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Abstract
This work presents a novel method called dense projection
for unsupervised anomaly detection (DPAD). The main idea
is maximizing the local density of (normal) training data and
then determining whether a test data is anomalous or not by
evaluating its density. Specifically, DPAD uses a deep neural
network to learn locally dense representations of normal data.
Since density estimation is computationally expensive, we
minimize the local distances of the representations in an it-
eratively reweighting manner, where the weights are updated
adaptively and the parameters are regularized to avoid model
collapse (all representations collapse to a single point). Com-
pared with many state-of-the-art methods of anomaly detec-
tion, our DPAD does not rely on any assumption about the
distribution or spatial structure of the normal data and repre-
sentations. Moreover, we provide theoretical guarantees for
the effectiveness of DPAD. The experiments show that our
method DPAD is effective not only in traditional one-class
classification problems but also in scenarios with complex
normal data composed of multiple classes.

Introduction
Anomaly detection (Chandola, Banerjee, and Kumar 2009;
Pang et al. 2021; Ruff et al. 2021; Cai and Fan 2022; Xiao,
Sun, and Fan 2023) is an important problem in many areas
such as machine learning, computer vision, medical imag-
ing, and other fields (Fan and Wang 2014; Fan, Wang, and
Zhang 2017). Basically, anomaly detection is a task that
aims to identify anomalous data from normal data within
a given dataset. To better simulate real-world scenarios,
anomalous data is often considered to be unknown in the
training stage, making this task typically an unsupervised
learning problem. In the past decades, numerous anomaly
detection methods have been proposed. In general, we can
categorize them into three main types: density-based meth-
ods, reconstruction-based methods, and one-class classifica-
tion methods, though there are other types such as the per-
turbation learning based method proposed by (Cai and Fan
2022).

Density-based methods assume that normal data occur in
high-density regions, while anomalies are located in low-
density or sparse regions, and utilize probabilistic models to
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model the distribution of normal data. Thus, popular den-
sity estimation methods such as kernel density estimation
(KDE) Parzen (1962) and Gaussian mixture models (GMM)
can be applied to anomaly detection. K-nearest-neighbors
(kNN) is also a density-based method where the average
distance from test data to its nearest k neighbors is mea-
sured as the anomaly score. This method relies heavily on
the choice of k and may not be effective in handling high-
dimensional data. kNN+ (Sun et al. 2022), utilizing a pre-
trained neural network to learn feature embeddings of nor-
mal data, assumes that the test anomalies are relatively far
away from the normal data and detects anomalies by us-
ing kNN in the embedding space, which makes it effective
when faced with complex data. Breunig et al. (2000) pro-
posed a method called local outlier factor (LOF), which re-
lies on the concept that anomalous data often lie in a re-
gion of lower density than its surrounding data points. Zong
et al. (2018) proposed deep autoencoding Gaussian mixture
models (DAGMM) that combines deep auto-encoders with
GMM, where the output energy generated by the GMM is
used as an anomaly score. Deecke et al. (2019) provided
an anomaly detection method ADGAN based on adversar-
ial networks (GAN (Goodfellow et al. 2014)). ADGAN uti-
lizes a generator to learn the distribution of normal data and
a discriminator to detect anomalous data.

Reconstruction-based methods use neural networks such
as auto-encoder (AE) to learn low-dimensional represen-
tation to reconstruct input data and utilize the reconstruc-
tion error as a metric to discern anomalies from normal in-
stances. Auto-encoder and its various variants (Hinton and
Salakhutdinov 2006; Vincent et al. 2008; Pidhorskyi, Al-
mohsen, and Doretto 2018; Wang et al. 2021) consist of an
encoder and a decoder, where the encoder compresses the
input data into a latent effective representation, while the
decoder reconstructs the original data from the compressed
representation. These methods often rely on the assump-
tion that normal data can be reconstructed effectively, while
anomalous data exhibits significantly higher reconstruction
errors. However, in practice, some anomalous samples can
be well-reconstructed by auto-encoders, especially when the
model is complex.

One-class classification methods train classifiers using
only normal data. For instance, the one-class support vector
machine (OC-SVM), proposed by (Schölkopf et al. 2001),
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assumes that normal data can be separated from the rest
of the data by a hyperplane in a high-dimensional feature
space and tries to maximize the margin between the hyper-
plane and origin. Tax and Duin (2004) proposed support
vector data description (SVDD) that aims to obtain a hy-
persphere with the smallest volume that encloses the nor-
mal data points while keeping the abnormal data points out-
side the hypersphere. To handle more complex data, Ruff
et al. (2018) proposed Deep SVDD, which is based on an
integration of deep learning (LeCun, Bengio, and Hinton
2015) and SVDD. Deep SVDD utilizes deep neural net-
works to learn effective feature embeddings from the normal
data while aiming to enclose the normal data within a hy-
persphere with minimum volume. To ensure that any exam-
ple reconstructed from the learned representation is normal
data, Perera, Nallapati, and Xiang (2019) proposed one-class
GAN (OCGAN), which trains an auto-encoder and discrim-
inator adversarially. Goyal et al. (2020) presented a method
called deep robust one-class classification (DROCC), which
assumes that normal data resides in a low-dimensional man-
ifold structure. It constructs anomalous samples in the train-
ing stage and classifies a point as anomalous if it is out-
side the union of balls around training data. This approach
has been shown to be effective on various datasets. Hu
et al. (2020) proposed H-Regularization with 2-Norm in-
stance level normalization (HRN), including new loss func-
tion (called one-class loss), holistic regularization, and nor-
malization, which can directly learn from a single class of
data. Chen et al. (2022) proposed a method called interpo-
lated Gaussian descriptor (IGD). It learns effective normal-
ity description based on representative normal data instead
of fringe edge normal data.

