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Abstract

We consider the optimization problem of minimizing the
sum-of-nonconvex function, i.e., a convex function that is the
average of nonconvex components. The existing stochastic
algorithms for such a problem only focus on a single ma-
chine and the centralized scenario. In this paper, we study
the sum-of-nonconvex optimization in the decentralized set-
ting. We present a new theoretical analysis of the PMGT-
SVRG algorithm for this problem and prove the linear con-
vergence of their approach. However, the convergence rate of
the PMGT-SVRG algorithm has a linear dependency on the
condition number, which is undesirable for the ill-conditioned
problem. To remedy this issue, we propose an accelerated
stochastic decentralized first-order algorithm by incorporat-
ing the techniques of acceleration, gradient tracking, and
multi-consensus mixing into the SVRG algorithm. The con-
vergence rate of the proposed method has a square-root de-
pendency on the condition number. The numerical experi-
ments validate the theoretical guarantee of our proposed al-
gorithms on both synthetic and real-world datasets.

1 Introduction

The exponential growth of data in the past decades has
sparked substantial interest in developing algorithms dis-
tributed over multiple agents. A common scenario is that
each agent within some network topology owns a disjoint
subset of data, and they collaborate to tackle a global op-
timization objective. The network topology in which each
agent resides can be classified into two categories: client-
server vs. decentralized settings. For the former setting, a
central parameter server communicates with all the workers
and aggregates the information collected from them (Li et al.
2014). When there is a large volume of data on each agent,
the central server becomes the bottleneck in the whole net-
work. For the latter setting, each agent only communicates
with its direct neighbors to exchange their information and
finish the global task (Lian et al. 2017).

This paper focuses on stochastic optimization for mini-
mizing the sum-of-nonconvex objective function in the de-
centralized setting. We formulate our problem as a convex
optimization problem collaboratively solved by m agents in
the network. Consider the following composite optimization
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objective function:

%ifz(x) (1

i=1

min F(z) = f(z) +¢(2),

flx):

where f(z) is convex and smooth, and v(-) is convex but
possibly non-smooth (e.g., ¢;-regularization term). We sup-
pose there are m agents and the i-th agent stores the local
objective function f;(z) which can be written as a finite-sum
form:

file) = =3 fusl)
j=1

where n is the number of components and each f; ;(x)
is smooth but possibly non-convex. The sum-of-nonconvex
optimization is common in real-world applications, includ-
ing 1-PCA (Saad 2011), k-PCA (Allen-Zhu and Li 2016),
online eigenvector problem (Allen-Zhu and Li 2017), and
general nonconvex optimization (Agarwal et al. 2016; Car-
mon et al. 2018).

Existing decentralized first-order optimization algorithms
suffer several limitations in solving Problem (1): (i) The de-
centralized deterministic algorithms, such as EXTRA (Shi
et al. 2015a), Exact-Diffusion (Yuan et al. 2018), P2D2
(Alghunaim, Yuan, and Sayed 2019), and SONATA (Sun,
Daneshmand, and Scutari 2019), need access to the full gra-
dient at each round. The computational cost of each iteration
is prohibitively expensive on massive datasets. (ii) While ex-
isting decentralized stochastic methods achieve a cheaper
per-iteration cost by sampling a minibatch of samples, the
theoretical analysis of these approaches is not specialized in
the sum-of-nonconvex optimization problem. One class of
methods (Shi et al. 2015a; Xin, Khan, and Kar 2020; Ye,
Xiong, and Zhang 2020) assumes that all component func-
tions f; ;(-) are convex such that the global objective func-
tion f(-) is convex!. Convergence analysis of these works
does not apply to Problem (1) due to the mismatch of prob-
lem assumptions. The other class of methods (Li, Li, and
Chi 2022; Luo and Ye 2022; Xin, Khan, and Kar 2022) as-
sumes that component functions f”() are nonconvex and

'Ye, Xiong, and Zhang (2020) have claimed that each com-
ponent function can be possibly nonconvex. However, Assump-
tion 1 in their work requires each component function to be both
L-smooth and convex, otherwise Eq. (3) cannot be satisfied.
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the global objective function f(-) is also possibly noncon-
vex. Consequently, the rate achieved by these methods is not
optimal for Problem (1).

