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Abstract

Out-of-distribution (OOD) generalization has attracted increas-
ing research attention in recent years, due to its promising
experimental results in real-world applications. In this paper,
we study the confidence set prediction problem in the OOD
generalization setting. Split conformal prediction (SCP) is an
efficient framework for handling the confidence set prediction
problem. However, the validity of SCP requires the examples
to be exchangeable, which is violated in the OOD setting.
Empirically, we show that trivially applying SCP results in
a failure to maintain the marginal coverage when the unseen
target domain is different from the source domain. To address
this issue, we develop a method for forming confident pre-
diction sets in the OOD setting and theoretically prove the
validity of our method. Finally, we conduct experiments on
simulated data to empirically verify the correctness of our
theory and the validity of our proposed method.

1 Introduction
Recent years have witnessed the remarkable success of mod-
ern machine learning techniques in many applications. A fun-
damental assumption of most machine learning algorithms
is that the training and test data are drawn from the same
underlying distribution. However, this assumption is consis-
tently violated in many practical applications. In reality, the
test environment is influenced by a range of factors, such as
the distributional shifts across photos caused by the use of
different cameras in image classification tasks, the voices of
different persons in voice recognition tasks, and the variations
between scenes in self-driving tasks (Nagarajan, Andreassen,
and Neyshabur 2021). As a result, there is now a rapidly
growing body of research with a focus on generalizing to
unseen target domains with the help of the source domains,
namely OOD generalization (Shen et al. 2021).

Existing OOD generalization methods focus on improving
worst-case performance on the target domains, i.e., improv-
ing the average test accuracy of the model on the worst tar-
get domain. However, in some systems that require high
security (such as medical diagnosis), even a single mis-
take may have disastrous consequences. In these cases, it
is important to quantify the uncertainty of the predictions.
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One way to perform uncertainty estimation (Amodei et al.
2016; Jiang et al. 2012, 2018; Angelopoulos et al. 2021)
is to create confident prediction sets that provably contain
the correct answer with high probability. Let Xn+1 ∈ X
be a new test example for which we would like to predict
the corresponding label Yn+1 ∈ Y , where X is the input
space and Y is the label space. For any given α ∈ (0, 1),
the aim of confidence set prediction is to construct a set-
valued output, C(Xn+1), which contains the label Yn+1 with
distribution-free marginal coverage at a significance level α,
i.e., P (Yn+1 ∈ C(Xn+1)) ≥ 1− α. A confidence set predic-
tor Cα is said to be valid if P (Yn+1 ∈ Cα(Xn+1)) ≥ 1− α
for any α ∈ (0, 1), where α is a hyper-parameter of the pre-
dictor. To simplify the notation, we omit the superscript α in
the remainder of this paper.

Conformal prediction (Vovk, Gammerman, and Shafer
2005; Shafer and Vovk 2008, CP) is a model-agnostic, non-
parametric and distribution-free (the coverage guarantee
holds for any distribution) framework for creating confident
prediction sets. Split conformal prediction (Vovk 2013; Vovk,
Gammerman, and Shafer 2005, SCP), a special type of CP,
has been shown to be computationally efficient. SCP reserves
a set of data as the calibration set, and then uses the relative
value of scores of the calibration set and that of a new test
example to construct the prediction set. The validity of SCP
relies on the assumption that the examples are exchangeable.
However, in the OOD setting, the distributional shift between
the training and test distributions leads to the violation of
the exchangeability assumption. We empirically evaluate the
performance of SCP in the OOD setting in Section 4. Un-
fortunately, we find that trivially applying SCP results in a
failure to maintain marginal coverage in the OOD setting.

To address this issue, we construct a set predictor based on
the f -divergence (Alfréd 1961) between the test distribution
(target domain) and the convex hull of the training distribu-
tions (source domains). We theoretically show that our set
predictor is guaranteed to maintain the marginal coverage
(Corollary 9). We then conduct simulation experiments to
verify our theory.

The remainder of this article is structured as follows: §2
introduces some related works; §3 presents the notation defi-
nitions and preliminaries; §4 conducts experiments that show
the failure of SCP in the OOD generalization setting; §5
creates corrected confidence set predictor in the OOD gen-
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eralization setting; §6 provides our experimental results. §7
make discussions with the most related work. Finally, the con-
clusions are presented in §8. All of our proofs are attached in
Appendix A.

2 Related Works

OOD generalization. OOD generalization aims to train a
model with data from the source domains so that it is capable
of generalizing to an unseen target domain. A large num-
ber of algorithms have been developed to improve OOD
generalization. One series of works focuses on minimiz-
ing the discrepancies between the source domains (Li et al.
2018b; Ganin et al. 2016; Li et al. 2018c; Sun and Saenko
2016). Meta-learning domain generalization (Li et al. 2018a,
MLDG) leverages the meta-learning approach and simulates
train/test distributional shift during training by synthesizing
virtual testing domains within each mini-batch. Another line
of works (Xin et al. 2022; Wang et al. 2022) conducts ad-
versarial training (Madry et al. 2018) to improve the OOD
generalization performance. (Zou and Liu 2023) considers
improving the adversarial robustness of the unseen target
domain. Notably, the above works all focus on improving the
average performance on the target domain; in contrast, we
focus on designing valid confidence set predictors for data
from the unseen target domains, as this is a crucial element
of making high-stakes decisions in systems that require high
security.

