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Abstract

In this paper, we delve into the problem of using monetary
incentives to encourage players to shift from an initial Nash
equilibrium to a more favorable one within a game. Our main
focus revolves around computing the minimum reward re-
quired to facilitate this equilibrium transition. The game in-
volves a single row player who possesses m strategies and
k column players, each endowed with n strategies. Our find-
ings reveal that determining whether the minimum reward is
zero is NP-complete, and computing the minimum reward be-
comes APX-hard. Nonetheless, we bring some positive news,
as this problem can be efficiently handled if either k or n is a
fixed constant. Furthermore, we have devised an approxima-
tion algorithm with an additive error that runs in polynomial
time. Lastly, we explore a specific case wherein the utility
functions exhibit single-peaked characteristics, and we suc-
cessfully demonstrate that the optimal reward can be computed
in polynomial time.

Introduction
Equilibrium analysis has remained a central focus in game
theory research for several decades. The exploration of the
fundamental Nash equilibrium and its various refinements
has been the subject of extensive study. It is widely recog-
nized that certain equilibria hold greater desirability than
others, prompting investigations into the Price-of-Anarchy
(Koutsoupias and Papadimitriou 2009) and Price-of-Stability
(Anshelevich et al. 2008). In the dynamics of the game, play-
ers are driven to best respond to their counterparts’ strategies
(Hopkins 1999; Leslie, Perkins, and Xu 2020). Nevertheless,
this approach may lead to suboptimal equilibria, as players
overlook the potential benefits that could arise from deviating
from the best response dynamics in response to successive
changes made by other players.

In our research, we explore a scenario where a mediator
aims to facilitate the transition from an initial equilibrium to
a more favorable target equilibrium. The mediator achieves
this by subsidizing the players to influence their behavior, en-
couraging them to progress towards the desirable equilibrium
in gradual steps. Throughout this process, the mediator’s pri-
mary objective is to minimize the overall cost involved. This
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study holds significant real-world applications. For instance,
many governments worldwide are actively pursuing initia-
tives to boost the adoption of electric vehicles as part of their
net-zero plans. Given that cars and vans contribute nearly
a fifth of total emissions, expediting the transition to elec-
tric vehicles is crucial to accomplishing their environmental
goals. One can liken the initial equilibrium to the prevailing
usage of petrol and diesel cars. To drive the shift towards
electric vehicles, the government may implement tax benefits
and provide funds for charger installations, thus incentivizing
drivers to make the switch. The more desirable target equilib-
rium, in this case, would involve completely phasing out the
sale of new petrol and diesel cars.

In this intriguing game, we have a row player and k column
players, each with specific payoffs represented by matrices
R and C respectively. The game commences from an initial
equilibrium and proceeds in rounds. As a mediator, the ulti-
mate objective is to lead the players towards a desirable Nash
equilibrium by offering rewards in each round. Even in the
case of just one row player, the theoretical implications are
already noteworthy. In practical terms, this single row player
scenario effectively captures numerous monopolistic markets
and the regulatory behavior of governments in markets. How-
ever, as we will demonstrate, the problem at hand becomes
intractable in various setups. Thus, achieving positive out-
comes in more general settings necessitates the application
of additional constraints or the consideration of special cases.

Our Contribution
In this paper, we tackle the challenge of designing algorithms
for computing the minimum reward needed to foster equilib-
rium transitions. Given a bimatrix game with payoff matrices
Rm×n and Cm×n, assuming that there are k column players
playing against a row player, we show the following results:

• Determining whether the minimum reward is zero is NP-
complete, and computing the minimum reward, in general,
is APX-hard.

• However, computing the optimal reward scheme is slice-
wise polynomial with respect to k and n, respectively.

• We design an approximation algorithm for this problem
that runs in polynomial time. The additive approximation
error is linear in the number of the row player’s choices
and the largest number of matrices R and C.
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• Last, we consider a special case where the utility functions
are single-peaked and show that the optimal reward can
be computed in polynomial time.

We show the hardness results by reductions from the EXACT
COVER problem and a variant of the Knapsack problem.
In the approximation algorithm, we construct a complete
directed graph in which the weight of an edge corresponds
to the solution of an integer linear programming (ILP). By
approximating the solution of the ILP, the problem of finding
the optimal transformation path from an initial equilibrium
to a target equilibrium boils down to finding the shortest
paths between vertices of the graph. Due to limited space,
some proofs are skipped and can be found in the full ver-
sion (Huang et al. 2023).