In this paper, we intend to design communication- and
computation-efficient optimization algorithms for the sum-
of-nonconvex problem in the decentralized setting. We start
by presenting a new theoretical analysis of the PMGT-
SVRG proposed by Ye, Xiong, and Zhang (2020) for objec-
tive function (1). It achieves the stochastic first-order oracle
(SFO) complexity of O((n++/n«)log(1/€)) and communi-
cation complexity of O((y/n + k)& log(1/¢)) where  is the
condition number and ¢ is some constant depending on the
underlying network structure. Notice that both the compu-
tational and communication complexities of PMGT-SVRG
have a linear dependency on the condition number x, which
can be exceptionally expensive when the objective function
is ill-conditioned.

To remedy this issue, we propose an accelerated stochas-
tic variance-reduced proximal-gradient optimization method
called PMGT-KatyushaX for Problem (1) to improve the de-
pendency of complexities on the condition number. Specif-
ically, the vanilla KatyushaX algorithm proposed by Allen-
Zhu (2018) achieves the SFO complexity with a square-root
dependency on the condition number on a single machine.
To extend the KatyushaX to the decentralized setting, we in-
corporate the powerful ideas of acceleration (Allen-Zhu and
Orecchia 2014), gradient tracking (Di Lorenzo and Scutari
2016; Qu and Li 2017), and multi-consensus mixing (Liu
and Morse 2011) into the SVRG algorithm. The resulting
PMGT-KatyushaX achieves the stochastic first-order oracle
(SFO) complexity of O((n + n%\/ﬁ)glog(l/e)) and the
communication complexity of O ((y/n-+ni/k)¢log(1/e)).
It is worth noting that the SFO complexity of our proposed
algorithm matches the best-known result (Allen-Zhu 2018)
for a single machine.

Numerical experiments on several synthetic and real-
world datasets demonstrate significant improvement of our
proposed PMGT-KatyushaX over existing baseline meth-
ods.

Paper Organization A review of related literature on
decentralized stochastic first-order methods and stochastic
sum-of-nonconvex optimization is presented in Section 2.
In Section 3, we introduce the notations and problem set-
ting of decentralized sum-of-nonconvex optimization. We
present the theoretical result of PMGT-SVRG on Prob-
lem (1) in Section 4. We formally present our proposed algo-
rithm PMGT-KatyushaX with the main theorem in Section
5. A proof sketch is provided for the main theorem in Sec-
tion 6. Numerical results are presented in Section 7. Finally,
we conclude this paper with a summary of our results in Sec-
tion 8.

2 Related Work

In this section, we review related literature on decentralized
stochastic first-order algorithms. In addition, we summarize
existing works of stochastic optimization for the sum-of-
nonconvex problem on a single machine.
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2.1 Decentralized Stochastic First-Order
Methods

We review related work about decentralized stochastic first-
order methods for objective functions when each local func-
tion f;(-) has the finite-sum structure. These methods can
be divided into two categories based on the convexity of the
component function.

fi,;(-) is convex The first decentralized variance-reduced
method called DSA was proposed by Mokhtari and Ribeiro
(2016), and it is a combination of EXTRA (Shi et al. 2015a)
and SAGA (Defazio, Bach, and Lacoste-Julien 2014). DB-
SA/ADEFS (Hendrikx, Bach, and Massoulié 2019; Hendrikx,
Bach, and Massoulie 2021; Shen et al. 2018) attempted to
accelerate DSA with proximal mapping and variance reduc-
tion. Although several works (Hendrikx, Bach, and Mas-
soulié 2020; Xin, Khan, and Kar 2020) have proposed prox-
imal mapping-free algorithms, the computation and com-
munication complexities of these methods are worse than
DBSA and ADFS. Li et al. (2020); Ye, Xiong, and Zhang
(2020) proposed decentralized stochastic algorithms that
achieve a linear convergence rate by incorporating variance
reduction, gradient tracking, and multi-consensus mixing.