It is worth noting that, density-based methods are not ef-
fective in handling high-dimensional data, reconstruction-
based methods often suffer from overfitting, and one-class
classification methods may not obtain their assumed reli-
able decision boundaries such as hypersphere. To address
these limitations all at once, in this work, we propose a new
density-based method called Dense Projection for Anomaly
Detection (DPAD). The main idea of DPAD is to train a neu-
ral network to learn a locally dense low-dimensional repre-
sentation of normal data by reducing the distance between
the representations of similar data (see Figure 1), and then
density-based methods such as KNN can be applied to the
representation to detect anomalies. Our contributions are
summarized as follows:

• We propose a novel density-based method called DPAD
for unsupervised anomaly detection. DPAD does not rely
on any assumption about the shape of the decision bound-
ary between normal data and anomalous data and is able
to handle high-dimensional data effectively

• We propose to increase the local density of the region
where normal data resides by reducing the distance be-
tween similar normal data locally.

• We thoroughly evaluate the effectiveness of dimension-
ality reduction plus KNN in unsupervised anomaly de-
tection.

• In addition to experiments on classical one-class classi-

fication, we conduct challenging experiments where nor-
mal data are composed of multiple classes to further in-
vestigate the performance of DPAD and other methods.

Related Work
Before elaborating on our DPAD, we discuss the connection
and difference between our DPAD and existing dimension-
ality reduction methods and DeepSVDD (Ruff et al. 2018).

Dimensionality Reduction + kNN
Dimensionality reduction (DR) methods are commonly used
to address challenges such as the curse of dimensionality,
data redundancy, and high computational complexity (Fan
et al. 2018; Sun, Han, and Fan 2023). The best-known DR
method is the principal component analysis (PCA) (Jolliffe
and Cadima 2016). PCA is a linear DR method and is not
effective in handling data with nonlinear structures. There
have been many nonlinear DR methods, e.g., LLE (Roweis
and Saul 2000), Isomap (Tenenbaum, Silva, and Lang-
ford 2000), AE (Hinton and Salakhutdinov 2006), t-SNE
(Van der Maaten and Hinton 2008), and UMAP (McInnes,
Healy, and Melville 2018). Particularly, AE is more useful
in feature extraction while t-SNE and UMAP are more use-
ful in 2D visualization. AE solves the following problem
minf,g Ex∼D[∥x− g(f(x))∥ℓ] where f : RD → Rd and
g : Rd → RD are the encoder and decoder respectively, and
d < D. ∥ · ∥ℓ denotes a norm such as the Euclidean norm.

We find that DR methods are very helpful to unsuper-
vised anomaly detection. Specifically, the performance of
traditional methods such as kNN performed in the low-
dimensional embedding space given by DR methods, e.g.
AE+kNN, are much better than their performance in the
original high-dimensional data space. Note that our DPAD
also reduces the dimensionality of data but it is different
from existing DR methods. Existing DR methods aim to pre-
serve the local or global structure of data while our DPAD
aims to find a low-dimensional representation with maxi-
mum local density. Therefore, the goal of DR in DPAD is
consistent with anomaly detection, which means DPAD has
the potential to outperform DR+kNN.

DeepSVDD
DeepSVDD (Ruff et al. 2018) aims to enclose the represen-
tations of normal data within a hypersphere with minimum
volume and solve the following problem

minimize
W

1

n

n∑
i=1

∥ϕ(xi;W)− c∥2 + λ

2

L∑
l=1

∥∥Wl
∥∥2
F

where c is a pre-defined hyper-spherical center, W =
{W1, . . . ,WL} denotes the parameters of layer l ∈
{1, . . . , L} of neural network ϕ(x;W), and λ is a hyperpa-
rameter that controls weight decay regularizer. Deep SVDD
is able to compress the volume of normal data. This is a
global compression and the ideal decision boundary is the
hypersphere centered at c. However, in practice, when the
dimension of the data is high, the number of data points is
small, or the structure of the data is complex, it is difficult to
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Figure 1: DPAD trains a neural network to learn dense low-dimension representations of training data. The black and red points
represent normal data and anomalous data respectively. After training, we can use kNN or other density estimation methods to
judge whether a new data point is anomalous or not.

obtain a compact hypersphere, or in other words, it is diffi-
cult to include all normal samples into a small hypersphere.
In contrast, our DPAD is a local compression method and is
able to adapt to data with complex structures.

Proposed Method
Let D = {x1,x2, . . . ,xn} be a set of D-dimensional train-
ing data, in which all or at least most of the samples are
normal. Our goal is to learn a model from D to determine
whether a new sample is normal or not. We propose to find
a projection f : RD → Rd, where d < D, to maximize the
density of the data, i.e.,

maximize
f

density({f(x)}x∈D)

subject to f ∈ C.
(1)

In (1), C is some constraint set to avoid mapping all samples
to a single point. Note that estimating the density is compu-
tationally expensive. Instead, we replace the density with the
local distances between the data points and solve

minimize
W

n∑
i=1

∑
j∈Ni

∥fW(xi)− fW(xj)∥2

subject to W ∈ CW

(2)

where fW is an L-layer neural network parameterized by
W = {W1,W2, . . . ,WL}, CW is some constraint set for
the network parameters, and Ni denotes a local neighbor-
hood of xi. Nevertheless, determining {Ni}ni=1 still suffers
from the curse of dimensionality, is sensitive to noise and
outliers, and requires additional efforts or domain knowl-
edge. To tackle these issues, we propose to determine
{Ni}ni=1 adaptively and dynamically. Specifically, we solve

minimize
W

n∑
i=1

n∑
j=1

∥fW(xi)− fW(xj)∥2 · eWij

subject to W ∈ CW

(3)

where eWij = exp
(
−γ ∥fW(xi)− fW(xj)∥2

)
and γ > 0 is

a hyperparameter. The role of eWij is explained as follows.

