im-
portantly, dynamic network modeling can thereby reveal
intricate patterns within network structures that static ap-
proaches cannot adequately address. Initially, these dynamic
modeling approaches focused on discrete time networks
(Sarkar and Moore 2006; Ishiguro et al. 2010; Heauku-
lani and Ghahramani 2013; Herlau, Mørup, and Schmidt
2013; Yang et al. 2021). However, in recent years, sub-
stantial attention has also been devoted to the modeling of
continuous-time networks. Prominent works have utilized
Poisson (Fan et al. 2021; Trivedi et al. 2019; Celikkanat,
Nakis, and Mørup 2022) and Hawkes processes (Hawkes
1971b,a; Blundell, Beck, and Heller 2012; Arastuie, Paul,
and Xu 2020; Delattre, Fournier, and Hoffmann 2016; Zuo
et al. 2018; Lu et al. 2019; Huang et al. 2022; Yang, Rao, and
Neville 2017) in order to define principled learning proce-
dures under continuous-time network likelihoods of event-
based data. Contrary to the previous studies, which work on
a network block level, the HTNE (Zuo et al. 2018) extends
the Hawkes process modeling to account for node-level em-
beddings. Furthermore, the GNN extensions for continuous-
time dynamic networks, TGN (Rossi et al. 2020), and the
temporal-point process of M2DNE (Lu et al. 2019) use
a case-control approach optimizing a binary cross-entropy
loss. In particular, M2DNE takes into account both pairwise
interactions at the micro level and broader network-wide dy-
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namics at the macro level. Finally, non-likelihood-based pro-
cedures utilizing dynamic random walks such as (CTDNE)
(Nguyen et al. 2018) perform temporal random walks based
on the observed continuous-time interactions.

However, the currently existing approaches designed for
modeling continuous-time dynamic networks exhibit signifi-
cant limitations. In particular, when utilizing the event-based
Poisson Process or extended Hawkes Process, they treat net-
work links as instantaneous events, whereas the case-control
approach using binary cross-entropy does not explicitly ac-
count for edge persistence in the likelihood. Nevertheless,
numerous continuous-time dynamic networks in real-world
scenarios surpass these perspectives. Links within these real-
world networks often showcase intermittent patterns as in-
teractions persist and dissipate consecutively over time. This
nuanced nature of network dynamics necessitates a more
comprehensive approach to accurately account for the per-
sistent presence and absence of edges between nodes.

There are many prominent examples in which we can ob-
serve intermittent persistent linkage structures in real-world
scenarios. For instance, consider a social media platform
where users can follow or unfollow each other and thereby
form a connection with each other over different time pe-
riods or contact and collaboration networks in which peo-
ple can respectively be together or collaborate for extended
periods of time. These intermittent persistent pairwise dy-
namics challenge traditional continuous-time dynamic net-
work models that only account for the event of a tie but not
its persistence and static models that assume constant and
steady relationships. Although there are recent efforts mod-
eling networks of intermittent link characteristics, they rely
on certain assumptions, such as the stochastic block model
(Rastelli and Fop 2020; Xu 2015), and are unable to produce
continuous-time latent representations. There is, therefore, a
need for new continuous-time dynamic network modeling
approaches that can explicitly account for network connec-
tions that persist and dissipate consecutively over time.

In this paper, we introduce the continuous-time Graph Se-
quential Survival Process (GRAS2P). Specifically, we ex-
tend the traditional usage of Survival analysis to the realm
of network science by developing a Sequential Survival pro-
cess that can capture the dynamic persistence of links and
their absence in networks. To the best of our knowledge,
this is the first approach capable of explicitly characteriz-
ing networks featuring intermittent time-persistent linkage
structures. The main contributions can be outlined as:

• A Novel Counting Process. We introduce a novel
stochastic process by leveraging the survival analysis to
model the intermittent time-persistent linkage structure
of the networks forming the GRAS2P model. We further
highlight the utility of the GRAS2P model considering
the recently proposed continuous-time node embedding
procedure (Celikkanat, Nakis, and Mørup 2022).