fi,;(-) is nonconvex All existing decentralized stochastic
methods assume the global objective function f(-) is possi-
bly nonconvex if the component function f; ;(-) is noncon-
vex. Although the analysis of these approaches can be ap-
plied to our setting, the resulting convergence rate may not
be optimal for the problem studied in this paper. Sun, Lu,
and Hong (2020) provided the first decentralized stochastic
algorithm, D-GET, combining variance reduction and gra-
dient tracking. Li, Li, and Chi (2022); Xin, Khan, and Kar
(2022) further proposed algorithms with improved complex-
ity bound. Recently, DEAREST (Luo and Ye 2022) is the
first decentralized stochastic algorithm that achieves both
optimal computation and communication complexity. Due
to the assumption that the global objective is nonconvex, all
these approaches can obtain at most sublinear convergence
rates.

A comparison between our work and related works is
summarized in Table 1.

2.2 Stochastic Sum-of-Nonconvex Optimization

Stochastic optimization on the sum-of-nonconvex optimiza-
tion problem is a commonly used technique for analyz-
ing offline Principle Component Analysis (PCA) problems.
Garber et al. (2016) reduced 1-PCA subproblems to the
sum-of-nonconvex problem, and they leveraged the conven-
tional accelerated stochastic optimization scheme to accel-
erate the convergence. For the k-PCA problem, Allen-Zhu
and Li (2016) reduced the k-PCA problem to the sum-of-
nonconvex problem, and they apply the accelerated stochas-
tic technique to improve the convergence of k-PCA prob-
lem. Allen-Zhu (2018) further improved the convergence
by accelerating the stochastic optimization of the sum-
of-nonconvex problem with the linear coupling technique
(Allen-Zhu and Orecchia 2014).



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Methods Problem Stochastic Gradient Calls Communication Complexity
(Xin, Khiﬁjasr:éRISar 2020) i‘éﬁ’éﬁﬁgﬁﬁﬁ’é o ((” + ) log %) o ((” + ) log %)
(Xin, Khi::l,_SnAdGI?ar 2020) i‘é?éﬂﬁ;ﬁiﬁ’é o ((” + ey log %) % ((” + aorae) log %)
EG—EXTRA Sum—of—anvex o ( s og %) o ( s og %)
(Shi et al. 2015b) Composite 1=z (W) 1=z (W)
NIDS (Li, Shi, and Yan 2019) Sugc"‘r’rfl'ggi?zex O (n(r+ =stawy)og L) | O ((k+ =iy log )
(Ye, Xioibé?gnésg}iig 2020) Su&ﬁ;ﬁyx O ((n+r)log ¢) o (\/#K(W) log %>
(Ye, Xioibé,G:n_dsghGaig 2020) Sug:r)rf;g;)irtlzex O ((n+r)log ¢) . \/% log %)
PMGT-SVRG (This paper) Suméo()f;rl:lljcz)g(i:t(é nvex O ((n+ v/nk)log 1) ) \/% log £
PMGT-KatyushaX (This paper) Sum-coofr-nl\;(z:;ict(; nvex (@] ((n +ni k) log %) 9] % log %)

Table 1: We compare the proposed algorithms with related work on Problem (1) when the global objective function is strongly

convex. We use notation O to hide the logarithm factor in the complexity. Note that the condition number in this table does not
consider the difference in smoothness parameters. We present our results by distinguishing L, /1, and /5 in Sections 4 and 5.2.