Related Work
Monderer and Tennenholtz (2004) consider the implemen-
tation of desirable outcomes by a reliable party who cannot
modify game rules but can make non-negative payments to
the players. They term this k-implementation problem an
intermediate approach between algorithmic game theory (Pa-
padimitriou 2011) and mechanism design (Nisan and Ronen
1999). They provide characterizations of k-implementation
for the implementation of singletons in games with com-
plete information and investigate several settings under
which the problem is polynomial-time solvable or intractable.
Deng, Tang, and Zheng (2016) follow up the study of k-
implementation and prove that the problem is NP-complete
for general games with respect to dominance by pure strate-
gies. Furthermore, the authors study a variation of the k-
implementation problem by characterizing its hardness and
developing computationally efficient algorithms for super-
modular games. Unlike k-implementation, which considers
a single-round bi-matrix game, we aim to motivate a group
of players to move to a target equilibrium step by step and
minimize the total cost. Deng and Conitzer (2017) consider
a disarmament game, in which players successively commit
not to play certain strategies and thereby iteratively reduce
their strategy spaces. Later on, in (Deng and Conitzer 2018),
instead of removing a strategy in a game, they consider re-
moving a resource which leads to ruling out all the strategies
in which that resource is used simultaneously. They prove
NP-completeness of several formulations of the problem of
achieving desirable outcomes via disarmament.

The idea of allowing a mediator to influence the players’
behavior and hence the outcome of a system has been widely
studied. For example, Rozenfeld and Tennenholtz (2007)
focus on the use of routing mediators in order to reach a
correlated strong equilibrium. They show that a natural class
of routing mediators allows the implementation of fair and
efficient outcomes as a correlated super-strong equilibrium
in a very wide class of games. Monderer and Tennenholtz
(2009) propose to use mediators in order to enrich the set
of situations where one can obtain stability against devia-
tions by coalitions, in light of the understanding that strong
equilibrium rarely exists. Augustine et al. (2015) address the
question of whether a network designer can enforce particular
equilibria or guarantee that efficient designs are consistent

with users’ selfishness by appropriately subsidizing some of
the network links. They formulate this question as one of
the optimization problems and present positive and negative
results. Eidenbenz et al. (2007) consider the problem of a
mechanism designer seeking to influence the outcome of a
strategic game based on her creditability.

Studying the best response dynamics of players constitutes
a fundamental aspect of game theory research. In a recent
study, Amiet et al. (2021) explore games where the payoffs
are drawn at random and demonstrate that a best-response
dynamics approach leads to a pure Nash equilibrium with
a high probability as the number of players increases. Feld-
man, Snappir, and Tamir (2017) delve into congestion games,
where they investigate the inefficiency of various deviator
rules. They find that the best response dynamics consistently
converges to a pure Nash equilibrium in such games. Heinrich
et al. (2022) analyze the performance of the best-response dy-
namic across all normal-form games using a random games
approach. They show that the best-response dynamic con-
verges to a pure Nash equilibrium in a vanishingly small
fraction of all large games when players take turns accord-
ing to a fixed cyclic order. By contrast, when the playing
sequence is random, the dynamic converges to a pure Nash
equilibrium if one exists in almost all large games.

Preliminary

We consider a game in which there is a row player and k
column players. The row player and each of the k column
players constitute a bimatrix game. Let R be the strategy
set of the row player and C be the strategy set of a column
player. Denote C k the set of all possible strategy profiles of
k column players. Let ri and cj be the row player’s i-th strat-
egy and a column player’s j-th strategy, respectively, where
i = 1, . . . ,m and j = 1, . . . , n. Throughout the paper, the
players only adopt pure strategies. Let Rm×n and Cm×n be
the payoff matrices of the row player and the column play-
ers, respectively. Denote (r(t), c1(t), . . . , ck(t)) the strategy
profile of all players at time step t, where r(t) ∈ R and
ci(t) ∈ C , i = 1, . . . , k. For ease of notation, we denote
C(t) = (c1(t), . . . , ck(t)) ∈ C k. This way, the row player’s
payoff at time t is

∑
1≤i≤k R(r(t), ci(t)), i.e., the sum of its

payoff in the k bimatrix games. The payoff of the column
player i is C(r(t), ci(t)), i.e., its payoff in the bimatrix game
that it plays against the row player.

In the context of equilibrium transition, the game starts
with an equilibrium. That is, the row player and the column
players are at an equilibrium in each of the k bimatrix games.
Assume that, from the mediator’s perspective, there exists
another more desirable equilibrium. The mediator is inter-
ested in designing an optimal reward scheme that motivates
the players to move to the more desirable equilibrium over
multiple rounds.

