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Abstract

Instruction-following is particularly crucial for large lan-
guage models (LLMs) to support diverse user requests. While
existing work has made progress in aligning LLMs with hu-
man preferences, evaluating their capabilities on instruction-
following remains a challenge due to complexity and diver-
sity of real-world user instructions. While existing evaluation
methods focus on general skills, they suffer from two main
shortcomings, i.e., lack of fine-grained task-level evaluation
and reliance on singular instruction expression. To address
these problems, this paper introduces DINGO, a fine-grained
and diverse instruction-following evaluation dataset that has
two main advantages: (1) DINGO is based on a manual-
annotated, fine-grained and multi-level category tree with 130
nodes derived from real-world user requests; (2) DINGO
includes diverse instructions, generated by both GPT-4 and
human experts. Through extensive experiments, we demon-
strate that DINGO can not only provide more challenging
and comprehensive evaluation for LLMs, but also provide
task-level fine-grained directions to further improve LLMs.

1 Introduction
Recently, Large language models (LLMs) exhibit surpris-
ing capabilities not previously seen in smaller models,
which are often referred to as emergent abilities (Wei
et al. 2022), including in-context learning, chain-of-
thought, and instruction-following abilities. Among them,
the instruction-following ability is crucial to the interaction
between humans and LLMs (e.g., ChatGPT). Existing stud-
ies (OpenAI 2023; Chiang et al. 2023; Wang et al. 2023;
Longpre et al. 2023) align LLMs with human instructions
using supervised instruction-tuning or reinforcement learn-
ing from human feedback (RLHF), which enables LLMs
to understand human instructions and make high-quality re-
sponses. Nonetheless, due to the complexity and diversity
of human instructions, it remains a challenge to comprehen-
sively evaluate the instruction-following ability of LLMs.

Existing studies evaluate the instruction-following abil-
ity from the perspective of general skills. For example, In-
structEval (Chia et al. 2023) assesses LLM’s instruction-
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User request
         : can you write a python script that will save a screenshot of the webpage 
… 
         : Sure, here's a simple script that will do that … 
         : can you give me an example using … instead of …? 
         : Sure, here's an example …
         : Find the intersec?on of the normal to 2x^2+y^2=18 which passes 
through … 
         : To find the intersec?on of the normal to the first curve that passes 
through … 
         : I think there are two points of intersec?on. 
         : You are correct, there are actually …
         : Create a horse using ascii art. 
         : Here is a simple ASCII art representa?on of a horse: … 
         : Create mul?ple horses using complex ascii art. 
         : Here are three different horses created using complex ASCII art: …
         : I want you to take on the role of project manager.  Please write in 
English … 
         : Sure, I can take on the role of a project manager. What kind of project … 
         : You need to make a plan and use the GanU chart to create an 
investment… 
         : Great, I understand the project scope. Here's a high-level plan …
         : Prove Pythagoras' theorem for right triangles. 
         : Pythagoras' theorem states that in a right triangle, the square of the 
length …

Figure 1: Different user request examples extracted from
ShareGPT.

following ability based on three general abilities: problem-
solving, writing, and alignment to human values. Flask (Ye
et al. 2023) shifts the original coarse-grained scoring process
to instance-wise skill scoring setup, and defines 4 primary
abilities, divided into 12 specific skills, to assess the perfor-
mance of LLMs. However, there are still two shortcomings
in existing evaluation methods:

• The lack of fine-grained task-level evaluation poses
challenges in improving the instruction-following ability
of LLMs. For example, the Factuality skill used in
FLASK (Ye et al. 2023) includes many sub-tasks such as
“History Knowledge QA” and “Chemical Knowledge QA”.
Consequently, even if we recognize that a particular LLM
is deficient in this skill, it is challenging to pinpoint the ex-
act aspects of the instruction-following ability that the LLM
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needs to be improved. Specifically, if the performance of the
LLM is not satisfactory in “Chemical Knowledge QA”, it is
not clear whether this is because the LLM’s response con-
tains non-standard chemical formulas. Similarly, if the LLM
cannot perform well in “History Knowledge QA”, it could
potentially be because the key points are not clearly outlined
in the LLM’s response.