3 Preliminaries
In this section, we formalize our problem setting.

3.1 Notations

We denote || - || as the Euclidean norm for vectors and Frobe-
nius norm for matrices, and we denote || - ||2 as the operator
norm for matrix. We use lowercase non-bold letter z € R?
as a random variable of dimension d and lowercase bold let-
ter

x=(21,...,2,) €R"™

as the aggregated variable collected from m machines. We
denote all one vector of dimension m by 1 € R™. For
simplicity, we write 1z € R™>% as the Kronecker prod-
uct between the all one vector 1 and some vector x. We
use T as the average of the aggregated variable x such that
7 = m~'1Tx. For the non-smooth function v(-), we de-
fine ¥(x) = m~1 3" 1(x;) for the aggregated variable
x € R™*, We also define the proximal operator for vec-
tor x as

prox,, (x) = argmin,cra (¥(2) + 2 — x| /(2n))
and the proximal operator for aggregated variable x as
PrOX,u, 0 (X) = arg min e oa (W (2) +]|2 x| /(2m))
We use =* to represent the optimal solution for F'(-) as
r* = argmin,cpa F(z) .

3.2 Problem Formulation

We summarize some of the basic properties of convex and
smooth functions below.

Definition 3.1. For a function f : R? — R, there exist
some constants L, /1, ¢5 > 0 and ¢ > 0 such that
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1. fis o-strongly convex. That is, for any z,y € R,
g
F(@) = ) = (V) —y) = gllz —

2. fis L-Lipschitz smooth. That is, for any z,y € R,

[Vf(x) =Vl < Lz —yl;
3. fis ({1, £2)-smooth. That is, for any x,y € RY,

¢ ¢
*f\\I*yIIQ < f@)—f)—(Vf(y),z—y) < é\\x*yllz-

Recall that the global objective function (1) can be de-
composed into mn nonconvex functions f; ;(-). The ith
agent is given access to a disjoint subset of n functions
fi,j(+), for Vj € [n]. We assume the function f(-) is convex
and L-smooth, each f; ;(-) is ({1, {2)-smooth with ¢5 > ¢4
and v(-) is a proper convex function. We further assume
f is oy-strongly convex and 1) is oy-strongly convex with
of > 0 and o > 0. We define 0 = oy + o such that
o> 0.

We focus on decentralized optimization on a network in
which each agent only communicates with its neighbors.
The topology of the network is characterized by the gossip
matrix W. We let W; ; > 0 if nodes % and j are direct neigh-
bour in G; and W; ; = 0 if nodes 7 and j are not connected.
Furthermore, we assume W is a doubly stochastic matrix,
and it satisfies the following properties:

Definition 3.2. Let W be a doubly stochastic matrix. Then,
(a) W is symmetric, (b) 0 < W < [ and W1 = 1, and (¢)
null(I — W) = span(1).

4 Convergence Analysis of PMGT-SVRG

In this section, we show the convergence rate of the PMGT-
SVRG (Ye, Xiong, and Zhang 2020) for the objective func-
tion (1). PMGT-SVRG achieves a linear convergence rate on
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the sum-of-convex problem by integrating gradient tracking
and multi-consensus mixing techniques into the SVRG algo-
rithm. We remove the assumption that each function f; ;(-)
is convex such that the inequality

1
o7V fii(x) =V i I < fig@)=Fi; Vi fy) )

for any z,y € R? in Assumption 1 of (Ye, Xiong, and
Zhang 2020) no longer holds. The following result shows
that PMGT-SVRG can still achieve a linear convergence rate
on the sum-of-nonconvex problem:

Theorem 4.1. Assume function F(-) defined in (1) is o-
strongly convex, f(-) is L-smooth, and each component f; ;
is (£1,42)-smooth. Additionally, we assume that the under-
lying network matrix W is doubly stochastic so it satisfies
the properties in Definition 3.2. Under appropriate hyper-
parameter setting, to obtain F(y**!) — F(z*) < ¢, the al-
gorithm PMGT-SVRG requires at most

0 ( ( ) logw>

SFO calls and
& ( (v + (L + Vi)

(1= X (W))1/2
rounds of communication.