• Experimental Validation. We conduct extensive ex-
periments on diverse real-world datasets to evaluate
GRAS2P. The results showcase its effectiveness in cap-
turing intricate characteristics of networks by explicitly
accounting for intermittent edge persistence, and outper-

forming baseline methods in downstream tasks.
• Visualization Tool. We show that the proposed ap-

proach can embed continuous-time edge persistent dy-
namic complex networks in low dimensional spaces ac-
curately, thereby also serving as a visualization tool to
get insights into the intricate temporal dynamics of link-
persistent networks.

Implementation. The source codes and other details can be
found at https://abdcelikkanat.github.io/projects/grassp

2 Proposed Model
In this section, we present our proposed approach, but before
delving into the details, we will first establish the notations
used throughout the paper. Without loss of generality, we can
suppose that the timeline begins at time 0 and ends at T , and
we will use [T ] to denote the time interval [0, T ). We employ
the conventional notation, G = (V, E) to indicate a graph
where V = {1, . . . , N} is the vertex set and E := ∪i,j∈VEij
refers to the edge set of the network, comprising of pairwise
temporal links, Eij , for each pair (i, j) ∈ V2.

Again, it is worth emphasizing that we assume a pair of
nodes consists of sequential links indicating intermittent in-
teractions over time (Holme and Saramäki 2012). An ex-
isting link (i.e., interaction) can disappear and then emerge
again. In this regard, we will utilize tuple (i, j, tk, tk+1) to
denote a link between nodes i and j for the interval from
tk ∈ [T ] up to tk+1 ∈ [T ]. We provide the formal descrip-
tion of the networks considered in this work in Definition
2.1 below:
Definition 2.1 (Continuous-time Interval Graphs). A
continuous-time interval network over a timeline [T ] :=
[0, T ] is an ordered pair G = (V, E) where V = {1, . . . , N}
is the set of nodes and E := {(i, j, tk, tk+1) ∈ V2 × [T ]2 |
tk < tk+1} denotes the set of non-overlapping temporal
links, i.e. if (i, j, tk, tk+1) and (i, j, t̄l, t̄l+1) are distinct links
of (i, j) pair, then it satisfies [tk, tk+1) ∩ [t̄l, t̄l+1) = ∅.

We call the initial and the last time of each link period
as an event time, and for practical purposes, we always sup-
pose 0 is also an event time for each node pair. In addition,
we introduce the state function, s : V2 × [T ] → S as an in-
dicator of the presence or absence of a link for a given time
t ∈ [T ] where S := {1,−1} is the state space (+1 sym-
bolizes the existence of the link and −1 its absence). Note
that the state of each pair is constant until the next event
time; thereby, we omit the input variable from the state func-
tion, s(t), for convenience, and we write s to denote the state
of the interaction for the corresponding interval. In this re-
gard, we can partition the timeline with respect to the values
of the state function for each node pair (i.e., depending on
whether a link exists or not), so if a pair consists ofM events
e0 = 0 < e1 < · · · < em < · · · < eM−1 < T then there
must exist M consecutive intervals, {[em, em+1) ⊆ [T ] :
∀m ∈ {0, . . . ,M − 1}}, having different states.

Even though networks with sporadic interactions over
time are prevalent in real-world contexts such as contact or
social networks, to the best of our knowledge, they have not
been considered previously to learn the continuous-time la-
tent node representations.
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Sequential Survival Process
Many research fields strongly emphasize modeling the time
duration required for an event to unfold, such as investigat-
ing the lifespan of living organisms or analyzing the relia-
bility of mechanical systems. The term ”survival” is mostly
employed in those works to describe the duration leading up
to the occurrence of death or failure, which is a measure that
encapsulates the essence of lifetime estimation and plays a
fundamental role in understanding the dynamics of complex
systems. More formally, for a given continuous random vari-
able, T , representing the lifetime of an object or a system,
the survival function is given by

S(t) := P{T > t} =

∫ ∞

t

f(u)du = 1− F (t)

where F (t) and f(t) indicate the cumulative distribution and
probability density functions. It can also be reparameterized
using an associated hazard function λ : [0,∞) → R+ as:

S(t) = exp

(
−
∫ t

0

λ(t′)dt′

)
.

For further details on survival analysis, we recommend un-
familiar readers refer to the work of (Jenkins 2005).