• The expression of instructions tends to be singular,
resulting in a gap between real-world user instructions and
existing evaluation datasets. Existing datasets (Chia et al.
2023) often use previous NLP datasets as evaluation data for
specific skills, such as employing DROP (Dua et al. 2019) to
evaluate the Comprehension ability, and design a specific
instruction template for the dataset. However, in real-world
scenarios, users express their requests in various ways. Fig-
ure 1 shows several examples extracted from the ShareGPT
website, a platform where users voluntarily share their inter-
action records with LLMs. As can be seen, the styles and
attitudes of user instructions are very diverse: users may ask
questions directly (i.e., Concise) or set specific roles to ask
questions (i.e., Role-play). Therefore, it could be very bene-
ficial to evaluate the LLM’s instruction-following ability on
these diverse instruction expressions.

To address the aforementioned shortcomings, in this
paper, we present DINGO, a Diverse and Fine-grained
Instruction-Following evaluation dataset. First, to support
fine-grained instruction-following evaluation, we manually
annotate a multi-level category tree with 130 nodes and
4 levels, based on the user instructions extracted from
ShareGPT. This category tree encompasses tasks that users
would want LLMs to complete in real-world scenarios,
making it highly practical. Equipped with its multi-level
structure, the category tree supports analyzing instruction-
following ability at different granularities, and thus can ad-
dress the shortcomings of LLM at task-level. Second, we
prepare diverse instruction data for each category to com-
prehensively examine the instruction-following ability. Con-
sidering that user requests on ShareGPT have been used for
instruction-tuning in many LLMs, such as vicuna (Chiang
et al. 2023) and TÜLU (Wang et al. 2023), we avoid data
leakage by not directly using data from ShareGPT for evalu-
ation. Instead, we employ GPT-4 to simulate various instruc-
tion styles, attitudes, and languages derived from ShareGPT,
and generate diverse instruction data for each category. In
addition, considering the weaknesses of LLMs in mathe-
matics and logical reasoning, we utilize existing human-
annotated datasets (e.g., GSM8K (Cobbe et al. 2021a)) as
basic questions and guide GPT-4 to generate diverse in-
structions from the basic questions to ensure the instruc-
tion quality. For example, a math question from GSM8K,
“Ronnie was given 5 while Rissa was given thrice as much
. . . ” would be transformed by GPT-4 into a role-playing in-
struction form: “Act as a patient math teacher to answer
this question step by step: Ronnie was given 5 while Rissa
was given thrice as much . . . ”. Based on the above meth-
ods, we, in total, collect 5026 diverse samples in DINGO
to comprehensively evaluate the instruction-following abil-
ity of LLMs.

Based on DINGO, we conduct extensive experiments to

evaluate instruction-following of 10 different LLMs, and
obtain the following findings. (1) Even if an instruction-
tuned LLM performs well on coarse-grained categories, its
performance on fine-grained categories may be diversified
and, sometimes, it could even be worse than the base LLM
without instruction fine-tuning. (2) Our dataset with diverse
instructions presents more significant challenges to LLMs
to generate responses that align with human preferences.

Our contributions can be summarized as follows:
• We publicly release a multi-level task category tree

consisting of 130 nodes, designed to support instruction-
following evaluations at various granularities.

• We collect 5026 diverse and high-quality instructions
based on real-world user instructions, presenting more sig-
nificant challenges for LLMs in generating responses that
align with human preferences.

• We conduct a comprehensive evaluation on 10 represen-
tative LLMs, and the experimental results demonstrate that
DINGO can support more extensive and challenging evalu-
ation on the instruction-following ability, as well as provide
fine-grained guidance to further improve LLMs. We release
the DINGO dataset at Github1.

2 Background: Instruction-Following Ability
of Large Language Models

Language models (LMs) are designed to comprehend
and produce text that resembles human language (e.g.,
BERT (Devlin et al. 2019), GPT2 (Radford et al. 2019)).
Recently, researchers have discovered that scaling LMs to
large LMs (LLMs) (e.g., ChatGPT, GPT-4 (OpenAI 2023),
LLaMA (Touvron et al. 2023a)) by increasing the model
size or amount of training data can significantly enhance
their downstream task abilities. Moreover, the existing stud-
ies also show that LLMs demonstrate surprising abilities
that have not been seen in previous smaller LMs (Bubeck
et al. 2023; Rae et al. 2021; Brown et al. 2020), such as in-
context learning and instruction-following.