L+ (01065)2
N + (L142)
g

[7) 10 FG°) - F<w*>>

Remark 4.2. Compared with the theoretical results of the
PMGT-SVRG on the decentralized sum-of-convex problem
in Table 1, the SFO complexity introduces an additional de-
pendency on +/n. It can be inferred that when the condi-
tion number x = (L + /{1{3)/o is larger than /n, the
SFO complexity of PMGT-SVRG on the sum-of-nonconvex
problem is worse than the sum-of-convex problem. Interest-
ingly, the communication complexity of the PMGT-SVRG
achieved by our analysis is better than that by Ye, Xiong, and
Zhang (2020) even though our objective function is harder.
The improvement comes from the introduction of the mini-
batch in Algorithm 3 in the appendix.

5 PMGT-KatyushaX

In this section, we propose the main idea behind PMGT-
KatyushaX and present the convergence theorem of this al-
gorithm.

5.1 The Algorithm

We present the main intuition of the PMGT-KatyushaX al-
gorithm. The core design of the algorithm is to apply the
acceleration scheme (Allen-Zhu and Orecchia 2014) on the
stochastic variance reduced gradient (SVRG) (Johnson and
Zhang 2013) method. Furthermore, we blend the powerful
ideas of gradient tracking and multi-consensus mixing into
the accelerated algorithm to develop the decentralized vari-
ant of the algorithm.

The backbone of our algorithm is the SVRG which adopts
an outer-inner loop structure to reduce the inherent vari-
ance of stochastic gradients. Specifically, we construct a
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full gradient snapshot V fi(w{) for each agent i € [m] at
each epoch. At each iteration of the inner loop, a variance-
reduced unbiased gradient estimator is updated as:

Uf = Vfl(w?) +b! EjieB; (vfit]l (wf) - vfit,ji (w?))

where B! is a minibatch of b indices sampled uniformly
from {1,...,n}.Recall that the global objective function (1)
contains a convex, non-smooth function ¢ (-), we apply the
proximal mapping after executing one step of gradient de-
scent:

witt = prox;, ,(wi — nvt)
where 7 is the learning rate of the SVRG algorithm. The
SVRG algorithm is known to achieve a linear rate of con-
vergence for the strongly convex objective function.

Acceleration If we naively extend the SVRG algorithm
to the decentralized setting, the convergence rate of the re-
sulting algorithm has a linear dependency on the condition
number as shown in Theorem 4.1. To obtain an improved
dependency on the condition number, we employ the ac-
celeration technique introduced by Allen-Zhu and Orecchia
(2014). The acceleration is achieved by the linear coupling
of the gradient descent step and mirror descent step. In par-
ticular, denote z¥ := w? and y¥ := w] as the first and the
last iterate of the SVRG inner loop at Epoch k, then we ap-
ply one step of mirror descent as follows

k_qyk

+< 2T

qr =arg min {lHq—
! qeRrd 2

which can be simplified as

e
2 27

1+

k—1
qzl? :

The iterate xf“

y¥ and ¢¥:

can be updated as a linear combination of
ot =7l + (1= 7)yl
On top of the accelerated SVRG method, we also apply
gradient tracking and multi-consensus mixing to extend the
above algorithm to the decentralized setting.

Gradient Tracking Recall that our goal is to find the min-
ima z* of the global objective function (1). However, gradi-
ents collected from local neighbors have large variances due
to the dissimilarity between distinct local objective func-
tions f;(-). To alleviate this issue, we adopt the gradient
tracking technique that introduces a new variable s to track
the difference between local gradient estimators:

st = Mix(s® + v — vt

where Mix(+) is some mixing protocol, and v is the ag-
gregated variance-reduced gradient estimator of {v!}™, at
the ¢-th iteration of the inner loop. The intuition behind the
technique is that while the variance of the local gradient esti-
mators can be arbitrarily large in general, the variance of the
differences between local gradient estimators will be small
when the local variable approaches the global minima z*.
The technique also applies to the full gradient constructed in
the outer loop.
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Algorithm 1: PMGT-KatyushaX