Specifically, consider a strategy profile (r(t), C(t)) in
round t, without any additional reward, the row player will
best respond to the column players’ strategy profile C(t) in
the next round. Therefore, to incentivize the row player play-
ing a specific strategy r(t + 1) ∈ R in the next round, we
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need to provide a reward of, denoted by TC(t)(r(t+ 1)),

max
ri∈R

∑
1≤j≤k

R(ri, cj(t))−
∑

1≤j≤k

R(r(t+ 1), cj(t)),

where the first term is the maximum payoff that the row
player can get by taking the best response strategy against
column players’ strategies C(t), and the second term is the
row player’s payoff when it takes the strategy r(t+ 1) ∈ R.

Similarly, given the row player’s strategy r(t) in round t,
to incentivize column players taking strategy profile C(t+ 1)
in round t + 1, the total reward needed is Tr(t)(C(t + 1)),
which is

k ·max
ci∈C

C(r(t), ci)−
∑

1≤j≤k

C(r(t), cj(t+ 1)).

Given the initial equilibrium (r(1), C(1)) and the target
equilibrium (r∗, C∗), a reward scheme that incentivizes the
players moving from the initial equilibrium to the target
equilibrium consists of a transformation path (r(1), C(1))→
(r(2), C(2))→ · · · → (r∗, C∗). The total cost of this reward
scheme is T =

∑
t{Tr(t)(C(t+ 1)) + TC(t)(r(t+ 1))}.

We define the optimization problem OPT TRANSITION
(k,m, n) as follows.
Problem 1: OPT TRANSITION (k,m, n).
Input: Payoff matrices Rm×n and Cm×n. The initial equi-
librium (r(1), C(1)) and the target equilibrium (r∗, C∗),
Output: A transformation path from strategy profile
(r(1), C(1)) to (r∗, C∗) such that the total cost T =∑

t{Tr(t)(C(t+ 1)) + TC(t)(r(t+ 1))} is minimized.
We also consider the following decision problem, called

TRANSITION (k,m, n, T ).
Problem 2: TRANSITION (k,m, n, T ).
Input: Payoff matrices Rm×n and Cm×n. The initial equi-
librium (r(1), C(1)) and the target equilibrium (r∗, C∗),
Output: YES, if a transformation path from (r(1), C(1)) to
(r∗, C∗) with the total cost no larger than T exists, and NO
otherwise.

Complexity Results
This section investigates the complexity of the above two
problems. We show that OPT TRANSITION (k,m, n) is
APX-hard, which discourages us from designing efficient
algorithms that can find a solution within some fixed multi-
plicative factor of the optimal cost T . In addition, even for the
case that the row player has only two strategies, the decision
problem TRANSITION (k, 2, n, T ) is NP-complete. How-
ever, OPT TRANSITION (k,m, n) becomes polynomial-
time solvable when either k or n is a fixed constant.

General Values of k,m, and n
We show that the decision problem TRANSITION
(k,m, n, T ) is NP-complete when T = 0.
Theorem 1. TRANSITION (k,m, n, 0) is NP-complete.

Proof. Given a transition path from the initial equilibrium
to the target equilibrium, it is easy to verify whether it is
a valid path and its cost is 0. For NP-hardness, we reduce
from the EXACT COVER problem, which is known to be

NP-complete (Karp 1972), to the decision problem TRANSI-
TION (k,m, n, 0). Recall the EXACT COVER problem:
Problem 3: EXACT COVER (s, w).
Input: A finite set Z = {1, 2, . . . , 3s} and a collection
X = {X1, X2, . . . , Xw} of 3-element subsets of the set Z,
where s ≤ w.
Output: YES, if there exists a collection
{Xi1 , Xi2 , . . . , Xis} ⊂ X such that their union is Z,
and NO otherwise.

Given an instance of EXACT COVER, we construct an
instance of TRANSITION (k,m, n, 0) as follows:

Let k = s. That is, there are s column players. Let m =
3s + 2 and n = w + 2. We design the column players’
payoff matrix C(3s+2)×(w+2) as below. Except for the last
row and the last column, all elements in matrix C are 1. The
intersection of the last row and last column is set to be 1 as
well. Lastly, all the remaining elements are 0.

Column Players’ Payoff Matrix C
1 · · · w + 1 w + 2

1 1 · · · 1 0
...

...
...

...
...