Conformal prediction. As introduced in §1, confor-
mal prediction is a model-agnostic, non-parametric, and
distribution-free framework that provides valid confidence
set predictors. Generally speaking, examples are assumed to
be exchangeable in a CP context. Most pertinent to our work,
(Gendler et al. 2022; Tibshirani et al. 2019; Fisch et al. 2021;
Cauchois et al. 2020; Gibbs and Candès 2021; Oliveira et al.
2022) all consider various situations in which the exchange-
ability of the examples is violated to some extent. (Gendler
et al. 2022) considers the case in which the test examples may
be adversarially attacked (Szegedy et al. 2014; Goodfellow,
Shlens, and Szegedy 2015; Madry et al. 2018); (Tibshirani
et al. 2019) investigates the situation in which the density
ratio between the target domain and the source domain is
known; (Fisch et al. 2021) studies the few-shot learning set-
ting and assumes that the source domains and the target do-
main are independent and identically distributed (i.i.d.) from
some distribution on the domains; (Gibbs and Candès 2021)
considers an online learning setting and (Oliveira et al. 2022)
provides results when the examples are mixing (Achim 2013;
Xiaohong, Lars Peter, and Marine 2010; Bin 1994). Different
from all the works discussed above, we consider the OOD
generalization setting in which the f -divergence between the
target domain and the convex hull of the source domains is
constrained. The most related work among them is (Cauchois
et al. 2020), which studies the worst-case coverage guarantee
of a f -divergence ball centered at the single source domain.
For the discussions about similarities and differences with
(Cauchois et al. 2020), please refer to Section 7.

3 Preliminaries
We begin with the OOD setups and a review of conformal
prediction.

Notations. We denote {1, 2, . . . , n} by [n] for n ∈ N+.
For a distribution P on R, we define the quantile function
of P as Q(β;P ) := inf{s ∈ R|P (S ≤ s) ≥ β}. Sim-
ilarly, for a cumulative distribution function (c.d.f.) F on
R, we define Q(β;F ) := inf{s ∈ R|F (s) ≥ β}. For
n distributions P1, . . . , Pn, we define CH (P1, . . . , Pn) :=
{
∑n

i=1 λiPi|λ1, . . . , λn ≥ 0;
∑n

i=1 λi = 1} as the convex
hull of the distributions P1, . . . , Pn. We further define
N (µ,Σ) as the multi-variable Gaussian distribution with
mean vector µ and covariance matrix Σ. For a set A, we
define the indicator function as IA(·), where IA(x) = 1 if
x ∈ A and IA(x) = 0 otherwise.

3.1 Out-of-Distribution Generalization
We define the input space as X and the label space as Y . We
set Y = {±1}, Y = {1, 2, . . . ,K} (where K is the number
of classes), and Y = R for the binary classification problem,
the multi-class classification problem, and the regression
problem, respectively. Let S := {S1, . . . , Sd} be the set of
source domains, where d is the number of source domains.
S1, . . . , Sd are distributions on Z := X × Y , and we use the
terminologies ”domain” and ”distribution” interchangeably
in this paper. Let T denote the target domain. The goal of
OOD generalization is to obtain good performance on all
T ∈ T , where T is the set of all possible target domains; we
usually assume S ⊆ T .

In a standard OOD generalization setting, we learn a pre-
dictor h ∈ H ⊆ {h : X −→ Y} from the source domains
S and define a loss function ℓ : Y × Y −→ R∗ where
R∗ = [0,+∞). We aim to minimize the worst-case pop-
ulation risk of the predictor h on the unseen target domain as
follows:

RT (h) = max
T∈T

E
(X,Y )∼T

[ℓ (h(X), Y )] .

However, in some systems that require high security, a
mistake may lead to serious disasters. In these cases, a good
solution is to output a prediction set with a marginal coverage
guarantee. For a predefined confidence level 1− α ∈ (0, 1),
we wish to output a prediction set C(x) ⊆ Y such that, for
any T ∈ T :

P
(X,Y )∼T,C

[Y ∈ C(X)] ≥ 1− α, (1)

where the probability is over the randomness of test examples
(X,Y ) ∼ T and the randomness of the prediction set C. To
achieve (1), we follow the idea of SCP (Vovk 2013; Vovk,
Gammerman, and Shafer 2005) to construct C(x). The next
section introduces the main idea of SCP.