Input: 20, 49, y; !, ¢ and SY

Parameter: FastMix parameter M, functions {f;}7; and

1, initial point 20, mini-batch size b, learning rate n > 0,

momentum parameter 7 € (0, 1], number K of epochs

Output: 75, y& ¢

1: Initialize 20 = 29, 3 = 29, yi_1 =2 ¢) = 2% and
89 = VF(zy) for each i in parallel

2. fork=0,..., K —1do
3. 2 =rFastMix(rq® + (1 —7)y*, M),
4 v =g L Vi) = V fi(ah)
5: §§+1 = FastMix(vk*+1 M),
6: s t=wt =5
70 =8 Wl = g
8:  to = [n/b] and sample T' ~ Geom(1/tp)
9: fort=0,...,Tdo
10: Let B! be a batch of b indices sampled uniformly
from [n] with replacement
11: vf = i+ bt ZjieB; (vat_], (w}) — vfit,j,; (wzo))
12: st =FastMix(s'~! + vt —vi=l M),
13: wi™ = FastMix(prox,,, y(w' —ns'), M);
14:  end for
15: yf“ = wiT'*'1
P S S S
16: gt = Fastmix(TETE = — ),
17: end for ’

Multi-Consensus Mixing Under the decentralized learn-
ing scenario, each agent wishes to obtain the global average
of their variables through communication with local neigh-
bors. The agent can get a more faithful estimate of the global
average through multiple rounds of local communication.
Additionally, the mixing technique can be accelerated to
achieve even faster consensus. The complete procedure of
the Multi-Consensus Mixing can be found in Algo. 2. We
apply the Mixing technique to both state variables and gra-
dient tracking variables in both the inner loop and outer loop.

After fusing these techniques with the SVRG algorithm,
the complete PMGT-KatyushaX for the decentralized setting
is presented in Algo. 1.

5.2 Main Theorem

In this subsection, we characterize the linear convergence
rate of PMGT-KatyushaX on the decentralized sum-of-
nonconvex problems.

Algorithm 2: FastMix(x®, M, W)
Initilaize: x 1 = x" and n = 1/(1 + /1 — A\2(W))
Output: Wi

1: fork=0,...,M do
2:

P = (1 4 n)xF W — pxF—1 )
3: end for

Theorem 5.1. Assume function F(-) defined in (1) is o-
strongly convex, f(-) is L-smooth, and each component
fi; () is (€1, £2)-smooth. We also assume that the underly-
ing network matrix W is doubly stochastic so it satisfies the
properties in Definition 3.2. Under appropriate parameter
settings, the outputs of Algo. 1 has the following properties:

3
E [F(QK) - F(f*)] < W (F(go) - F(x*)) ;
5L o e
K b

el oV < s e

and

1750L
E[lI65 — 2 2] « -0
I 1] < o e

Remark 5.2. To obtain the e-approximate solution of the
Problem (1), i.e., F(g%) — F(z*) < ¢, the outer loop of
Algorithm PMGT-KatyushaX has to be executed for at least

_ VIb | ((1fp)7 o F(g°) — F(z*)
K0<(1+\/%+\/Eni)lg< _ ))

times. Recall that at each epoch, the algorithm makes one
call of full gradient oracle and T'b SFO calls where E[T] =
n/b. Consequently, our algorithm makes an expectation of
2n SFO calls. Additionally, as can be seen in Algo. 1, the
multi-consensus mixing takes M rounds of communication
when called. We can deduce that

M—O<log<L+m>>.

no no

I

To reach e-accuracy, Algo. 1 has to make O(Kn) calls to
the first-order oracle and O(KnM /b) rounds of communi-
cation.

We can bound the computation complexity and commu-
nication complexity by setting batch size b = /n and the
following corollary can be obtained:

Corollary 5.3. Under the setting of Theorem 5.1, to obtain
an e-approximate solution y%, ie., F(y%) — F(z*) < ¢
PMGT-KatyushaX requires at most

o ((n L +¢(?eg)4 ni> log F(7°) ;F(x*))

SFO calls and

1 1
LZ+(640)7 1
(\/ﬁ_,_\(/é?)nz;) F(7°

lo
T (V) & c

rounds of communication.