Our approach characterizes node interactions by utiliz-
ing the power of survival functions. As mentioned before,
we always assume that the state of the model alters after
each event time point. Therefore, we design our Sequential
Survival process as consecutive survival functions denoting
”surviving” and ”dying” events. In other words, for a given
initial state, s0 ∈ S , we define the process, {M(t) : t ≥ 0}
as a counting process showing the total number of occur-
rences or events that have happened up to time t. Hence,
we write the probability of the random variable M(t) being
equal to m as follows:

pM(t)(m) =

∫
ξ∈R

m∏
k=1

∫ ek
ek−1

λ(sk, t
′)dt′

exp
(∫ ek

ek−1
λ(sk, t′)dt′

)dξ (1)

where λ(sk, t) is the hazard rate for given time t ∈ [T ] and
state sk ∈ S , and R := {(t1, . . . , tm) ∈ [T ]m : 0 ≤ t1 <
t2 < · · · tm < T )} is the domain of the integration.

We can also write the likelihood function of the process
from the probability given in Eq. (1). Let Ξ = (Φ,M(t))
be a random variable where M(t) denotes the number of
events up to time t, and Φ is the corresponding ordered event
sequence. Then, we can write the marginal distribution of
M(t) by integrating over all possible ordered sequences in
the set R. In other words,

pM(t)(m) =

∫
ξ∈R

p(Φ,M(t))(ξ,m)dξ,

and by using the fundamental theorem of calculus, we can
obtain the probability density function of the random vari-
able, Ξ = (Φ,M(t)), evaluated at ((e1, . . . , em),m) as:

p(Φ,M(t)((e1, . . . , em),m)=
m∏

k=1

λ(sk, ek)

exp

(
ek∫

ek−1

λ(sk, t′)dt′

) . (2)

Problem Formulation
Our objective is to learn continuous-time node representa-
tions in a metric space (X, dX) to uncover underlying tem-
poral patterns of a network so the pairwise distances among
nodes in a latent space should acquire the temporal changes
within the network. We will use, r(i, t) or simply ri(t), to
denote the embedding of node i ∈ V at time t ∈ [T ] in a D-
dimensional space (D ≪ |V|). More specifically, we desire
to obtain a map r : V × [T ] → X satisfying∫ eu

el

ψs
(
dX
(
r(i, t), r(j, t)

))
dt ≈

∫ eu

el

λij(s, t
′)dt′ (3)

for a continuous function ψs : R → R+ and all (i, j, s) ∈
V2×S where λ(s, t) indicates the true hazard rate between
i and j at time t ∈ [T ] and state s ∈ S .

Since we assume that a node pair has connections of al-
ternating states (i.e., link or non-link periods) over time,
we utilize the Sequential Survival process introduced in the
previous part to characterize these intermittent persistent
edges. In this regard, by using Eq (2), we can write the log-
likelihood function for the whole network as follows:

L(Ω|G) := log p(G|Ω)

=
∑
i,j∈V

|Eij |∑
m=1

(
log λij(sm, em)−

em+1∫
em

λij(sm, t)dt

)
(4)

where Ω refers to the set of model hyper-parameters.
To learn continuous-time node dynamics, we consider

the latent distance modeling framework (Hoff, Raftery, and
Handcock 2002). We leverage the hazard functions to de-
fine the latent representations uncovering the evolving rela-
tionships between nodes in the network. Based on our as-
sumption, when a pair of nodes has a link or interaction at
a particular time, it is expected to dissolve eventually. As a
result, their latent positions should also naturally drift apart
from each other over time to reflect their temporal connec-
tion strength. Conversely, when they do not have any con-
nection, they might interact in the future, so their latent po-
sitions should also approach each other to reflect the poten-
tial for a coming link. In this regard, we define the hazard
function, λij(s, t) as follows:

λij(s, t) := exp
(
β(s) + s∥ri(t)− rj(t)∥2

)
. (5)

for node pair (i, j) ∈ V2 and state s ∈ S := {−1, 1}. We
incorporate bias terms (β(s)) for each state value in the def-
inition of the hazard function given in Eq. (5), and they are
responsible for capturing the global information in the net-
work (Krivitsky et al. 2009; Celikkanat, Nakis, and Mørup
2022). We further use the squared Euclidean metric (Smith,
Asta, and Calder 2019; Nickel and Kiela 2017). Using this
formulation, Lemma 2.1 ensures the latent representations
of nodes will be positioned close enough or significantly
distant from each other depending on the state (i.e., link or
non-link periods) of the node pairs.
Lemma 2.1. Let ek and ek+1 be a consecutive event
times following a Sequential Survival process for node pair
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(i, j) ∈ V2. Then, the average squared distance between
nodes during interval [ek, ek+1) associated with survival
function S(·) and state s ∈ {−1, 1} can be bounded by

b(−1) ≤ 1

(ek+1−ek)

ek+1∫
ek

∥ri(t)− rj(t)∥2dt ≤ b(+1)

where b(s) :=−2s log(ek+1− ek)−s logS(ek+1)−sβ(s).

Proof. Please refer to the appendix on the project page.

Continuous-Time Node Representations Using
Piecewise Linear Approximations
For the embedding vectors {ri(t) : i ∈ V , t ∈ [T ]} we
consider the continuous-time extension of the latent distance
model proposed in (Celikkanat, Nakis, and Mørup 2022)
in the context of event-based (Poisson Process likelihood)
graphs using analytically tractable piecewise linear approx-
imations of latent dynamics. Specifically, we define each
node embedding as a linear function depending on time:

ri(t) := xi + vit (6)

The definition can be understood as assigning the initial po-
sition (xi) and velocity (vi) to each node, enabling us to lo-
cate the node’s position in the latent space at any given time.
However, it also constrains the motion capacity of nodes in
the embedding space, as they are limited to moving in a
single direction. To overcome this limitation, the model is
extended by dividing the timeline into B equal-sized bins,
introducing bin-specific velocity vectors. More specifically,
the latent position of node i ∈ V at time t ∈ [T ] is given by

ri(t) := x
(0)
i +∆Bv

(1)
i +∆Bv

(2)
i + · · ·+

+∆Bv
(b)
i + · · ·+ mod(t,∆B)v

(⌊t/∆B⌋+1)
i (7)

where ∆B is the bin width (i.e. T/B), and mod(·, ·) is the
modulo operation giving the remaining time. Importantly,
employing such a piecewise interpretation of the timeline
enables tracking the paths of nodes in the embedding space
effectively, and by augmenting the number of bins, more ac-
curate trajectories can be obtained. In particular, the use of
finer-grained divisions in the timeline allows for a more de-
tailed and precise representation of node movements, lead-
ing to improved accuracy in capturing their dynamics within
the embedding space (Celikkanat, Nakis, and Mørup 2022).

Regularization. In order to control the nodes’ mobility in
the latent space, we incorporate a prior distribution for the
velocity vectors. Imagine a situation for a pair of nodes only
interacting with each other during a period; the model situ-
ates them closely in the embedding space when they have a
link. Nevertheless, their distance in the latent space tends to-
wards infinity as the link is inactive. Therefore, we assume
the velocity vectors, v ∈ RB×N×D, follow a multivariate
normal distribution with zero mean:

vect(v) ∼ N (0, λ2Σ)

where λ is the scaling coefficient, and Σ ∈ RBND×BND is
a diagonal matrix defined as a Kronecker product of three

other vectors. In other words, Σ := diag(σB ⊗ σN ⊗ σD)
where the vectors, σB , σN and σD are responsible for the
influence of the model’s bins, nodes, and dimensions, re-
spectively. Here, the notation, ⊗, symbolizes the Kronecker
product, and vect(z) represents the vectorization operator
converting the given tensor into a vector form. We constrain
σB and σN within the standard (B−1) and (N−1)-simplex
sets, and we define σD as 1D = (1, 1, . . . , 1) ∈ RD to have
uncorrelated dimensions. To sum up, we can restrain the em-
bedding space by utilizing the prior distribution since it al-
lows us to control the motions of nodes. For higher values
of the scaling factor λ, the model can have more flexibil-
ity, enabling more dynamic node movements in the latent
space, whereas lower values restrict node mobility, resulting
in more static node representations. Notably, with this reg-
ularization, the model can be considered a continuous-time
extension of the discrete-time latent distance model based on
diffusion considered in (Sarkar and Moore 2006) in which
the diffusion between time-bins propagates continuously.