3.2 Split Conformal Prediction
Nonconformity score. In SCP, we consider a supervised
learning problem that involves predicting the label y ∈ Y
of the input x ∈ X . We assume that we have a predictive
model s : X × Y −→ R, which outputs the nonconformity
score s(x, y). The nonconformity score function s(·, ·) is
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usually trained with a set of training data. s(x, y) < s(x, y′)
means that for the input x, y is more likely than y′ to be the
label. Some examples of nonconformity scores are as follows:
for a probabilistic model p(y|x), we can take the negative
log-likelihood as the score, s(x, y) = −log(p(y|x)); for a
regression model h : X −→ Y , a typical choice is s(x, y) =
|h(x)−y|; for a multi-class classifier h : X −→ ∆K−1, where
∆K−1 is the K − 1 dimensional simplex in RK , we can take
s(x, y) = 1− h(x)y .

In SCP, we assume that the examples {(Xi, Yi)}n+1
i=1 ⊆

X × Y are exchangeable (Definition 1). For a predefined
significance level α ∈ (0, 1), the goal is to provide a valid
confidence set Ĉ(Xn+1). CP methods (Shafer and Vovk 2008)
take advantage of the exchangeability of the data and the prop-
erties of the quantile function to make such a construction
possible.
Definition 1 ((Shafer and Vovk 2008, Exchangeability)).
The random variables Z1, . . . , Zn are exchangeable if for
every permutation τ for integers 1, . . . , n, the variables
W1, . . . ,Wn, where Wi = Zτ(i), have the same joint proba-
bility distribution as Z1, . . . , Zn.

Let Vi = s(Xi, Yi) for i ∈ [n+ 1] be the nonconformity
scores corresponding to the examples {(Xi, Yi)}n+1

i=1 , where
s(·, ·) is independent of {(Xi, Yi)}n+1

i=1 . The independence
between s(·, ·) and {(Xi, Yi)}n+1

i=1 is useful since in this case
we can prove that the scores {Vi}n+1

i=1 are exchangeable. The
exchangeability of {Vi}n+1

i=1 comes from the exchangeability
of {(Xi, Yi)}n+1

i=1 and the independence between the s(·, ·)
and {(Xi, Yi)}n+1

i=1 . Next, define rank(Vi) as the rank of Vi

among {Vi}n+1
i=1 for any i ∈ [n + 1] (in ascending order;

we assume that ties are broken randomly). By the exchange-
ability of {Vi}n+1

i=1 , rank(Vi) is uniform on [n + 1], which
is used to prove the validity of SCP in Lemma 2. We use
P̂ ({Vi}ni=1) to denote the empirical distribution determined
by the examples V1, . . . , Vn. Let

Ĉn(x) :=
{
y∈Y

∣∣∣s(x, y)≤Q
(
n+ 1

n
(1−α);P̂ ({Vi}ni=1)

)}
,

(2)
we then have the following marginal coverage guarantee.

Lemma 2 (The validity of SCP). Assume that examples
{(Xi, Yi)}n+1

i=1 are exchangeable. For any nonconformity
score s(·, ·) and any α ∈ (0, 1), the prediction set defined in
Equation (2) satisfies:

P
(
Yn+1 ∈ Ĉn(Xn+1)

)
≥ 1− α, (3)

where the probability is over the randomness of
{(Xi, Yi)}n+1

i=1 .
In the OOD generalization setting, we also want to obtain

a valid set predictor that is valid for any T ∈ T . In light of
this, some natural questions arise:

Does the set predictor defined in Equation (2) remain
valid when the unseen target domain is different from
the source domains? If not, can we construct a new
set predictor that is valid in the OOD generalization
setting?

Unfortunately, the answer to the first question is nega-
tive. Theoretically, as shown in Appendix A.1, the proof
of Lemma 2 is highly dependent on the exchangeability
of the examples {(Xi, Yi)}n+1

i=1 , which is easily violated if
there is any distributional shift between the distribution of
{(Xi, Yi)}ni=1 and the distribution of (Xn+1, Yn+1). This
means that in the OOD setting, the proof technique of
Lemma 2 cannot be applied. Empirically, in Section 4, we
provide a toy example to show that the set predictor Ĉn(x) is
no longer valid in the OOD setting.

In Section 5, we give an affirmative answer to the second
question. We first construct a new set predictor based on
the f -divergence between the target domain and the convex
hull of the source domains, then provide marginal coverage
guarantees for the constructed predictor.

4 SCP Fails in the OOD Setting
In this section, we construct a toy example to show that for
the OOD confidence set prediction problem, SCP is no longer
valid, even under a slight distributional shift.