6 Proof Sketch of Theorem 5.1

In this section, we provide a sketch of the proof for Theorem
5.1. Since Algo. 1 has a double loop structure, we prove the
theorem in two stages. For the first stage, we present the
analysis for one epoch of decentralized SVRG adapted for
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the sum-of-nonconvex problem; For the second stage, our
goal is to show that the consensus error and the convergence
error of the outer loop decay linearly at the same rate.

We first define the vector of consensus errors in the inner
loop as 2! = (||w! — 1w!||”, ||s* — 15¢||*)T. We can build
a system of linear inequalities with 2 such that the spectral
norm of the coefficient matrix is less than 1 if the hyperpa-
rameters are chosen appropriately. We start by reviewing the
following lemma which is essential for the analysis of the
consensus error:

Lemma 6.1 (Liu and Morse (2011)). Let wo, was € R? be
the input and output of the Algorithm 2 and w = %1TWO,
then it satisfies that

lwar = 1] < pllwo — 1],
1-— L

M
wherep:\/ﬁ(l— ( f) 1—)\2(L))

After constructing the linear system of inequalities for 2%,
we obtain the following lemma that bounds the consensus
error accumulated in the inner loop:

Lemma 6.2. Given T ~ Geom(p), the expected consensus
error at the end of the inner loop satisfies

1-p
7 [II271] < 112° + —= °?

1602001 Lo |w¥ — 1w
9_
—i—Tple 021 lom Ep [||w —a°|?] .

Using the convexity and smoothness assumption, we can
obtain the following result.

Lemma 6.3. For any iteration t in the inner loop, the aver-
age variable is defined as w' = m™'1"w! where w't! =

FastMix(prox,,, ¢ (w' — ns®), M). For any u € RY,
E [F(@') — F(u)]
2— 770 _
<E[ 2L - Vi@l + 22 ot
0 el a1 nban T
2n 2(1—=nL)m
40 1
+( 142 +77> ||Wt71wt||2
orm  2mn

Moreover, one can show the following result by the
(41, ¢3)-smoothness of f; ;:

Lemma 6.4. Denote the variable s = m~' """ | st with
st = FastMiz(s™! + v — vi=1 M),. Then,
I [Hgtg—gvf(gfg)yz]
< (6 1y | 26 2) [wt — 1t 2
mb
6010 6014
@ — @)+ 2w — 1.
b mb

Combining the above three lemmas, we can prove the fol-
lowing main result for the inner loop:

Lemma 6.5. If we choose the hyperparameters for Algo-

rithm 1 such that n < min (1/(2L), \/b/(ﬁlfgto)/8>, and
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p < min ((8bmnJte) /2, (18(1 +b))~Y/2) where J =
J(n, b) is some positive constant. Then, for any u € R,

E [F(@™) — F(u)]
‘B HwT+1 —OH2 <w07u woin+1>
- +477750 ton
g g
e = @™ T s 18

+

1
) w? - 1w0||2]
m

J

" ( 4n
For the theoretical analysis of the outer loop, we define

the following vector of consensus errors

"y -1 a1 Bl
We also construct a system of linear inequalities of the above
quantity. Using a similar proof technique as the inner loop
to bound the consensus error of the outer loop, we can prove
Theorem 5.1 by induction. The complete theoretical analysis
of PMGT-KatyushaX is presented in the Appendix.

t_1z 2 ||lst —18t

(Il

7 Numerical Experiments

To demonstrate the efficiency of PMGT-KatyushaX, we
evaluate the proposed method on the sub-problem of solv-
ing PCA by the shift-and-invert method. The corresponding
sum-of-nonconvex optimizing problem has the form of

min F(z) = e ((Al + M) I— A> z4+b'z (3)
zeRI 2 T
where A = (mn)~* 370 Y0 a ja); € R, X and

Ao are the largest and the second largest eigenvalues of the
matrix A; r is a hyperparameter that controls the ratio for
the eigengap.