Inference
Our objective function defined by the log-likelihood given
in Eq. (4) together with the log-prior regularization term is
a non-convex function, so the learning strategy applied for
inferring the model’s hyper-parameters is crucial to avoid
poor-quality local minima in the resulting representations.

The position vectors (x) are initialized uniformly within
the [−1, 1] range at random. The bias terms (β) and veloc-
ities (v) are sampled from the standard normal distribution.
The prior parameters, (σB , σN ) are set to 1B/B and 1N/N
at the beginning. We follow a sequential learning strategy for
training the model, i.e., we optimize different sets of param-
eters in stages. Firstly, we optimize the velocities (v) for 100
epochs. Then, we include the initial positions (x) into the op-
timization procedure, and we continue to train the model by
optimizing these two parameters (x, v) together for another
100 epochs. Finally, we incorporate the bias and prior pa-
rameters and optimize all model hyper-parameters together.
In total, we use 300 epochs for the whole learning procedure,
and the Adam optimizer (Kingma and Ba 2017) is employed
with an initial learning rate of 0.1. In the experiments, we set
the number of bins (B) to 100 to ensure sufficient capacity
for tracking nodes in the latent space (D = 2).

3 Experimental Evaluation
In this section, we will examine the performance of the pro-
posed model over a diverse range of networks varying in size
and characteristics. But before delving into the experimental
evaluations, we will first present details regarding the exper-
imental setup, considered datasets, and baseline approaches.

Experimental Setup. We first split the networks into two
sets, such that the events taking place within the last 10%
of the timeline are considered for the future prediction task.
Furthermore, we randomly choose 20% node pairs among
all possible dyads in the initial first part, and they are di-
vided into two equal-sized groups to design the validation
and testing sets. The residual network does not contain any
link from these dyads, and it forms the training set. If there
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(a) t = 350 (b) t = 400 (c) t = 450 (d) t = 500 (e) t = 550 (f) t = 600

Figure 1: Snapshots of the continuous-time embeddings learned by GRAS2P for various time points over Synthetic-β.

is any node pair without any link period during the training
time but included in the prediction set, it is also excluded
from the network.

We need to generate the labeled data to perform link pre-
diction tasks. For this purpose, we divide the timeline of
each sampled dyad into segments based on the state values.
Within these segments, we randomly select time t to define
a sample interval [t−ϵ, t+ϵ], and ϵ is set to 10−2×T where
T is the dataset’s timeline length. We deliberately exclude
samples containing the event times where the state of the
corresponding dyad changes since it is impractical to predict
whether a link exists for the periods with multiple states.

We organized these generated samples into two categories
as “simple” and “hard” sets. The “hard” set consists of
samples for the node pairs having at least one linked and
non-linked period over time (Huang et al. 2023). Contrarily,
dyads having stable states throughout the timeline produce
“simple” sets of samples since predicting the labels (i.e.,
state) of these instances is relatively straightforward. Addi-
tionally, the samples generated for the future link prediction
task are categorized based on the dyads’ linkage during the
training time by following the study (Poursafaei et al. 2022).

We consider an equal number of k link and non-link sam-
ples, and k := min{103, link set size, non-link set size}.
Each link or non-link category contains h/2 elements picked
up from the hard set of size h, and we randomly select the
remaining k − h/2 samples from the residual hard and the
simple instances. For the experiments, we report both AUC-
ROC and AUC-PR scores to comprehensively evaluate the
models’ performances across different aspects of true and
false positives and precision-recall characteristics.

Datasets
We treat the networks as undirected and employ the finest
available temporal granularity for the input timestamps, in-
cluding measurements at the level of seconds and millisec-
onds. We tailor the datasets according to the chosen base-
lines to enable a meaningful comparison. For instance, we
transform dynamic networks into static weighted and un-
weighted networks by aggregating links over time for static
baselines. Additionally, we exclude the non-link events for
the baselines since they cannot process these data points.