For simplicity, we consider a single-domain case. Specif-
ically, we consider the regression problem and set X = Rl,
Y = R. We define the source domain S as follows: given a
linear predictor L(x) = ⟨w⋆, x⟩ + b⋆ where w⋆ ∈ Rl and
b⋆ ∈ R. The marginal distribution of X and the conditional
distribution of Y given X are defined as:

X ∼ N (µs, σ
2
s,xIl), Y |X = x ∼ N (L(x), σ2

s,y),

where µs ∈ Rl is the mean vector of X , σs,x, σs,y are pos-
itive scalars, and Il ∈ Rl×l is an identity matrix. Similarly,
for the target domain T , we define:

X ∼ N (µt, σ
2
t,xIl), Y |X = x ∼ N (L(x), σ2

t,y),

where µt ∈ Rl is the mean vector of X and σt,x, σt,y are
positive scalars. For simplicity, we set µs = µt, σs,x =
σt,x and σs,y ̸= σt,y. We sample mtrain training examples
from S to train a linear predictor L̂(x) = ⟨ŵ, x⟩+ b̂, where
ŵ ∈ Rl and b̂ ∈ R. We then define the nonconformity score
as s(x, y) = |L̂(x) − y|. We sample n examples from S

to construct the prediction set Ĉn(x) in Equation (2) and
sample mtest examples from T to form the test data. We run
1000 times with different random seeds. The results for the
coverage (left) and length (right) of the prediction set are
presented in box plot form in Figure 1. Here, the coverage
is the ratio between the number of test examples such that
yi ∈ Ĉn(xi) and the size of the test set. The red lines stand
for the desired marginal coverages. Since the boxes are below
the red coverage lines, we conclude that SCP fails to provide
a prediction set with desired coverage when there exists a
distributional shift between the source domain and the target
domain.

5 Corrected SCP for OOD Data
In this section, we consider correcting SCP for OOD data.
We first consider the case in which we have access to the pop-
ulation distributions of the scores from the source domains.
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Figure 1: The box plots for the results of the 1000 runs. We
show the results for α = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} and
the horizontal axis represents the value of α. The left plot
shows the results for the coverage of the prediction sets. The
red lines are the marginal coverage guarantees that we wish
to achieve. The right plot shows the results for the length of
the prediction sets.

We then consider the case in which we only have access to
the empirical distributions and correct the prediction set to
obtain a marginal coverage guarantee in Equation (3).

5.1 Target Distribution Set and Confidence Sets
It is obvious that obtaining a marginal coverage guarantee
for an arbitrary target distribution is impossible unless we
set Ĉ(x) = Y for all x ∈ X , which is a trivial confidence
set predictor and does not provide any useful information. In
this paper, we consider the case in which the f -divergence
(Alfréd 1961) between the target domain and the convex hull
of the source domains does not exceed a predefined value.
The well-known KL divergence and TV distance are both
special cases of f -divergence.

As Section 4 shows, when the target domain differs from
the source domain, the marginal coverage does not hold for
the predictor (2). Below, we construct new prediction sets
where the marginal coverage (3) holds.

We define a set of distributions T ⊆
{Q|Q is a distribution on X×Y}. For each T ∈ T , the distri-
bution of the score for the data from T is defined as the push
forward distribution s#T , where (s#T )(A) = T (s−1(A))
for any measurable set A ⊆ R. We define the distribution
set of the scores as P := {s#T : T ∈ T }. For a given
α ∈ (0, 1), our goal is to choose a threshold t ∈ R such that
the confidence set C̃(x) := {y ∈ Y|s(x, y) ≤ t} satisfies
(3) when (Xn+1, Yn+1) is drawn from any target domain
T ∈ T . The following lemma provides a proper choice of t.
Lemma 3. For any unknown target distribution T ∈ T ,
assume that (Xn+1, Yn+1) is drawn from T . If we set t ≥
max
P∈P

Q(1− α;P ), then:

P
(
Yn+1 ∈ C̃(Xn+1)

)
≥ 1− α. (4)

For a given set P of distributions for the score, Lemma 3 re-
duces the problem of finding a valid confidence set predictor
to the following optimization problem:

max Q(1− α;P ) s.t. P ∈ P . (5)

Next, we formulate the set T through the lens of f -
divergence.

Definition 4 (f -divergence). Let f : R −→ R be a closed
convex function satisfying f(1) = 0 and f(t) = +∞ for
t < 0. Let P,Q be two probability distributions such that
P ≪ Q (P is absolutely continuous with respect to Q).
The f -divergence between P and Q can then be defined as
follows:

Df (P∥Q) :=

∫
f

(
dP

dQ

)
dQ,

where dP
dQ is the Radon-Nikodym derivative (Patrick 2008).

Remark 1. For a given function f that satisfies the condi-
tions in Definition 4, define f0(t) := f(t)− f ′(1)(t− 1). We
then obtain that, for any P ≪ Q:

Df0(P∥Q) =

∫
f0

(
dP

dQ

)
dQ = Df (P∥Q).