Instruction-following is an important ability for LLMs to
interact with real-world users. This means that the model
can complete various tasks based on a wide range of natural
language instructions provided by humans, including pol-
ishing articles (e.g.,Polish this email above in very urgent
tone: {Email}.), solving math problems (e.g.,I need to cal-
culate how long my gas canister will last for 360 burener.),
providing travel plans (e.g.,Plan a trip to Jindo for 2 nights
and 3 days.), etc. LLMs can obtain the instruction-following
ability in the following two ways: (1) supervised learning us-
ing instruction-following datasets (e.g., vicuna (Chiang et al.
2023)), and (2) reinforcement learning from Human Feed-
back(e.g., Llama2-chat (Touvron et al. 2023b)).

In this work, we aim to evaluate the capabilities of exist-
ing LLMs on instruction-following across a variety of tasks
and various instruction expressions, and provide a compre-
hensive benchmark DINGO to promote in-depth analysis of
the instruction-following ability of LLMs.

1https://github.com/ruc-datalab/DINGO
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3 The DINGO Dataset
Our goal is to generate a fine-grained category tree
and diverse instructions. To achieve this goal, we
first collect real-world user instructions as seed data. Then,
we manually classify the seed data to obtain a fine-
grained category tree. Finally, based on seed data and
category tree, we collect diverse instructions
for each category by guiding GPT-4 (OpenAI 2023) to sim-
ulate various instruction styles, attitudes, and languages.

3.1 Seed Data Collection
To obtain real-world instruction-following data, we utilize
public data from ShareGPT (https://sharegpt.com/), which
is a platform for users to share their interactions with LLMs
(e.g., GPT-4). Following previous work (Chiang et al. 2023;
Wang et al. 2023), we use the ‘html cleaned‘ version2 and
truncate conversations with more than 2048 tokens. Based
on this, we obtain 7265 seed samples from ShareGPT.

3.2 Category Tree Annotation

First-level Second-level
Language Un-
derstanding

Relationship Judgement; Classifica-
tion; Sorting; Error Correction; Joke
Explanation; Information Extraction

Code Text2Code; Code2Text; Code2Code
Knowledge
Unitilization

Open-book Questions; Close-book
Questions

Creation Thematic creation; Specialized writing;
Plan; Non-verbal creation; Simulation
creation

Language
Generation

Question Generation; Rewriting/Para-
phrasing; Summary/Abstract/Title;
Translation

Mathematics
and Reason-
ing

Word Problems; Mathematical the-
orem; Combinatorics; Mathematical
Calculations; Common Sense Reason-
ing; Logical Reasoning

Table 1: The first and second level categories of DINGO.

Unlike previous work, we focus only on tasks that may ap-
pear in real-world user instructions, as this represents what
users genuinely want the LLMs to achieve, providing a
more practical evaluation of the instruction-following abil-
ity. Thus, we manually annotated the fine-grained task cate-
gories of the extracted instruction data from ShareGPT, pri-
marily adhering to the traditional NLP task types commonly
defined in previous research (Longpre et al. 2023; bench au-
thors 2023; Zhao et al. 2023). For the convenience of con-
ducting evaluations at different granularities, we design the
categories as a multi-level tree structure, which facilitates
efficient and in-depth analysis of the capabilities of LLMs.
Statistically, our category tree comprises 4 levels, with the
first level containing 6 categories, the second level contain-
ing 25 categories, the third level containing 65 categories,

2https://huggingface.co/datasets/anon8231489123/
ShareGPT Vicuna unfiltered/tree/main/HTML cleaned raw dataset

/* Task description */
I need you to simulate the conversation between “human”
and “AI”. I will specify some constraints, including . . .
/* Demos from seed data */
Category: Mathematics and Reasoning → Applied Prob-
lems; Language: English; Style: Concise; Attitude:
Command;
Conversation: Human: Calculate how long my gas . . . ?
AI: . . .
Category: Mathematics and Reasoning → Combina-
torics; Language: English; Style: Roly-play; Attitude:
Polite;
Conversation: Human: You are a math teacher, please
explain this question step by step: There are two rows in
a classroom . . . ? AI: . . .
/* Constraints for GPT-4 */
Category: Mathematics and Reasoning → Word Prob-
lems; Language: English; Style: Roly-play; Attitude:
Command; Basic Question: Ronnie was given 5 while
Rissa was given thrice as much. . .
Conversation: Human: Act as a helpful math assistant to
answer this question: Ronnie . . .