• When the projected samples fW(xi) and fW(xj) are
close to each other, eWij is close to 1, provided that γ is
not too large. Then (3) will make effort on minimizing
the distance between fW(xi) and fW(xj).

• When the projected samples fW(xi) and fW(xj) are far
away from each other, eWij is close to 0, provided that γ is
not too small. Then (3) will make less or even no effort on
minimizing the distance between fW(xi) and fW(xj).

• The setting of γ is important but not crucial because it
can be absorbed into fW and is thus learned adaptively
and implicitly. However, the setting of γ affects the net-
work training because it determines the initial weights
{eWij } once the network parameters are initialized.

Now let’s discuss the constraint set CW . Recall that the
constraint is to avoid the case that all projected samples col-
lapse to single points, which lose the original information of
the data although the density attains the maximum. A trivial
case is that all weights are zero. Therefore, we need to en-
sure that the norms of the weight matrices are far from zero.
Thus, the constraint in (3) is designed as

R(Wl) ≥ αi, l = 1, 2, . . . , L, (4)

where αi are positive constants far from zero. For in-
stance, R(Wl) can be the Frobenius norm ∥Wl∥F , ℓ1 norm
∥Wl∥1, or spectral norm ∥Wl∥2. As mentioned in (Yoshida
and Miyato 2017), if the weight matrices used in neural net-
works have large spectral norms, it can cause the neural net-
works to be sensitive to the perturbation of training data and
test data, leading to poor generalization ability. Hence, we
may choose R(Wl) = ∥Wl∥2, which however is difficult
to minimize since its computation is based on singular value
decomposition. Note that ∥Wl∥2 ≤ ∥Wl∥F holds for any
Wl. Thus, minimization for ∥Wl∥F , which is much easier,
implicitly reduces ∥Wl∥2 and hence improves the general-
ization ability. To further facilitate the optimization, we use
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regularizations instead of constraints on W . Then the final
optimization problem is formulated as follows

minimize
W

n∑
i=1

n∑
j=1

{
∥fW(xi)− fW(xj)∥2

× exp
(
−γ ∥fW(xi)− fW(xj)∥2

)}

+ λ
L∑

l=1

∣∣∥Wl∥F − 1
∣∣,

(5)

where λ > 0 is a hyperparameter, fW(x) =
WL(h(· · ·h(W2h(W1x)) · · · )), and h denotes the activa-
tion function. Without loss of generality, we assumed that all
activations are the same, for convenience.
Remark 1. It should be pointed out that in the neural net-
work fW , we cannot include the bias terms. The reason is
that unbounded bias terms, which may be learned by the
training, can make the activation functions saturated (e.g.,
sigmoid) or infinite (e.g., ReLU), which further results in
model collapse, namely, all data points are mapped to the
same point.

Our dimensionality reduction (DR) method is novel. As
shown by (5), it is very different from existing DR meth-
ods that aim to compress data with low reconstruction error
(e.g., PCA(Jolliffe and Cadima 2016) and autoencoder) or
preserve local structures of data (e.g. LLE (Roweis and Saul
2000) and t-SNE (Van der Maaten and Hinton 2008)). Our
DR method aims to improve the density (or compactness) of
the data in the low-dimensional space, which, shown by the
experiments, is useful for anomaly detection.

When the network fW is well-trained, we can use a den-
sity estimation based method such as KDE and LOF (Bre-
unig et al. 2000), to conduct anomaly detection. However,
KDE and LOF are time-consuming when n is large and our
method with LOF or KDE is not as effective experimentally
as it with kNN. Therefore, we propose to use kNN to detect
anomalies. To be more precise, given a test sample xnew, we
compute

znew = fW(xnew). (6)
For znew, we find its nearest k neighbors
{fW(xnew,1), fW(xnew,2), · · · , fW(xnew,k)} ⊆ {fW(x) :
x ∈ D}. After that, we compute the average distance from
these k neighbors to znew and utilize this distance to measure
the anomaly of znew:

anomaly score =
k∑

j=1

∥znew − fW(xnew,j)∥2 . (7)

In general, we train a neural network to learn dense repre-
sentations of normal data (1) with our objective function (5).
As for test data, we utilize the trained neural network to gen-
erate a representation of the test data (6). Subsequently, we
find its nearest K representations generated by training data
, and calculate the sum of distance from test representation
to its nearest K neighbors as an anomaly score (7). For con-
venience, we call our method (5) Dense Projection based
Anomaly Detection (DPAD).