We conduct our experiments on both synthetic and real-
world datasets. For the synthetic dataset, we generate a
Bernoulli matrix of size 60,000 x 50 with entries in {£1};
For the real-world dataset, we use the Covtype downloaded
from the LIBSVM website?. For the gossip matrix W un-
derlying the decentralized network, we generate a matrix
where each agent is randomly connected to two neighbors.
The second largest eigenvalue of the resulting matrix is
A2 (W) = 0.97.

Baselines We compare the empirical performance of our
proposed method with several baselines including PMGT-
SVRG ((Ye, Xiong, and Zhang 2020)), PGEXTRA (Shi
et al. 2015b), and NIDS (Li, Shi, and Yan 2019). Although
theoretical results of PGEXTRA and NIDS are developed
for the sum-of-convex objective functions, they still show
convergence behavior on the sum-of-nonconvex functions
empirically.

Experiment Specifications For all of the experiments, the
y-axis represents the suboptimality of function value, i.e.,
F(y) — F(z*) where F(x*) is taken as the lowest value
achieved among all the baselines. The left and the mid-
dle figure represents the suboptimality vs. gradient evalu-
ations and communication rounds, respectively. The right

“https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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Figure 1: Performance comparison between PGEXTRA,
NIDS, PMGT-SVRG, and PMGT-KatyushaX on the syn-
thetic dataset. The left column represents results with the
ratio r = 2 and the right column represents results with the
ratio r = 300 defined in Problem (3). The plot of PGEXTRA
and NIDS are overlapped as their performance are close to
each other.

figure shows the suboptimality vs. the cost which is the
weighted average between gradient evaluation and commu-
nication rounds.

Comparison Results on the Synthetic Dataset Figure 1
reports the performance comparison between our PMGT-
KatyushaX and baselines when the ratio » = 2 or r = 300.
PMGT-KatyushaX outperforms other baselines for both set-
tings, even when the ratio is small. We point out that PGEX-
TRA and NIDS have similar performance so their curves
are overlapped in the performance comparison. For each set-
ting, PMGT-KatyushaX makes the least number of gradient
evaluations compared with other baselines. To our surprise,
it even requires fewer communication rounds to converge
than NIDS although the communication bound of PMGT-
KatyushaX depends on the number of component func-
tions y/n. As a result, PMGT-KatyushaX achieves the best
cost among all baselines.

Comparison Results on the Real-world Dataset Fig-
ure 2 reports the performance comparison between PMGT-
KatyushaX and other baselines on the Covtype dataset
when the ratio r 2 or r = 300. When 7 is small,
PMGT-KatyushaX has fewer gradient evaluations than NID-
S/PGEXTRA, but PMGT-KatyushaX requires more com-
munication rounds than NIDS/PGEXTRA. When r is large,
PMGT-KatyushaX outperforms other baselines in both the
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Figure 2: Performance comparison between PGEXTRA,
NIDS, PMGT-SVRG, and PMGT-KatyushaX on the Cov-
type dataset. The left column represents results with the ratio
r = 2 and the right column represents results with the ratio
r = 300 defined in (3). The plot of PGEXTRA and NIDS
are overlapped as their performance are close to each other.

number of gradient evaluations and communication rounds.

8 Conclusions and Future Work

This paper presented a new theoretical analysis of PMGT-
SVRG to the decentralized sum-of-nonconvex problem, and
it has a linear dependency on the condition number. To
achieve a better dependency, we proposed the first accel-
erated stochastic first-order algorithm for the decentralized
sum-of-nonconvex problem and showed it enjoys a linear
convergence rate with a square-root dependency on the con-
dition number. The empirical evidence validates the advan-
tages of our algorithm on both synthetic and real-world
datasets.

Although the computational complexity of the proposed
algorithm has matched the best-known algorithm for the
centralized scenario, the communication upper bound still
looks unsatisfying due to the inclusion of the factor /n. It
is interesting to study how to design a more communication-
efficient algorithm for decentralized sum-of-nonconvex op-
timization.
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