By the convexity of f , it can be easily observed that f0(t) ≥ 0
for all t ∈ R. Moreover, inft f0(t) = f0(1) = 0 and f ′

0(1) =
0. Since f0 produces the same f -divergence as f , without
loss of generality, we can assume that f ′(1) = f(1) = 0 and
f ≥ 0.

Equipped with the f -divergence, we can now define our
target distribution set T for a given threshold ρ > 0:

Tf,ρ(S1,· · ·,Sd):={T |∃Q∈CH(S1,· · ·,Sd) s.t. Df (T∥Q)≤ρ} .
We omit S1, . . . , Sd and use Tf,ρ for simplicity. The corre-
sponding distribution set for the scores is then:

P := {s#T |T ∈ Tf,ρ}. (6)

However, it is hard to obtain the precise relationship
between P and the distributions s#S1, . . . , s#Sd, which
makes it difficult to analyze P . We instead consider the fol-
lowing distribution set of scores:

Pf,ρ := {S is a distribution on R|
∃S0 ∈ CH(s#S1, · · · , s#Sd) s.t. Df (S∥S0) ≤ ρ} .

(7)
The following lemma reveals the relationship between P and
Pf,ρ.
Lemma 5. Let P , Pf,ρ be defined as in (6), (7) respectively.
Then, P ⊆ Pf,ρ.
Remark 2. According to Lemma 5, sup

P∈Pf,ρ

Q(1− α;P ) ≥

sup
P∈P

Q(1 − α;P ). Lemma 3 accordingly tells us that if

we set t = sup
P∈Pf,ρ

Q(1 − α;P ), then for (Xn+1, Yn+1)

drawn from any target distribution T ∈ Tf,ρ, we have

P
(
Yn+1 ∈ C̃(Xn+1)

)
≥ 1 − α. Our goal is now to solve

Problem (5) for the set Pf,ρ.
According to Remark 2, we define the worst-case quan-

tile function for the distribution set Pf,ρ as Q̃(α;Pf,ρ) :=

sup
P∈Pf,ρ

Q(α;P ). Remark 2 tells us that taking t = Q̃(1 −

α;Pf,ρ) produces a valid confidence set C̃. The next theorem
allows us to express the worst-case quantile function in terms
of the standard quantile function, which helps us to calculate
the worst-case quantile efficiently.
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Theorem 6. Let F1, . . . , Fd be the c.d.f.’s of the distributions
s#S1, . . . , s#Sd. Define the function gf,ρ : [0, 1] −→ [0, 1]
as

gf,ρ(β) :=inf

{
z∈ [0, 1]

∣∣∣∣βf( z

β

)
+(1−β)f

(
1− z

1− β

)
≤ρ

}
and define the inverse of gf,ρ as g−1

f,ρ(τ) = sup{β ∈
[0, 1]

∣∣gf,ρ(β) ≤ τ}. Let Fmin(x) := min
1≤i≤d

Fi(x) be a c.d.f.,

the following holds for all α ∈ (0, 1):

Q̃(α;Pf,ρ) = Q(g−1
f,ρ(α);Fmin).

5.2 Marginal Coverage Guarantee for Empirical
Source Distributions

In the previous section, we presented marginal coverage guar-
antees when we have access to the population distributions
of the scores for source domains. However, in practice, it
is difficult or even impossible to access these population
distributions. In this section, we provide marginal coverage
guarantees even when we only have access to the empirical
distributions, which is useful in practice.

For any i ∈ [d], assume we have mi i.i.d. examples
{Vij = s(Xij , Yij)}mi

j=1 from the source distribution Si. Fur-

ther, suppose that F̂i is the empirical c.d.f. corresponding to
Fi, which is defined as F̂i(x) =

1
mi

∑mi

j=1 I(−∞,x](Vij). De-
fine F̂min(x) = min

1≤i≤d
F̂i(x). We first provide an error bound

when we estimate Fmin with F̂min.

Proposition 7. Let F1, . . . , Fd be c.d.f.’s on R, define
Fmin(x) = min

1≤i≤d
Fi(x). Suppose F̂1, . . . , F̂d are the em-

pirical c.d.f.’s corresponding to F1, . . . , Fd, defined with
m1, . . . ,md examples, respectively. Define F̂min(x) =

min
1≤i≤d

F̂i(x). Then, for any ϵ > 0,

P
(
sup
x∈R

∣∣∣Fmin(x)− F̂min(x)
∣∣∣ > ϵ

)
≤ 2

d∑
i=1

e−2miϵ
2

,

where the probability is over the randomness of the examples
that define the empirical c.d.f.’s.

The above Proposition 7 allows us to quantify the error
caused by replacing the population distributions with the
empirical distributions, which leads to the following marginal
coverage guarantee for the prediction set C̃ that we have
defined before.