Optimization
Training Settings
In the training stage, to ensure that the distance between
any two representations of training data is fully consid-
ered and optimized, we refrain from using mini-batch which
may lead the model to repeatedly consider the distance be-
tween representations generated by training data in the same
batch, thereby overlooking the distances between represen-
tations of the training data from different batches which
may be more similar to each other. Moreover, the setting
of hyperparameter γ controls the initialization of weights
for eWij and thus determines whether the model will shrink
the distance between fW(xi) and fW(xj) at the beginning
of training. An excessively large value of γ would lead
the model to attempt increasing the distances between all
points to minimize the objective function, as we observe that
the objective function decreases with increasing distance
||fW(xi) − fW(xj)|| when ||fW(xi) − fW(xj)|| ≥ 1/γ.
To handle this problem, eWij is excluded from the backprop-
agation process so it will be only a parameter or weight of
distance and we set γ to a relatively small numerical value.
The optimization details are presented in Algorithm 1.

Algorithm 1: Training and testing processes of DPAD
Input: D = {x1,x2, . . . ,xn}, m, γ ≥ 0, λ ≥ 0, k ≥ 1
Training stage of DPAD:

for B = 1, . . . ,m do
eWij = exp

(
−γ ∥fW(xi)− fW(xj)∥2

)
.detach()

Dist sum=
∑n

i=1

∑n
j=1

(
∥fW(xi)− fW(xj)∥2 eWij

)
Loss= Dist sum+λ

∑L
l=1

∣∣∥Wl∥F − 1
∣∣

W = W− Gradient-Step(Loss)
end for

Testing stage of DPAD:
Input test data xnew

Compute znew = fW(xnew)
Find the nearest k neighbors of znew from {fW(x) :
x ∈ D} :
{fW(xnew,1), fW(xnew,2), · · · , fW(xnew,k)}

Anomaly Score =
∑k

j=1 ∥znew − fW(xnew,j)∥2

Space and Time Complexity
Suppose Wl ∈ Rdl×dl−1 , l = 1, 2, . . . , L, and consider
a mini-batch of b samples, where dL = d and d0 = D.
The time complexity per iteration (including the forward
and backward propagations) is O(b

∑L
l=1 dl−1dl) and the

space complexity is O(b
∑L+1

l=1 dl−1 +
∑L

l=1 dl−1dl). In
the testing stage, for a test sample, the time complexity is
O(

∑L
l=1 dl−1dl + dn), in which the first part is from the

computation of fW(xnew) and the second part is from kNN.
In sum, the time and space complexities of the proposed
method DPAD are both linear with the number of training
data. Therefore, DPAD can be applied to large datasets.
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Theoretical Analysis
First we provide a Lipschitz constant τf for fW .

Lemma 1. Given the neural network fW(x) =
WL(h(· · ·h(W2h(W1x)) · · · )), denote ρ the Lipschitz
constant of h and suppose ∥Wl∥2 ≤ βl. Let τf =

ρL−1
∏L

l=1 βl. Then for any x1 and x2, the following in-
equality holds

∥fW(x1)− fW(x2)∥ ≤ τf∥x1 − x2∥. (8)

The lemma, proved in shows the sensitivity of fW to the
distances between any two data points in D. The following
lemma shows the upper bound of the spectral norm of a ran-
dom Gaussian matrix.

Lemma 2. (Bandeira and Van Handel 2016) Given an d ×
d random Gaussian matrix N with Nij ∼ N (0, σ2

ij), the
following inequality holds

∥N∥2 ≤ max
i

√∑
j

σ2
ij +max

ij
|σij |

√
log d (9)

Based on Lemma 1 and Lemma 2, we have the following
theorem (proved in the appendix), which provides a lower
bound for the weight eWij at the random initialization stage
of the fW .

Theorem 1. Let W(0) be the initialized parameters drawn
from N (0, σ2). Denote dl × dl−1 the shape of Wl and let
d̄l = max(dl, dl−1), l = 1, 2, . . . , L. Then the following
inequality holds:

e
W(0)
ij ≥ exp

(
− γρ(2L−2)σ2L ∥xi − xj∥2

×
L∏

l=1

(
√

d̄l +

√
log d̄l)

2

)
.

(10)

The theorem indicates that the initialized fW is able to
preserve the local similarity of the original data in D pro-
vided that the network is not too complex. Therefore, the
problem that the network reduces the distance of representa-
tions of dissimilar data at the beginning of training will not
occur.

Experiments
Datasets and Baselines
We choose CIFAR-10 (Krizhevsky, Hinton et al. 2009) and
Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017) as our
image datasets, Arrhythmia (Rayana 2016), Abalone (Dua,
Graff et al. 2017), Campaign (Han et al. 2022), and MAGIC
Gama (Han et al. 2022) as our tabular datasets to test the pro-
posed method DPAD. The statistics about the datasets are in
Table 1.

We compare DPAD with classical methods, dimensional-
ity reduction methods followed by kNN, and state-of-the-art
AD methods. It is noteworthy that we also used LOF as a
detection method following DR, but the performance was
much worse than kNN.

Datasets # Samples # Features # Classes

CIFAR-10 60000 32× 32× 3 10
Fashion-MNIST 70000 28× 28 10

Arrhythmia 452 274 2
Abalone 1920 8 2

Campaign 41188 62 2
MAGIC Gama 19020 10 2

Table 1: Statistics of the datasets

• Classical methods: kNN, k-Means (MacQueen et al.
1967), LOF (Breunig et al. 2000), OCSVM (Schölkopf
et al. 2001), isolation forest (IF) (Liu, Ting, and Zhou
2008), KDE (Parzen 1962), and DAE (Vincent et al.
2008).