In the experiments, we have used several real datasets
of diverse types, including a social network (Facebook )

(Viswanath et al. 2009), collaboration graph (NeurIPS ), and
three contact networks (Génois et al. 2015; Isella et al.
2011). Due to the constraints on the page number, we pro-
vide the details regarding the real datasets on the project
page. We also generated two synthetic networks to examine
the model’s predictive behavior in controlled settings. The
link and non-link event times of the Synthetic-α graph are
generated from the Sequential Survival process introduced
in Section 2, and the initial embedding locations and ve-
locities are sampled from a multivariate normal distribution
as described in (Celikkanat, Nakis, and Mørup 2022). For
the Synthetic-β network, we divide the timeline into equal-
sized 8 bins and randomly group the nodes into 10 clusters
for each bin. Then, we establish connections between nodes
within the same cluster with a probability of 0.8, while nodes
belonging to different clusters are linked with a 10−2 prob-
ability. These links stay persistent until the next bin.

Baselines

Due to the lack of an analogous approach to our proposed
model explicitly accounting for dynamic networks with in-
termittent persistent linkage structures, we establish several
static and dynamic methods as baselines to compare with
the performance of our model. (i) LDM (Krivitsky et al.
2009; Hoff 2005) is a static node embedding approach for
unweighted graphs in which we used the Poisson formu-
lation in (Nakis et al. 2022) when modeling the links with
node-specific random effect terms. (ii) PIVEM (Celikkanat,
Nakis, and Mørup 2022) can be viewed as an expansion
of the LDM model, which models event-based continuous-
time dynamic networks using the Nonhomogeneous Poisson
process as opposed to the presently considered GRAS2P.
(iii) NODE2VEC (Grover and Leskovec 2016) is very well-
known random-walk based node embedding and we here re-
port best obtained result considering both unweighted and
weighted graphs. (iv) CTDNE (Nguyen et al. 2018) also
perform random walks but it concentrates on the temporal
networks. (v) HTNE (Zuo et al. 2018) relies on the Hawkes
process to learn node embeddings and to model the neigh-
bor arrival events. Finally, (vi) M2DNE (Lu et al. 2019) em-
beds the dynamic graphs by capturing the micro and macro
network properties using case-control inference with cross-
entropy loss. For all embedding methods we set D = 2.
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LDM NODE2VEC CTDNE HTNE M2DNE PIVEM GRAS2P

Synthetic-α ROC .711± .004 .743± .002 .692± .007 .698± .021 .558± .008 .744± .002 .810 ± .009
PR .630± .006 .667± .009 .650± .007 .645± .019 .582± .004 .653± .004 .751 ± .011

Synthetic-β ROC .491± .020 .534± .008 .502± .008 .525± .004 .517± .013 .593± .006 .677 ± .018
PR .486± .016 .498± .007 .502± .010 .517± .006 .522± .015 .587± .011 .646 ± .022

Contacts ROC .508± .008 .584± .004 .564± .034 .472± .024 .486± .013 .493± .006 .680 ± .013
PR .490± .004 .555± .023 .543± .036 .477± .023 .500± .008 .492± .016 .641 ± .023

HyperText ROC .541± .015 .533± .012 .462± .016 .441± .017 .461± .021 .426± .013 .692 ± .010
PR .503± .010 .490± .013 .477± .016 .449± .009 .479± .023 .437± .007 .656 ± .024

Infectious ROC .689± .007 .671± .003 .639± .006 .653± .013 .554± .005 .669± .004 .742 ± .026
PR .615± .007 .601± .005 .593± .005 .596± .010 .560± .009 .598± .004 .673 ± .024

Facebook ROC .717± .004 .675± .001 .539± .005 .608± .001 .570± .010 .710± .002 .723 ± .010
PR .659± .006 .603± .005 .538± .013 .575± .001 .562± .009 .662± .002 .671 ± .012

NeurIPS ROC .679± .010 .697± .005 .558± .020 .654± .025 .531± .005 .748 ± .010 .735± .029
PR .618± .016 .606± .020 .552± .025 .613± .026 .553± .011 .761 ± .020 .749± .021

Table 1: The performance comparison of the models for the network completion experiment across diverse datasets.