Theorem 8 (Marginal coverage guarantee for the empirical
estimations). Assume Vn+1 = s(Xn+1, Yn+1) ∼ P ∈ Pf,ρ

is independent of {Vij}d,mi

i,j=1 where {Vij}mi
j=1

i.i.d.∼ s#Si for
i ∈ [d]. Suppose ρ⋆ = inf

P0∈CHs

Df (P∥P0) ≤ ρ where CHs =

CH(s#S1, · · · , s#Sd). Let F̂min be defined as in Proposi-
tion 7 and let Ŝ1, . . . , Ŝd be the empirical distributions of
S1, . . . , Sd respectively. If we set t = Q̃(1 − α; P̂f,ρ) =

Q(g−1
f,ρ(1 − α); F̂min), then for any ϵ > 0, we obtain the

following marginal coverage guarantee for C̃:

P
(
Yn+1∈C̃(Xn+1)

)
≥

(
1−2

d∑
i=1

e−2miϵ
2

)
gf,ρ⋆

(
g−1
f,ρ(1−α)−ϵ

)
,

where the randomness is over the choice of the source exam-
ples and (Xn+1, Yn+1) and

P̂f,ρ :=
{
S
∣∣∣∃S0∈CH(s#Ŝ1, · · · , s#Ŝd) s.t. Df(S∥S0)≤ρ

}
.

By Lemma 14 in the Appendix, gf,ρ(β) is non-increasing
in ρ and non-decreasing in β, so gf,ρ⋆(g−1

f,ρ(1−α)− ϵ) ≥
gf,ρ(g

−1
f,ρ(1−α)−ϵ). In practice, we do not know ρ⋆, so we

use gf,ρ(g
−1
f,ρ(1−α)− ϵ) instead. Since gf,ρ(g

−1
f,ρ(1−α)−

ϵ)≤gf,ρ(g
−1
f,ρ(1−α))=1− α, we get guaranteed coverage(

1−2
∑d

i=1 e
−2miϵ

2
)
gf,ρ(g

−1
f,ρ(1−α)−ϵ)≤1−α. To achieve

a marginal coverage with the level of at least 1− α, we need
to correct the output set by replacing α with some α′ < α
when running our confidence set predictor. The following
corollary tells us how to choose α′ to correct the prediction
set.
Corollary 9 (Correct the prediction set to get a (1 − α)

marginal coverage). Let (Xn+1, Yn+1), F̂min, P̂f,ρ be de-
fined as in Theorem 8. For arbitrary ϵ > 0, if we set
t = Q̃(1− α′; P̂f,ρ) = Q

(
g−1
f,ρ(1− α′); F̂min

)
, where

α′ = 1− gf,ρ

(
ϵ+ g−1

f,ρ

(
1− α

1− 2
∑d

i=1 e
−2miϵ2

))
,

then we obtain the following marginal coverage guarantee:

P
(
Yn+1 ∈ C̃(Xn+1)

)
≥ 1− α.

Remark 3. Corollary 9 tells us that we
can take t = Q

(
g−1
f,ρ(1− α′); F̂min

)
=

Q
(
ϵ+ g−1

f,ρ

(
1−α

1−2
∑d

i=1 e−2miϵ
2

)
; F̂min

)
to get a marginal

coverage guarantee with confidence level 1 − α. When
f(·), s(·, ·) are chosen and the numbers of examples that are
used to estimate the source distributions, i.e., m1, . . . ,md,
are given, we solve the following optimization problem to
find a desired t.

min
0<ϵ≤1

Q

(
ϵ+ g−1

f,ρ

(
1− α

1− 2
∑d

i=1 e
−2miϵ2

)
; F̂min

)
,

s.t. ϵ+ g−1
f,ρ

(
1− α

1− 2
∑d

i=1 e
−2miϵ2

)
≤ 1.

Since the quantile function Q
(
·; F̂min

)
is non-decreasing, let

h(ϵ) = ϵ+ g−1
f,ρ

(
1−α

1−2
∑d

i=1 e−2miϵ
2

)
, we solve the following

problem instead:

min h(ϵ) s.t. 0 < ϵ ≤ 1, h(ϵ) ≤ 1.
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For some choices of f , the functions gf,ρ and g−1
f,ρ have closed

forms (please refer to the examples in Section 5.3). For gen-
eral f that we do not have a closed form of g−1

f,ρ, the following
lemma tells us that we can use a binary search algorithm to
efficiently compute the value of g−1

f,ρ(τ) for a given τ .

Lemma 10 ((Cauchois et al. 2020), The form of g−1
f,ρ that

can be efficiently solved). Let gf,ρ, g−1
f,ρ be defined as in

Theorem 6. Then, for any τ ∈ [0, 1], we have:

g−1
f,ρ(τ)=sup

{
β∈ [τ, 1]

∣∣∣∣βf( τ

β

)
+(1−β)f

(
1−τ

1−β

)
≤ρ

}
.

5.3 Examples
In this section, we present some examples of calculating gf,ρ
and g−1

f,ρ for some important f -divergences.