• Dimensionality reduction methods: PCA (Jolliffe and
Cadima 2016), t-SNE (Van der Maaten and Hinton
2008), and UMAP (McInnes, Healy, and Melville 2018).

• State-of-the-art methods: E2E-AE and DAGMM (Zong
et al. 2018), DCN (Caron et al. 2018), ADGAN (Deecke
et al. 2019), DSVDD (Ruff et al. 2018), OCGAN (Per-
era, Nallapati, and Xiang 2019), TQM (Wang, Sun, and
Yu 2019), GOAD (Bergman and Hoshen 2020), DROCC
(Goyal et al. 2020), HRN (Hu et al. 2020), SCADN
(Yan et al. 2021), NeuTraL AD (Qiu et al. 2021), GOCC
(Shenkar and Wolf 2021), and IGD (Chen et al. 2022).

Implementation and Evaluation Details
In this section, we introduce experimental settings and de-
scribe the implementation details of the proposed method.
For the two mentioned image datasets, we use Le-Net-based
CNN as our basic network structure. We conduct 10 one-
class classification tasks, choosing one of the 10 classes as
the normal class every time. To further evaluate the perfor-
mance of our method, we conducted an additional set of
challenging experiments, where we selected 9 out of the
10 classes as the normal classes for training, while the test-
ing samples remained the same as before. For the compared
methods in the experiment, we obtain their performance di-
rectly from their paper except for k-Means, DROCC, and
DR+kNN methods for which we run the officially released
code or our code respectively to obtain the results. We run
the proposed methods 5 times with 100 epochs optimization
to get the final average result. To maintain consistency with
previous methods, we use the AUC metric to evaluate the
performance on image datasets and use the F1 score to eval-
uate the performance on tabular datasets.

Results on Image Datasets
Table 2 and Table 3 provide a summary and comparison of
our method with other methods in terms of their AUC per-
formance on every class of CIFAR-10 and Fashion-MNIST
datasets. Based on the performance, we draw the following
observations:

• In comparison with classical methods like OCSVM
and IF, our approach consistently achieves higher AUC
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Normal class Airplane Auto-
mobile Bird Cat Deer Dog Frog Horse Ship Truck

(no DR) kNN 91.2 98.6 88.5 93.6 89.4 90.0 81.7 98.4 88.5 96.5
(no DR) k-Means 90.3 98.6 88.5 93.8 88.1 90.5 82.4 98.1 89.8 97.0
(no DR) LOF (Breunig et al. 2000) 66.6 45.3 64.1 51.6 67.5 51.7 67.7 52.9 69.3 41.6
OCSVM (Schölkopf et al. 2001) 61.6 63.8 50.0 55.9 66.0 62.4 74.7 62.6 74.9 75.9
KDE (Parzen 1962) 61.2 64.0 50.1 56.4 66.2 62.4 74.9 62.6 75.1 76.0
IF (Liu, Ting, and Zhou 2008) 66.1 43.7 64.3 50.5 74.3 52.3 70.7 53.0 69.1 53.2
DAE (Vincent et al. 2008) 41.1 47.8 61.6 56.2 72.8 51.3 68.8 49.7 48.7 37.8
DAGMM (Zong et al. 2018) 41.4 57.1 53.8 51.2 52.2 49.3 64.9 55.3 51.9 54.2
ADGAN (Deecke et al. 2019) 63.2 52.9 58.0 60.6 60.7 65.9 61.1 63.0 74.4 64.2
DSVDD (Ruff et al. 2018) 61.7 65.9 50.8 59.1 60.9 65.7 67.7 67.3 75.9 73.1
OCGAN (Perera, Nallapati, and Xiang 2019) 75.7 53.1 64.0 62.0 72.3 62.0 72.3 57.5 82.0 55.4
TQM (Wang, Sun, and Yu 2019) 40.7 53.1 41.7 58.2 39.2 62.6 55.1 63.1 48.6 58.7
DROCC* (Goyal et al. 2020) 79.2 74.9 68.3 62.3 70.3 66.1 68.1 71.3 62.3 76.6
HRN (Hu et al. 2020) 77.3 69.9 60.6 64.4 71.5 67.4 77.4 64.9 82.5 77.3
AE+kNN* 77.7 62.7 59.5 57.6 65.3 58.3 75.5 62.8 79.7 66.4
PCA+kNN* 68.7 44.7 68.1 51.0 77.0 49.6 73.4 51.3 69.0 43.7
t-SNE+kNN* 78.4 72.1 68.3 66.7 70.3 68.8 75.5 70.3 82.0 72.6
UMAP+kNN* 75.6 66.7 63.0 60.1 64.9 64.0 73.4 63.8 77.9 67.2

DPAD 78.0
(0.3)

75.0
(0.2)

68.1
(0.5)

66.7
(0.4)

77.9
(0.8)

68.6
(0.3)

81.2
(0.4)

74.8
(0.2)

79.1
(1.0)

76.1
(0.2)

Table 2: Average AUC(%) of one-class anomaly detection on CIFAR-10. * means we reproduced the results using the officially
released code. The best two results are marked in bold.