3s+ 1 1 · · · 1 0
3s+ 2 0 · · · 0 1

Let v1, v2, . . . , vw denote the characteristic vectors of
X1, X2, . . . , Xw. That is, for a vector vi = (vi,j)j=1,...,3s,
its elements vi,j = 1 if j ∈ Xi and vi,j = 0 if j /∈ Xi,
i = 1, . . . , w. We construct the row player’s payoff matrix
R(3s+2)×(w+2) as follows. The entries in the first row are 0
except the last one being −1. The entries in the first column
are 0 except the last one being −s. Then, for the last row,
R(3s+2),j = 1/s, j = 2, . . . , w + 1 and R(3s+2),(w+2) = 1.
For the last column, Ri,(w+2) = 0, i = 2, . . . , 3s + 1. The
other entries of matrix R are filled by elements vi,j as shown
below.

Row Player’s Payoff Matrix R
1 2 · · · w + 1 w + 2

1 0 0 · · · 0 −1
2 0 v1,1 · · · vw,1 0
...

...
...

...
...

...
3s+ 1 0 v1,3s · · · vw,3s 0
3s+ 2 −s 1/s · · · 1/s 1

We note that there are at least two pure Nash equilib-
ria in the (k + 1)-player game. They are (r1, c1, . . . , c1)
and (r3s+2, cw+2, . . . , cw+2); namely, all players choose
their first strategy and all players choose their last strat-
egy, respectively. In particular, let the initial Nash equilib-
rium (r(1), C(1)) be (r1, c1, . . . , c1) and the target equilib-
rium (r∗, C∗) be (r3s+2, cw+2, . . . , cw+2). Till now, we have
constructed an instance of TRANSITION (k = s,m =
3s+ 2, n = w + 2, 0).
Reduction correctness. Given that there is a solution to
TRANSITION (s, 3s+ 2, w + 2, 0), we can compute a solu-
tion to EXACT COVER (s, w). To this end, we disclose the
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features of a zero-cost transformation path of TRANSITION
(s, 3s+ 2, w + 2, 0).

First, we observe from payoff matrix C, that a column
player will not choose to play its last strategy cw+2 unless
the row player has chosen its last strategy r3s+2. Based on
this, we observe from payoff matrix R, that the row player
will not choose to play its last strategy r3s+2 as long as there
is a single column player playing its first strategy c1. This
is because, in that case, the row player’s payoff is at most
−s+ s−1

s which is less than 0. In view of these observations,
we conclude that the s column players must be playing some
strategies within the set {c2, . . . , cw+1} on a zero-cost trans-
formation path from the initial equilibrium (r1, c1, . . . , c1)
to the target equilibrium (r3s+2, cw+2, . . . , cw+2).

Second, for the second-last step on the transition path,
we notice that these s column players must choose s differ-
ent strategies amongst the set {c2, . . . , cw+1}. Otherwise,
suppose that two column players are choosing the same
strategy, for example, c2. Note that the characteristic vec-
tor v1 = (v1,j)j=1,...,3s has exactly three elements whose
value are 1. Without loss of generality, assume v1,1 = 1.
Then, by playing strategy r2, the row player’s payoff is 2,
which is greater than its payoff 1 by playing strategy r3s+2.
Therefore, it contradicts the existence of a zero-cost transfor-
mation path on which the row player will transit to playing
the last strategy.

Last, we notice that in these s columns of payoff matrix R
that correspond to the s different strategies played by these
column players, there should be only one 1-element in each
row. Otherwise, by playing the strategy that corresponds to a
row that has multiple 1-elements, the row player has a higher
payoff and will not transit to playing the last strategy without
a positive reward. The same contradiction occurs. So, the
row player is indifferent between playing the last strategy
r3s+2 and any one of the strategies in {r2, . . . , r3s+1}, as its
payoff is 1 in either case. Together with the fact that there
are 3s rows (namely, row 2 to row 3s+ 1) and each of these
s columns has three 1-elements, we conclude that these s
columns correspond to s characteristic vectors of 3-elements
sets such that their union is the set Z = {1, 2, . . . , 3s}.

To conclude, given a zero-cost transition path from the
initial equilibrium to the target equilibrium, we can iden-
tify a set of values vi,j such that their corresponding 3-
elements subsets {Xi1 , Xi2 , . . . , Xis} is a solution to the
SET COVER problem. Also, if the SET COVER problem has
a solution {Xi1 , . . . , Xis} such that their union is Z, then
we can construct the transition path as (r1, c1, . . . , c1) →
(r1, Ci1 , Ci2 , . . . , Cis) → (r3s+2, Ci1 , Ci2 , . . . , Cis) →
(r3s+2, Cw+2, Cw+2, . . . , Cw+2). It is easy to verify that the
cost of this transition path is zero.

Hence, TRANSITION (k,m, n, 0) is NP-complete.

This result immediately implies that the problem OPT
TRANSITION (k,m, n) is APX-hard.