Example 1 (χ2-divergence). Let f(t) = (t − 1)2; then,

Df (P∥Q) = EQ

[(
dP
dQ − 1

)2]
= EQ

[(
dP
dQ

)2
− 1

]
is the χ2-divergence. In this case, we have gf,ρ(β) =(
β −

√
ρβ(1− β)

)
+

, where (x)+ = max{0, x}. g−1
f,ρ(τ)

is the solution of the following optimization problem:

maxβ s.t.
{ ρ

ρ+1 ≤ β ≤ 1

β −
√
ρβ(1− β) ≤ τ

.

Example 2 (Total variation distance, (Cauchois et al. 2020)).
Let f(t) = 1

2 |t − 1|; then, Df (P∥Q) = EQ

[
1
2

∣∣∣ dPdQ − 1
∣∣∣]

is the total variation distance. In this case, we can provide
analytic forms for gf,ρ and g−1

f,ρ:

gf,ρ(β) = (β − ρ)+, g−1
f,ρ(τ) = min{τ + ρ, 1}.

Example 3 (Kullback-Leibler divergence). Let f(t) =

t log t; then, Df (P∥Q) = EQ

[
dP
dQ log

(
dP
dQ

)]
is the

Kullback-Leibler (KL) divergence (Solomon and Richard A
1951). Unfortunately, we cannot provide the analytic forms
of gf,ρ and g−1

f,ρ for KL-divergence. Fortunately, according to
Theorem 6 and Remark 3, we can compute the values gf,ρ(β)
and g−1

f,ρ(τ) by solving a one-dimensional convex optimiza-
tion problem, which can be solved efficiently using binary
search.

6 Experiments
In this section, we use simulated data to verify our theory
and the validity of our constructed confidence set predictor
(referred to as OOD-SCP in the remainder of this paper). We
consider two cases: first, we verify the validity of OOD-SCP
using the same settings as in Section 4; then, we construct a
multi-source OOD confidence set prediction task and show
that OOD-SCP is valid for this task.

According to Figure 2, unlike standard SCP, for all values
of α, the violin for OOD-SCP is above the desired coverage
line, which shows that OOD-SCP is empirically valid.

We next consider a multi-source OOD confidence set pre-
diction task. Similar to Section 4, we consider the regression
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Figure 2: The violin plots for the coverage of the 1000 runs
under the same data generation settings as in Section 4. We
show results for α = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. Here,
the red lines are the marginal coverage guarantees that we
wish to achieve. The white point represents the median, while
the two endpoints of the thick line are the 0.25 quantile and
the 0.75 quantile.
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Figure 3: The violin plots for the coverage of the 1000 runs
for the multi-source OOD confidence set prediction task. We
show results for α = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. Here,
the red lines are the marginal coverage guarantees that we
wish to achieve. The white point represents the median, while
the two endpoints of the thick line are the 0.25 quantile and
the 0.75 quantile.

problem and set X = Rl,Y = R. Define the oracle lin-
ear predictor L : X −→ Y as L(x) = ⟨w⋆, x⟩ + b⋆, where
w⋆ ∈ Rl and b⋆ ∈ R. We define the marginal distribution of
X for the source domains S1 and S2 as

S1X = N (µ1, σ
2
s,xIl), S2X = N (µ2, σ

2
s,xIl)

respectively, where µ1, µ2 ∈ Rl are the mean vectors, σs,x >
0 is a scalar, and Il ∈ Rl×l is the identity matrix with dimen-
sion l × l. We define Y |X = x ∼ N (L(x), σ2

s,y) for both
S1 and S2. For the target domain T , we define the marginal
distribution of X as TX = S1X+S2X

2 and the conditional dis-
tribution of Y given X as Y |X = x ∼ N (L(x), σ2

t,y). Here,
σs,y, σt,y > 0 are the standard deviations and σs,y ̸= σt,y .

Similar to Section 4, we sample mtrain
2 examples from S1

and mtrain
2 examples from S2 to train a linear predictor L̂(x) =

⟨ŵ, x⟩ + b̂, where ŵ ∈ Rl and b̂ ∈ R. We then define the
nonconformity score as s(x, y) = |L̂(x) − y|. We sample
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n
2 examples from S1, and n

2 examples from S2 to construct
the prediction set C̃(x) and sample mtest examples from T to
form the test data.

Figure 3 shows the results for the multi-source OOD confi-
dence set prediction task. From the figure, we can see that the
violins for the standard SCP are under the desired coverage
lines, which means that the standard SCP is invalid in this
case. By contrast, the violins for OOD-SCP are above the
desired coverage lines, indicating that OOD-SCP is valid,
which validates Corollary 9.

The reason we do not do experiments on real datasets is
that do not know how to set the value of ρ for the existing
OOD datasets. Our main claim is that when the target do-
main satisfies T ∈ Tf,ρ, the coverage of our method is
guaranteed. However, we claim it is acceptable. In many
fields, we face the same problem.