Normal class T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle-
boot

(no DR) kNN 91.2 98.6 88.5 93.6 89.4 90.0 81.7 98.4 88.5 96.5
(no DR) k-Means 90.3 98.6 88.5 93.8 88.1 90.5 82.4 98.1 89.8 97.0
(no DR)LOF (Breunig et al. 2000) 80.6 94.6 82.4 88.6 91.0 88.6 78.6 96.4 75.8 97.4
OCSVM (Schölkopf et al. 2001) 86.1 93.9 85.6 85.9 84.6 81.3 78.6 97.6 79.5 97.8
KDE (Parzen 1962) 68.7 91.0 86.0 91.9 84.6 88.5 58.7 94.1 69.3 90.1
IF (Liu, Ting, and Zhou 2008) 91.0 97.8 87.2 93.2 90.5 93.0 80.2 98.2 88.7 95.4
DAE (Vincent et al. 2008) 86.7 97.8 80.8 91.4 86.5 92.1 73.8 97.7 78.2 96.3
DAGMM (Zong et al. 2018) 42.1 55.1 50.4 57.0 26.9 70.5 48.3 83.5 49.9 34.0
ADGAN (Deecke et al. 2019) 89.9 81.9 87.6 91.2 86.5 89.6 74.3 97.2 89.0 97.1
DSVDD (Ruff et al. 2018) 79.1 94.0 83.0 82.9 87.0 80.3 74.9 94.2 79.1 93.2
OCGAN (Perera, Nallapati, and Xiang 2019) 85.5 93.4 85.0 88.1 85.8 88.5 77.5 93.9 82.7 97.8
TQM (Wang, Sun, and Yu 2019) 92.2 95.8 89.9 93.0 92.2 89.4 84.4 98.0 94.5 98.3
DROCC* (Goyal et al. 2020) 88.1 97.7 87.6 87.7 87.2 91.0 77.1 95.3 82.7 95.9
HRN (Hu et al. 2020) 92.7 98.5 88.5 93.1 92.1 91.3 79.8 99.0 94.6 98.8
AE+KNN* 86.9 98.4 78.9 93.3 83.1 92.2 79.3 98.4 86.5 94.5
PCA+kNN* 92.8 99.0 90.0 95.4 91.1 92.6 85.1 98.7 91.3 96.9
t-SNE+kNN* 95.2 98.3 92.2 97.1 91.6 98.0 84.1 96.7 98.0 97.9
UMAP+kNN* 94.3 98.0 92.1 96.9 92.5 97.4 85.6 97.3 98.8 98.2

DPAD 93.7
(0.2)

98.7
(0.0)

90.3
(0.0)

94.7
(0.3)

92.2
(0.1)

93.9
(0.8)

82.3
(0.1)

98.7
(0.1)

94.2
(0.6)

98.1
(0.2)

Table 3: Average AUC(%) of one-class anomaly detection on Fashion-MNIST. * means we reproduced the results using the
officially released code. The best two results are marked in bold.

scores for all classes in both two datasets. An interesting
phenomenon is that IF outperforms all other deep meth-
ods in some classes except for DPAD.

• For DR methods, UMAP+kNN outperforms most meth-
ods in most classes in Fashion-MNIST, and DR methods
are excellent when handling data with a simple structure
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(a) DeepSVDD
AUC : 83.0

(b) AE+KNN
AUC : 78.9

(c) DPAD
AUC : 90.3

Figure 2: t-SNE visualization of the learned embedding space of “Pullover” class of Fashion-MNIST. Note that points marked
in green, blue, red correspond to training data, test normal data, and test anomalous data respectively.

like Fashion-MNIST. But it’s worth noting that among
all other methods, DPAD has the smallest gap with DR
methods in most classes. When it comes to complex data
like CIFAR-10, DPAD outperforms all DR methods with
significant differences.

• As for deep learning based methods, DPAD outperforms
several methods such as DSVDD and OCGAN in all
classes and gets the highest two scores in most classes.
Although DPAD doesn’t achieve the top 2 best perfor-
mances in some specific classes, as shown in Table 4, in
terms of the average performance over all classes, our
method is the best state-of-the-art method. In contrast to
DSVDD and DROCC which assume normal samples in
the embedding space lie in a hyper-sphere, our method
does not make assumptions about specific shapes formed
by training data which is capable of yielding better per-
formance in cases of complex data structures.

We employ t-SNE (Van der Maaten and Hinton 2008)
to visualize the representations formed by the neural net-
work in our method and DSVDD, and encoder in AE+kNN.
Specifically, We visualize the training data, normal test data,
and anomalous test data with different colors. Figure 2
shows the visualization of the class “Pullover” in Fashion-
MNIST. From this figure, we have the following observa-
tions.
• First, our method indeed compacts the training data in the

embedding space, and there is not only a significant over-
lap between the normal test data and the training data but
also a clear separation between training data and anoma-
lous test data. We conclude that our method obtains a
clear decision boundary to distinguish normal data and
anomalous data.

• Second, Compared to DSVDD and AE, our method can
learn a better decision boundary to distinguish normal
data and abnormal data, which is consistent with the
mentioned experimental results.