Corollary 1. Computing the optimal transformation path is
APX-Hard and no multiplicative approximation is possible.
That is, constructing a transformation path of cost α ·OPT
is NP-Hard for any α > 1, where OPT is the cost of the
optimal transformation path.

When One of the Variables, k, m, n, Is a Constant.
Since we have shown that TRANSITION (k,m, n, T ) is
APX-hard, we then consider special cases when one of the
variables, k, m, n, is a constant.

When m = 2. The following theorem shows that the
problem TRANSITION (k,m, n, T ) is hard to solve even if
the row player has only two strategies.

Theorem 2. TRANSITION (k, 2, n, T ) is NP-complete.

The NP-hardness of the problem is shown by reducing
from a variant of the Knapsack problem.

When k, the Number of Column Players, Is a Fixed
Constant.
We show that the problem OPT TRANSITION (k,m, n)
is polynomial-time solvable. This is done by reducing the
problem of finding an optimal transformation path to the
problem of finding the shortest path in a complete directed
graph G(V,E).

Given an instance of the problem OPT TRANSITION
(k,m, n), the vertex v ∈ V of graph G is a strategy profile
(rv, Cv) of the bi-matrix games, where rv ∈ R and Cv =
(cv1, . . . , c

v
k), cvi ∈ C . For a directed edge evu ∈ E from

vertex v to vertex u, its weightwvu is defined to be the reward
needed to incentivize the players moving from strategy profile
(rv, Cv) to (ru, Cu), which is TCv (ru) + Trv (Cu).

Let v1 and v∗ be the vertices corresponding to the initial
equilibrium (r(1), C(1)) and the target equilibrium (r∗, C∗),
respectively. The shortest path from v1 to v∗ then corresponds
to the optimal transformation path. Since G is a directed
graph with non-negative edge weights, and the shortest path
problem can be solved inO(|E|+ |V | log log |V |) time (Tho-
rup 1999), we have the following result.

Theorem 3. The optimal reward scheme can be computed
in time O(m2n2k). That is, the problem OPT TRANSITION
(k,m, n) is slicewise polynomial with respect to k.

Proof. Since each vertex of G corresponds to a strategy pro-
file, the number of vertices |V | = m · nk. Given that G is
a complete graph, the number of edges |E| is Θ(|V |2) =
Θ(m2n2k). Thus, the shortest path can be computed in
O(m2n2k) time. After getting the shortest path, we then
construct the optimal transformation path by setting the strat-
egy profile in round t to be the (rvt , Cvt), where vt is the t-th
vertex on the shortest path. The construction based on the
shortest path takes O(|V |) time. As a result, the theorem is
proven.

When n, the Number of Column Player Strategies,
Is a Fixed Constant.
We show that the problem is slicewise polynomial.

Theorem 4. When the number of a column player’s strategies
n is a fixed constant, we can compute the optimal reward
scheme in time O(m2k2n).

Proof. Given the fact that the strategy space and utility of
the k column players are the same, the k bimatrix games are
identical. So, to incentivize the column players’ transit to
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strategy profiles Cj and Cj′ when the row player’s strategy
is ri, respectively, the rewards Tri(Cj) and Tri(Cj

′
) are the

same, as long as the number of column players choosing each
strategy in C is the same under both Cj and Cj′ .

Therefore, we can merge the vertices of the graph G that
corresponds to (ri, Cj) and (ri, Cj′) to form a new vertex.
Since there are k column players and n different strate-
gies, there are

(
n+k−1
k−1

)
different ways for column players

to choose strategies, which means the number of vertices
|V | = m

(
n+k−1
k−1

)
= O(mkn) in the constructed graph. So,

the number of edges |E| is Θ(|V |2) = Θ(m2k2n).

Approximation Results
In light of the APX-Hardness of the problem OPT TRANSI-
TION (k,m, n), in this section, we strive to design efficient
algorithms that can find a solution within an additive factor
of the optimal reward T . To this end, we define alternating
path and use it to design an approximation algorithm.

Alternating Path
First, we define an alternating path as follows.

Definition 1. The vertices of an alternating path are either a
row player strategy r(t) or a column players’ strategy profile
C(t). These vertices alternatingly appear on an alternating
path as time epoch t varies.

The edges of an alternating path are directed and weighted.
The weight of edge (r(t), C(t+1)) is Tr(t)(C(t+1)). Namely,
the weight is the reward needed to incentivize column players
taking up strategy profile C(t+ 1) given that the row player’s
strategy is r(t). Similarly, the weight of edge (C(t), r(t+ 1))
is TC(t)(r(t+ 1)). The cost, Cost(P ), of an alternating path
P is the sum of all its edges’ weights. Then, given a trans-
formation path from the initial equilibrium to the target equi-
librium, we can derive two alternating paths with the same
length as the transformation path as Figure 1 demonstrates.
Notably, the total cost of these two alternating paths is equal
to the cost, T =

∑
t{Tr(t)(C(t+ 1)) + TC(t)(r(t+ 1))}, of

the transformation path. As such, we derive the following
lemma straightforwardly.