In adversarial robustness (Szegedy et al. 2014), the theo-
ries (for example (Montasser, Hanneke, and Srebro 2019))
provide an upper bound of the test adversarial robustness

P
(x,y)∼D

[∃∥δ∥ ≤ ϵ : h(x + δ) ̸= y], where h is a classifier.

The results just tell us that we have the guarantee for the
test accuracy if the test perturbation δ satisfies ∥δ∥ ≤ ϵ.
However, what if ∥δ∥ > ϵ? It is out of the scope of their
theories.

For distributional robustness optimization (DRO), the the-
ories (Lee and Raginsky 2018) prove that if the test distribu-
tion is in a Wasserstein ball with radius r, then the test risk
can be upper bounded. Formally, max

D∈W (r)
P

(x,y)∼D
[h(x) ̸= y]

is upper bounded, where W (r) is a Wasserstein ball with
radius. They do not know how to set r to make W (r) contain
the test distribution either, however, this does not overshadow
their contribution to the DRO community. In other words, the
issues of ρ do not overshadow our contribution to the OOD
community.

7 Discussions
Our work is an extension of (Cauchois et al. 2020) to the
multi-domain case. In this section, we discuss the differences
between our work and (Cauchois et al. 2020).

7.1 The Necessity of Our Extension
In the multi-source setting, to make use of all the source
domains, a trivial method is to regard the mixture of the
source domains, as a domain S =

∑d
i=1 λiSi and use the

method in (Cauchois et al. 2020). However, there are two
issues:

• Given the empirical data from S1, . . . , Sd, we don’t know
the exact values of λ1,. . . ,λd for the mixed domain, so
we don’t know the set P̄ = {s#T |Df (T∥S) ≤ ρ} for a
given ρ. So we don’t know the set that we are giving a
coverage guarantee for.

• We may be not able to provide a coverage guarantee for
data from one of the source domains. Take KL-divergence
as an example, then drawing from S can be regarded as
first drawing an index I from λ and then drawing an ex-
ample from SI . Si can be seen as drawn from the same

process with λ = ei, where ei = (0, . . . , 0, 1, 0, . . . , 0) ∈
Rd with only the i-th element being 1. By the chain
rule, KL(Si∥S) = KL(ei∥λλλ) + Ej∼eiKL(Sj∥Sj) =
log(1/λi). If ρ < maxi log(1/λi), then there exists a Si

s.t. KL(Si∥S) > ρ, i.e., we can not even get a coverage
guarantee for the source domain Si, which is unac-
ceptable! The problem gets worse if the source domain
number d becomes larger since maxi log(1/λi) ≥ log d.
However, in our generalization, there is no such prob-
lem even if we choose ρ = 0, which means the method
in (Cauchois et al. 2020) is not compatible with the
multi-source setting, so our extension is necessary.

7.2 The Difference in Proof Skills
In fact, our Theorem 6 is an extension of (Cauchois et al.
2020) to the OOD setting and mainly depends on Lem-
mas 17 and 18. Lemma 17 helps us reduce multi-input
gf,ρ to a single-input case. The main idea of the proof
of Lemma 18 comes from the argument in (Cauchois
et al. 2020), however, the extension is non-trivial. In
Lemma 18, let h(z, β)=βf(z/β) + (1−β)f((1−z)/(1−
β)) we use the multi-input gf,ρ(β1,· · ·, βd) = inf{z ∈
[0, 1]| infλ∈∆d−1 h(z,

∑d
i=1λiβi)≤ ρ}, which involves tak-

ing infimum w.r.t. λ and is much more complicated than the
single-input case in (Cauchois et al. 2020). We construct a
set P∗

f,ρ that is more complicated than that in (Cauchois et al.
2020) and the proof is more difficult. Moreover, due to multi-
ple inputs and the infλ∈∆d−1 operator, we need to consider 4
cases according to whether each Fi(t) is 0 or 1.

Our Theorem 8 and its corresponding Corollary 9 are novel
and quite different from Corollaries 2.1 and 2.2 in (Cauchois
et al. 2020). The common point is that they all consider finite
sample approximation. The proof of Corollary 2.1 in (Cau-
chois et al. 2020) relies on the exchangeability of the source
examples, however, in the OOD setting, examples are drawn
from different source domains and are not exchangeable. So
the analysis techniques in (Cauchois et al. 2020) can not be
applied in our case. To fill this gap, we use the decomposition
technique and concentration inequalities.

8 Conclusion
We study the confidence set prediction problem in the OOD
generalization setting. We first empirically show that SCP is
not valid in the OOD generalization setting. We then develop
a method for forming valid confident prediction sets in the
OOD setting and theoretically prove the validity of our pro-
posed method. Finally, we conduct experiments on simulated
data to empirically verify both the correctness of our theory
and the validity of our proposed method.
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