Table 4 shows the average performance on CIFAR-10 and
Fashion-MNIST over all 10 classes. The two latest methods
SCADN and IGD (Scratch) are also compared in the table,
though their performance on each single class was not re-
ported in their papers. From the table, we draw the following
observation:

Datasets CIFAR-10 F-MNIST

(no DR) kNN* 59.5 91.6
(no DR) k-Means* 62.0 91.7
(no DR) LOF (Breunig et al. 2000) 57.8 87.4
OCSVM (Schölkopf et al. 2001) 64.7 87.0
IF (Liu, Ting, and Zhou 2008) 59.7 91.5
KDE (Parzen 1962) 64.9 82.3
DAE (Vincent et al. 2008) 53.5 88.1
DAGMM (Zong et al. 2018) 53.1 51.7
ADGAN (Deecke et al. 2019) 62.4 88.4
DSVDD (Ruff et al. 2018) 64.8 84.7
OCGAN (Perera et al. 2019) 65.6 87.8
TQM (Wang, Sun, and Yu 2019) 52.1 92.7
DROCC* (Goyal et al. 2020) 69.9 89.0
HRN (Hu et al. 2020) 71.3 92.8
SCADN (Yan et al. 2021) 66.9 —
IGD (Chen et al. 2022) 74.3 92.0
AE+kNN* 65.2 89.1
PCA+kNN* 58.7 93.3
t-SNE+kNN* 72.3 94.9
UMAP+kNN* 67.7 95.2
DPAD 74.5 93.7

Table 4: Average AUCs(%) over all 10 classes on CIFAR-
10 and Fashion-MNIST. Note that the best two results are
marked in bold.

• On Fashion-MNIST, classical methods and dimension-
ality reduction methods demonstrate excellent perfor-
mance, with UMAP+kNN surpassing all state-of-the-art
methods. We attribute this phenomenon to the compara-
tively simple data structure of Fashion-MNIST. Despite
DPAD not achieving optimal performance, it remains the
state-of-the-art method whose performance is closest to
that of UMAP+kNN.

• On CIFAR-10, due to its complex data structure, SOTA
methods demonstrate superior performance compared to
classical methods and dimensionality reduction methods.
DPAD outperforms other methods, which verified its ef-
fectiveness in handling data with high complexity.
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Datasets Abalone Arrhythmia Campaign MAGIC-gamma

(no DR) kNN* 61.5± 0.0 63.8± 0.0 72.1± 0.0 75.2± 0.0
(no DR) k-Means* 61.8± 0.0 62.8± 0.0 72.0± 0.0 70.6± 0.0
(no DR) LOF* (Breunig et al. 2000) 33.0 ± 1.0 51.0 ± 1.0 64.0± 0.0 68.0± 0.0
OCSVM* (Schölkopf et al. 2001) 48.0 ± 0.0 46.0 ± 0.0 67.0± 0.0 67.0± 0.0
E2E-AE (Zong et al. 2018) 33.0 ± 3.0 45.0 ± 3.0 - -
DCN (Caron et al. 2018) 40.0 ± 1.0 38.0 ± 3.0 - -
DAGMM (Zong et al. 2018) 20.0 ± 3.0 49.0 ± 3.0 - -
DSVDD (Ruff et al. 2018) 62.0 ± 1.0 54.0 ± 1.0 61.7 ± 6.4* 65.5 ± 0.3*
DROCC* (Goyal et al. 2020) 68.0 ± 2.0 32.3 ± 1.8 65.5 ± 0.9 58.0 ± 1.4
GOAD (Bergman and Hoshen 2020) 61.0 ± 2.0 52.0 ± 2.3 64.5 ± 0.7* 61.6 ± 0.1*
NeuTraL AD* (Qiu et al. 2021) 62.1 ± 2.8 60.3 ± 1.1 63.2 ± 8.0 69.6 ± 2.8
GOCC* (Shenkar and Wolf 2021) 66.1 ± 4.3 61.8 ± 1.8 74.1 ± 2.5 66.7 ± 0.4
PCA+kNN* 56.7± 0.0 25.0± 0.0 67.2± 0.0 72.9± 0.0
t-SNE+kNN* 61.9± 0.0 13.7± 0.0 67.4± 0.0 76.6± 0.0
UMAP+kNN* 61.7± 0.0 11.4± 0.0 66.9± 0.0 74.8± 0.0
DPAD 66.7 ± 1.5 66.7 ± 0.0 73.4 ± 1.5 74.0 ± 0.5

Table 5: Average F1-scores(%) with the standard deviation of each method on four tabular datasets. * means we reproduced the
results using the officially released code. The best two results are marked in bold.

Results on Tabular Datasets
In Table 5, we summarize the F1-scores of all methods
on four tabular datasets. It can be observed that DPAD
significantly outperforms several baseline methods such as
OCSVM, DCN, and DAGMM. Note that for Campaign
and MAGIC-gamma, we run the officially released code
or our own code to get the results. When faced with low-
dimensional data such as Campaign and MAGIC-gamma,
classical methods and DR methods can even get better
results than some deep learning based methods such as
DSVDD and DROCC. Compared with methods designed for
tabular data such as NeuTraL AD and GOCC, our DPAD is
more effective. Moreover, Arrhythmia is a more challenging
dataset with fewer samples and more attributes, and DPAD
exhibits a performance improvement of 4% over the second-
best method while the performance of DR methods is the
worst indicating they fail when faced with complex datasets.

Experiment with Multi-Class Normality
In real anomaly detection scenarios, the normal data may
consist of multiple classes with small associations. To eval-
uate the performance of our method under such practical
conditions, we conduct experiments on Fashion-MNIST and
CIFAR-10 datasets by selecting one class as an anoma-
lous class and the remaining nine classes as normal classes.
Therefore, we conducted 10 experiments for each dataset. In
this setup, the normal samples come from different classes
and have relatively small associations, making it a more
challenging task than traditional one-class classification. We
compare our method with OCSVM, SVDD, DROCC, HRN,
and dimensionality reduction methods.