Algorithm 1: Transformation Path Construction
Input: An alternating path P with cost Cost(P ):

r(1)→ · · · → r(l)→ C∗
Output: A transformation path of length l + 1 with

cost 2 · Cost(P )
the 1st vertex← (r(1), C(1));
the 2nd vertex← (r(1), C(2));
while 3 ≤ t ≤ l do

when t is odd, the t-th vertex← (r(t), C(t− 1));
when t is even, the t-th vertex← (r(t− 1), C(t))

end
the (l + 1)-th vertex← (r(l), C∗);
the (l + 2)-th vertex← (r∗, C∗)

Figure 1: Two alternating paths decomposed from a transfor-
mation path.

Lemma 1. Given the optimal transformation path from
the initial equilibrium (r(1), C(1)) to the target equilibrium
(r∗, C∗), and the two alternating paths decomposed from this
transformation path, the cost of the transformation path is at
least two times the cost of the alternating path whichever is
smaller.

Now, fixing an initial equilibrium (r(1), C(1)) and a tar-
get equilibrium (r∗, C∗), let us consider all possible alter-
nating paths connecting r(1) or C(1) and r∗ or C∗, respec-
tively. Without loss of generality, assume the alternating
path r(1) → · · · → r(l) → C∗ has the smallest cost
amongst all these alternating paths. Then, we can use Algo-
rithm 1 to construct a transformation path from (r(1), C(1))
to (r∗, C∗) whose cost is twice of the cost of the alternating
path r(1)→ · · · → r(l)→ C∗.

In the proof of the following theorem, we will present a
constructive procedure for the optimal transformation path.

Theorem 5. The cost of the transformation path constructed
by Algorithm 1 is two times the cost of the alternating path
r(1)→ · · · → r(l)→ C∗. Moreover, the length of the output
transformation path is one longer than the input alternating
path.

Directly following Lemma 1 and Theorem 5, we have a
corollary as follows.

Corollary 2. The cost of the optimal transformation path
from the initial equilibrium (r(1), C(1)) to the target equi-
librium (r∗, C∗) is exactly two times the smallest cost of an
alternating path connecting r(1) or C(1) and r∗ or C∗.

Moreover, if the alternating path with the smallest cost
connecting r(1) or C(1) and r∗ or C∗ is known, then we can
construct the optimal transformation path from the initial
equilibrium (r(1), C(1)) to the target equilibrium (r∗, C∗).
In addition, Algorithm 1 also allows us to upper bound the
length of an optimal transformation path, i.e., the total num-
ber of rounds needed to move from the initial equilibrium to
the target equilibrium.

Theorem 6. Given any initial equilibrium (r(1), C(1)) and
target equilibrium (r∗, C∗), there exists an optimal transfor-
mation path whose length is at most 2m− 1.
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Approximation Algorithm
In this subsection, we use the properties of the alternating
path established above to design an approximation algorithm.
We will construct a complete directed graph in which the ver-
tices are row player strategies, and the weight of an edge is the
cost of a length-2 alternating path connecting two adjacent
vertices. Although the exact minimum cost of these length-2
alternating paths is hard to compute, as otherwise, the prob-
lem OPT TRANSITION (k,m, n) will become tractable
following our construction, we approximate these costs by
rounding the solutions of integer linear programmings. Build-
ing upon this complete directed graph, we can assemble an
alternating path with nearly-optimal cost between any two
row-player strategies. We can extend this approach by an
additional handling technique to assemble a minimum-cost
alternating path between any row or column player strate-
gies. This way, we can approximate the cost of an alternating
path connecting r(1) or C(1) and r∗ or C∗. Building upon
the alternating path with the smallest cost among these four
paths, we can erect the optimal transformation path between
the initial and target equilibria.