LDM NODE2VEC CTDNE HTNE M2DNE PIVEM GRAS2P

Synthetic-α ROC .702± .002 .693± .003 .638± .006 .675± .011 .507± .002 .749± .002 .845 ± .006
PR .654± .006 .627± .011 .596± .009 .639± .007 .566± .003 .665± .002 .782 ± .009

Synthetic-β ROC .564± .009 .507± .006 .512± .008 .544± .007 .511± .002 .680± .006 .744 ± .019
PR .553± .006 .494± .005 .511± .007 .528± .007 .513± .002 .652± .008 .701 ± .013

Contacts ROC .593± .004 .556± .004 .534± .018 .528± .004 .534± .002 .496± .006 .825 ± .008
PR .541± .003 .523± .015 .528± .017 .510± .008 .537± .004 .465± .002 .754 ± .014

HyperText ROC .550± .002 .535± .004 .477± .012 .473± .011 .489± .003 .430± .002 .760 ± .004
PR .513± .003 .507± .007 .488± .010 .470± .008 .479± .004 .431± .001 .689 ± .007

Infectious ROC .701± .006 .688± .003 .667± .005 .676± .009 .579± .002 .666± .005 .788 ± .015
PR .626± .008 .602± .007 .606± .008 .613± .008 .584± .005 .577± .006 .697 ± .013

Facebook ROC .682± .005 .645± .003 .544± .007 .624± .002 .582± .009 .673± .003 .731 ± .010
PR .615± .009 .589± .008 .535± .008 .590± .009 .573± .009 .617± .004 .667 ± .013

NeurIPS ROC .760± .007 .720± .003 .598± .004 .731± .008 .594± .001 .698± .002 .889 ± .013
PR .687± .010 .631± .007 .590± .010 .659± .006 .599± .003 .711± .002 .819 ± .020

Table 2: The performance comparison of the models for the network reconstruction experiment across diverse datasets.

Network Reconstruction. Our goal is to see how ef-
fectively the models can capture the temporal structural
changes within the network over time. In pursuit of this ob-
jective, we seek to reconstruct both link and non-link peri-
ods. As depicted in Table 2, our method, GRAS2P, exhibits
notably superior performance compared to the baseline ap-
proaches. This marked improvement is attributed to the in-
capability of the other models to represent intermittent per-
sistent linkage structures accurately.

Network Completion. Many real networks often contain
noisy or missing links for various reasons, such as problems
in the data collection processes or privacy concerns prevent-
ing the full disclosure of ties. In this regard, our aim is to
evaluate the models’ capacity to generalize the linkage struc-
ture in the training set. Table 1 illustrates that our model
once more demonstrates a substantial performance advan-
tage over the baselines, except for the NeurIPS dataset.

Given the network’s yearly time resolution, the event-based
approach, PIVEM, effectively captures its temporal struc-
ture. Importantly, our approach also displays a comparable
level of performance in this scenario.

Future Link Prediction. The absence of a predictable
periodic linkage pattern in the networks poses a signifi-
cant challenge in forecasting future connections, particularly
those at more distant time points. This complexity is evi-
dent in Table 3, where our model consistently surpasses all
baselines on the Synthetic-α dataset, but its performance for
Synthetic-β is not optimal. It can be explained by the fact
that the links in the Synthetic-α network are sampled from
the Sequential Survival process, but the temporal clusters in
the Synthetic-β network are randomly formed (please see
the dataset section for details). For specific network struc-
tures, static embedding models also showcase satisfactory
performance since they are able to capture the global net-
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LDM NODE2VEC CTDNE HTNE M2DNE PIVEM GRAS2P

Synthetic-α ROC .748± .007 .756± .005 .652± .012 .784± .013 .654± .011 .740± .007 .902 ± .011
PR .719± .012 .700± .020 .636± .019 .800± .016 .745± .008 .741± .005 .918 ± .008

Synthetic-β ROC .515± .018 .538± .004 .503± .020 .560± .006 .519± .012 .894 ± .005 .880± .012
PR .525± .021 .501± .007 .494± .016 .548± .004 .554± .014 .845 ± .007 .843± .014

Contacts ROC .821 ± .004 .703± .002 .635± .013 .727± .002 .590± .002 .692± .005 .793± .013
PR .773 ± .005 .648± .006 .599± .014 .689± .004 .610± .006 .675± .004 .752± .019