Table 6 shows the average performance. We have the fol-
lowing observations:

• Compared to traditional one-class classification tasks,
all methods experience a significant decrease in average

Datasets CIFAR-10 F-MNIST

(no DR) kNN 52.1 71.6
(no DR) k-Means 48.8 68.8
(no DR) LOF(Breunig et al. 2000) 50.0 50.0
OCSVM (Schölkopf et al. 2001) 49.0 57.2
DSVDD (Ruff et al. 2018) 52.3 65.9
DROCC (Goyal et al. 2020) 54.3 54.8
HRN (Hu et al. 2020) 50.3 41.1
PCA+kNN 52.2 74.8
t-SNE+kNN 51.3 78.7
UMAP+kNN 51.2 74.4
AE+kNN 51.4 69.0

DPAD 66.1 70.2

Table 6: Average AUCs(%) of 9-1 experiments on CIFAR-
10 and Fashion-MNIST. Note that we run the officially re-
leased code to get results and the best result is marked in
bold.

AUC which demonstrates that the 9-1 experiments are in-
deed more challenging than the 1-9 experiments shown
in previous tables.

• Although dimensionality reduction methods perform
well on Fashion-MNIST, their average AUCs are around
50 on CIFAR-10, indicating they failed to handle data
with complex structures. DPAD achieves the best perfor-
mance on CIFAR-10, indicating it is more effective on
anomaly detection in complex real scenarios than other
state-of-the-art methods. Its success mainly stems from
the ability to learn a decision boundary locally without
any assumption on the shape of the decision boundary.
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Ablation Study
We study the contributions of the two components of our
method. Table 7 gives the ablation results on Fashion-
MNIST and CIFAR-10. We can see that both eWij and CW
are necessary.

Datasets CIFAR-10 Fashion-MNIST

DPAD without eWij and CW 57.8 87.0
DPAD without eWij 68.5 91.3
DPAD without CW 68.5 89.2

DPAD 74.5 93.7

Table 7: Average AUCs(%) of different components of
DPAD on the image datasets.

To show that the performance is not significantly de-
pendent on values of γ and λ, we choose different values
of them to see the difference in one-class classification
experiments on Fashion-MNIST. Table 8 shows the results,
where the differences are tiny if γ and λ are in some
reasonable ranges respectively. Nevertheless, substantial
performance degradation is evident when γ is 100, cor-
roborating that an excessively large γ inhibits the learning
of dense representations, and then impacts performance.
Besides, results show that our method is not sensitive to the
value of λ.

Datasets Fashion-MNIST

γ = 0.001 92.3
γ = 0.01 93.3
γ = 0.1 91.3
γ = 1 λ = 1 90.5
γ = 10 91.4
γ = 100 89.2

λ = 0 89.2
λ = 0.01 92.5
λ = 0.1 92.5

γ = 0.01 λ = 10 92.6
λ = 100 91.9
λ = 1000 92.0

Table 8: Average AUCs(%) of different values of hyper-
parameter γ and λ on Fashion-MNIST.

Conclusions
We have presented a novel and simple method DPAD for
unsupervised anomaly detection. The main idea is to learn
dense representations of normal data using neural networks
and detect anomalous data based on its local density. Com-
pared with other methods, DPAD does not rely on any as-
sumption on the shape of normal data and the decision
boundary formed by representations of normal data and only
tries to gather representations of similar normal data. For

this reason, DPAD is not only effective on classical one-class
classification tasks but also outperforms other methods when
normal data consists of multiple classes with small associa-
tions. Our experimental results demonstrate that DPAD is as
effective as state-of-the-art AD methods on both image and
tabular datasets and has significant improvements in a few
cases.

Proof of Theoretical Results
Proof for Lemma 1
Given the architecture of fW , we have

∥fW(x1)− fW(x2)∥
=∥WL(h(· · ·h(W2h(W1x1)) · · · ))
−WL(h(· · ·h(W2h(W1x2)) · · · ))∥

≤∥WL∥2∥h(· · ·h(W2h(W1x1)) · · · )
− h(· · ·h(W2h(W1x2)) · · · )∥

≤ρ∥WL∥2∥ · · ·h(W2h(W1x1)) · · ·
− h(· · ·W2h(W1x2)) · · · ∥
...

≤ρL−1
( L∏

l=1

∥Wl∥2
)
∥x1 − x2∥

≤ρL−1
( L∏

l=1

βl

)
∥x1 − x2∥

=τf∥x1 − x2∥.

(11)

Proof for Theorem 1
For our fW , the weight matrices W ∈ Rdl×dl−1 are initial-
ized from N (0, σ2). According to Lemma 2, we have

∥Wl(0)∥2 ≤
√

d̄lσ +

√
log d̄lσ (12)

where d̄l = max(dl, dl−1). The inequation shows an upper
bound of the spectral norm of Wl when it is initialized by a
Gaussian distribution with variance σ2. Now for Lemma 1,
we have

τf = ρL−1
L∏

l=1

(
√

d̄lσ +

√
log d̄lσ). (13)

It follows from Lemma 1 that
∥fW(xi)− fW(xj)∥ ≤ ρL−1σL ∥xi − xj∥

×
L∏

l=1

(
√
d̄l +

√
log d̄l).

(14)

Thus we can get an upper bound for any e
W(0)
ij :

e
W(0)
ij = exp

(
−γ ∥fW(xi)− fW(xj)∥2

)
≥ exp

(
− γρ2L−2σ2L ∥xi − xj∥2

×
L∏

l=1

(
√
d̄l +

√
log d̄l)

2

)
.

(15)
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