We start by constructing a weighted directed complete
graph G(V,E). In graph G, each vertex vi corresponds to a
strategy ri of the row player. From each vertex vi to a differ-
ent vertex vj , there is an edge eij . The weight wij of edge
eij is the cost of an alternating path ri → Cij → rj , where
Cij ∈ C k is a column players’ strategy profile. Clearly, the
smaller wij is, the better we can approximate the solution to
the problem OPT TRANSITION (k,m, n). In Algorithm 2,
we employ a sub-routine WEIGHT(ri, rj) to compute wij

and the corresponding column players’ strategies Cij . Now
that we have finished the construction of the graph G, we
can compute the shortest path between any two vertices vi
and vj . In the meantime, we insert the corresponding column
player strategy profiles Cij into every adjacent vertex vi and
vj , to construct an alternating path (of the equilibrium tran-
sition problem) from the shortest path (of graph G). Clearly,
the shortest path Prirj between vi and vj corresponds to an
approximately optimal alternating path from ri to rj . If both
s1 and s2 are row player strategies, then no additional treat-
ment on the shortest path is needed. So Algorithm 2 returns
P ′ = Ps1s2 ; otherwise, to obtain an approximately optimal
alternating path from s1 to s2, we need to make an additional
comparison to append one more column player strategy in
front and at the end of the shortest path, so that the cost of
the output alternating path is as small as possible.

In the following, we present an integer linear program-
ming formulation used to approximate the cost of a length-2
alternating path in the sub-routine WEIGHT(ri, rj).

Sub-routine WEIGHT(ri, rj). Denote xq the number of
column players who play the strategy cq ∈ C . Then the
column strategy profile Cij ∈ C k is determined given a
tuple (x1, . . . , xn). The hurdle to approximate Tri(Cij) +
TCij (rj) is that TCij (rj) contains the max operator. To detour
it, we introduce m integer linear programming (ILPs). For
the z-th ILP, we eliminate the operator max by introducing a
constraint that rz is row player’s best response strategy with
respect to Cij . By allowing xq to be a positive number, we

Algorithm 2: Construction of an Approximately Op-
timal Alternating Path s1 → · · · → s2

Input: Strategy sets R and C k;
Payoff matrices Rm×n and Cm×n;
Initial equilibrium (r(1), C(1)) and target equilibrium
(r∗, C∗);
s1 ∈ {r(1), C(1)}, s2 ∈ {r∗, C∗}.
Output: An alternating path from s1 to s2
Initialize a complete directed graph G(V,E);
for i from 1 to m do

vi ← ri;
for j from 1 to m do

eij ← an edge from vi to vj ;
(wij , Cij)←WEIGHT(ri, rj);

end
end
for i from 1 to m do

for j from 1 to m do
Prirj ← the shortest path between vi and vj ;
for each edge epq along Prirj do

Insert Cpq between vp and vq;
end

end
end
if s1, s2 ∈ R then

P ′ ← Ps1s2 ;
end
if s1 ∈ R and s2 ∈ C k then

P ′ ← arg minPs1q
(Cost(Ps1q) + Tq(s2));

Append s2 to the end of P ′;
end
if s1 ∈ C k and s2 ∈ R then

P ′ ← arg minPqs2
(Cost(Pqs2) + Ts1(q));

Insert s1 in the front of P ′;
end
if s1, s2 ∈ C k then

P ′ ←
arg minPpq

(Ts1(p) + Cost(Ppq) + Tq(s2));
Append s2 to the end of P ′;
Insert s1 in the front of P ′;

end
return P ′

further relax these ILPs to linear programmings (LPs). The
z-th linear programming is shown as follows.

min Tri(Cij) +
∑

1≤q≤n

xqR(rz, cq)−
∑

1≤q≤n

xqR(rj , cq)

s.t.
∑

1≤q≤n

xqR(rz, cq) ≥
∑

1≤q≤n

xqR(rz
′
, cq), ∀z′ ∈ [m]

x1 + · · ·+ xn = k

xq ≥ 0, ∀q ∈ [n]

The objective function is the cost, Tri(Cij) + TCij (rj), of
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the length-2 alternating path ri → Cij → rj . It is linear in the
variables xq’s. The first constraint ensures that rz is the row
player’s best response strategy to column player strategy pro-
file Cij . The remaining constraints state that the total number
of column players equals precisely k and xq is non-negative.
After solving these m LPs, we take the one that gives the
minimum value w∗ij of the objective functions. Without loss
of generality, assume that it is the z-th LP that achieves the
minimum value. Hence, the objective function can be rewrit-
ten as kmaxp C(ri, cp)−

∑
1≤q≤n xqf(cq), where f(cq) is

C(ri, cq)−R(rz, cq) +R(rj , cq). We can retrieve a strategy
profile Cij given the solution (x1, . . . , xn). Albeit the solu-
tions xq’s of the LPs are not necessarily integers, for now, we
can interpret them as a mixed-strategy profile.

To round the fractional solution to an integral solution,
we first round each xq down to the nearest integer bxqc,
q = 1, . . . , n. Let u = arg minq maxpR(rp, cq), we then
increase xu by k −

∑
1≤q≤nbxqc. Till now, we have derived

an integer solution (bx1c, . . . , bxnc), from which we can
retrieve a valid strategy profile Cij . Based on Cij , we obtain
an alternating path ri → Cij → rj with cost wij .