HyperText ROC .663 ± .004 .553± .003 .503± .010 .530± .018 .548± .004 .559± .003 .654± .005
PR .609± .003 .516± .008 .503± .006 .518± .014 .529± .008 .534± .002 .612 ± .010

Infectious ROC .958 ± .004 .869± .002 .847± .008 .893± .013 .655± .008 .945± .006 .943± .017
PR .943 ± .008 .818± .007 .820± .014 .853± .007 .698± .009 .932± .006 .923± .025

Facebook ROC .781 ± .007 .694± .003 .564± .005 .626± .003 .609± .015 .775± .002 .705± .009
PR .765± .009 .653± .004 .557± .004 .599± .011 .603± .011 .766 ± .003 .648± .009

NeurIPS ROC .682± .019 .695± .012 .637± .007 .676± .014 .661± .006 .623± .010 .820 ± .008
PR .634± .024 .621± .018 .615± .015 .635± .025 .674± .014 .628± .006 .788 ± .018

Table 3: The performance comparison of the models for the future link prediction experiment across diverse datasets.

work information due to the aggregation of the links over
time. Similarly, by choosing small values for the covariance
factor, λ, we can restrict the dynamics of our approach.

(a) Impact of Dimension Size (b) Impact of Bin Count

Figure 2: Impact of the hyper-parameters over Synthetic-α.

Impact of Dimension Size. Figure 2a shows a clear cor-
relation between the increase in dimension size and per-
formance improvement over the Synthetic-α network. With
the introduction of each new dimension, the model’s capac-
ity augments, and the model becomes more adept at cap-
turing intricate patterns within the network. For smaller di-
mensions, the model demonstrates performance on par with
more high dimensions. It is important to highlight that the
two-dimensional representations sustain competitive perfor-
mance enabling easy visualization and extraction of insights
into the complex and dynamic nature of networks.

Impact of Bin Count. The impact of the number of bins
on performance improvements is evident in Figure 2b, as
the model’s capacity to capture subtle temporal changes in-
creases at finer granularity levels. Notably, the model’s per-
formance nearly reaches near-optimal performance around
B = 64, after which it demonstrates saturation.

Continuous-Time Dynamic Visualization. Network vi-
sualization offers valuable insights for practitioners into the
intricate architectures of complex networks. Nonetheless,
numerous methods necessitate high-dimensional spaces to

achieve satisfactory results for downstream tasks. Therefore,
practitioners must utilize dimension-reduction techniques
to generate visualizations conducive to human comprehen-
sion. Furthermore, many temporal models yield static em-
beddings, lacking the capacity to produce continuous-time
node representations. In this regard, our model proves to be
a versatile tool, effectively balancing the tradeoff between
performance and dimension sizes.

Figure 1 showcases the acquired embeddings across vari-
ous selected time instances over the Synthetic-β dataset. The
network takes an entirely new structural form for each time
point t = 100k (k ∈ {4, . . . , 6}), including 10 new clusters
appearing randomly. Our model learns these temporal struc-
tures, particularly when interconnections between clusters
remain relatively sparse. As time progresses, nodes within
the latent space gradually adjust their positions to align with
the evolving new random connections, making the clusters
indistinguishable (t = 100k − 50 where k ∈ {4, . . . , 6}).
Additional visualizations are included on the project page.

4 Conclusion
In this study, we introduced a novel representation learn-
ing model, GRAS2P, designed specifically for continuous-
time networks exhibiting intermittent persistent linkage pat-
terns over time. Our proposed approach characterizes node
connections using the proposed Sequential Survival process.
Our experimental results clearly demonstrate the superiority
of GRAS2P over established baseline methods across mul-
tiple networks of varying properties. Notably, our model ef-
fectively balances the trade-off between dimensionality and
performance, making it a valuable tool for visualizations.

We aim to extend the methodology for diverse forms of
temporal graphs, including weighted and signed networks.
Moreover, we plan to tailor our approach to address large-
scale networks while also capturing potentially recurring pe-
riodic structures within the networks considering different
model specifications beyond piecewise linear dynamics.
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