Next, we bound the difference between the optimal ob-
jective value of the LPs and the transition cost wij that we
derived from the alternating path.

Lemma 2. wij − w∗ij ≤ 2‖R‖1,1 + ‖C‖1,1, where ‖R‖1,1
and ‖C‖1,1 are the sum of all entries of R and C, respec-
tively.

Theorem 7. Algorithm 2 returns an alternating path between
s1 and s2 whose cost is at most m(2‖R‖1,1 + ‖C‖1,1) more
than the cost of the optimal alternating path between s1 and
s2.

Finally, we bound the additive approximation error.

Theorem 8. Denote OPT the cost of the optimal transfor-
mation path from (r(1), C(1)) to (r∗, C∗). We can implement
Algorithm 2 to find an approximately optimal alternating path
and then Algorithm 1 to construct a transformation path with
a cost OPT +2m(2‖R‖1,1 + ‖C‖1,1) in polynomial time.

We note that the advantage of this additive approximation
is that it is independent of the number of column players k.
In many practical scenarios such as increasing the uptake of
electric vehicles and retail store businesses, k is the number
of drivers/customers which is significantly larger than the
number of player strategies.

Tractable Cases
In this section, we turn our attention to the cases in which
the optimal transformation path can be found in polynomial
time. Recall the example in the Introduction: in the game, the
row player is a service provider and the column players are
the customers. We assume that all possible locations are dis-
tributed on a straight line. That is, the players’ strategy space
R = C . In particular, the row player is limited to choosing
a location which is one of the column player strategies. The
service provider seeks to minimize the sum of the Euclidean
distance between its location and the locations of customers.
A customer’s payoff is negatively correlated with its distance

to the service provider. With a slight abuse of notations, we
denote ri, cj the axis of the locations on the line. W.l.o.g., we
assume they are both sorted in increasing orders.

Definition 2. In this one-dimensional domain, a player’s
payoff is single-peaked if it is maximized at a single point
on the line, and the further its location to this point, the less
its payoff. A player’s payoff is exact-distance if it is equal to
the negative value of the difference between its location to a
single point on the line.

In particular, we are interested in the case in which the
row player’s payoff is exact-distance and the column players’
payoff is single-peaked. That is, given the strategy profile
(ri, cj11 , . . . , c

jk
k ), jl ∈ [m], l = 1, . . . , k, the row player’s

payoff is
∑k

l=1R(ri, cjll ) = −
∑k

l=1 |ri − c
jl
l |, and the col-

umn player l’s payoff is C(ri, cjll ) = g(|ri − cjll |), where
g(·) is monotone decreasing and g(0) = 0. In this case, we
show that the problem is tractable.

Theorem 9. When the row player’s payoff is exact-distance
and the column players’ payoff is single-peaked, the optimal
transformation path from an initial equilibrium to a target
equilibrium can be found in polynomial time.

Conclusions and Future Work
In this paper, we formulated an optimization problem to find
the optimal transformation path from an initial equilibrium
to a more desirable one. In this game, players move simul-
taneously in each round. We presented comprehensive com-
plexity analyses of the problem. We proved that the problem
is APX-hard when the number of the row player strategies,
the number of the column player strategies, and k are input
sizes. Furthermore, we showed that the problem is slicewise
polynomial with respect to k and n, respectively. As for the
parameter m, we proved that the problem is NP-Hard even
when m = 2. Besides the hardness result, we designed a
polynomial-time approximation algorithm with bounded ad-
ditive error. Moreover, the approximation error is independent
of the number of column players k. Finally, we considered
cases where we can find the optimal transformation path in
polynomial time.

It is important to acknowledge that the problem we have
analyzed presents intractability in various setups, making any
generalizations a formidable task. Viable solutions would
likely require the application of additional restrictions or
careful consideration of special cases. However, the realm
of possibilities for further exploration is vast and captivating.
Firstly, delving into the extension of our study to encompass
scenarios where column players possess diverse strategies
and payoff matrices holds great interest. Secondly, exploring
the implications of incorporating randomized strategies and
how they might alter the overall dynamics of the game poses
an intriguing challenge. Thirdly, developing efficient algo-
rithms for other cases, such as utilizing alternative distance
measures to define player strategies corresponding to loca-
tions on general graphs and their associated payoffs, presents
an enticing avenue for investigation. Additionally, broaden-
ing the scope of the study to incorporate multiple row players
opens up exciting possibilities for research and discovery.
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