Table 2: Examples of prompt for GPT-4 for instruction data
generation via in-context learning. The content generated by
GPT-4 has been highlighted.

and the fourth level containing 34 categories. We present the
first and second level categories in Table 1.

As the goal of this work is to evaluate the performance of
LLMs on various instruction expressions, we also annotate
the instruction style, attitude, and language for each instruc-
tion sample in the seed data, which are described as follows.

For instruction style, we specify the following five types:
• Inquisitive represents asking multiple questions on the

same topic, or delving deeper into a particular question (See
the first example in Figure 1).

• Reflective represents asking multiple questions with the
user’s own thoughts and ideas (See the second example in
Figure 1).

• Challenge represents asking multiple questions, which
are increasingly difficult (See the third example in Figure 1).

• Role-play represents setting roles for both LLMs and
users, and conducting questioning under this setting. (See
the fourth example in Figure 1).

• Concise represents asking a question directly and
clearly. (See the fifth example in Figure 1).

For instruction attitude, we specify three types:
• Polite represents asking questions using gentle words,

such as “Could you answer the question. . . ”.
• Command represents asking questions in a strong and

imperative tone, such as “Summarize this passage: . . . ”.
• Impatient represents urging the LLM to respond to a

certain aspect during the questioning process, such as “An-
swer this question directly: . . . , hurry up!”

Moreover, for languages, we list all the languages in-
cluded in the conversation, as users often switch between
languages during the conversation.
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Figure 2: A high-level pipeline of Instruction Data Collection.

3.3 Instruction Data Collection

Generating diverse instructions is very challenging for hu-
man annotators, as it requires (1) the ability to transition
between various instruction styles, attitudes, and languages,
and (2) the capacity to produce a range of samples within
a single category (e.g., “Grammar-based Rewriting”). Con-
sequently, we propose employing the highly capable LLM,
GPT-4 (OpenAI 2023), to simulate a variety of user types
and generate diverse, high-quality instructions for each cat-
egory. Please note that we do not directly incorporate in-
struction data from ShareGPT into our benchmark, be-
cause numerous LLMs (e.g., Vicuna (Chiang et al. 2023),
TÜLU (Wang et al. 2023)) have already utilized data from
shareGPT for supervised instruction-tuning. Therefore, we
only use ShareGPT data as seed data to guide GPT-4. The
data collection pipeline is depicted in Figure 2.

For any leaf category (e.g., “Mathematics and Reason-
ing ”→“Mathematical Calculations”→ “Algebraic Equation
Problems”), we consider the following three steps to collect
the instruction-following data.

In the first step, the goal is to generate constraints to
guide GPT-4 to simulate specific user types, thereby pre-
venting generation of unrealistic instructions. To achieve
this, we treat the seed data as a sample pool and randomly
select two samples as demos of in-context learning, each
associated with a particular instruction style (S), attitude
(A), and language (L). We randomly sample target style,
attitude, and language from these two demos to form con-
straints, compelling GPT-4 to learn from different instruc-
tion demos rather than excessively imitating one. For ex-
ample, the constraints in Figure 2 is {S =“Reflective”,
A =“Polite”, L =“English”}. Additionally, given that
GPT-4 may struggle to generate high-quality mathematical
or logical reasoning questions, we gather data from previous

Category Basic Question Source
Word Problems GSM8K (Cobbe et al. 2021a)

Mathematical Theorem ProofNet (Azerbayev et al. 2023)
Combinatorics Math (Hendrycks et al. 2021)

Numerical Calculation Math (Hendrycks et al. 2021)
Common Sense Reasoning StrategyQA (Geva et al. 2021)

Logical Reasoning LogiQA (Liu et al. 2020)
Text2Code MBPP (Austin et al. 2021)

Table 3: The basic question source of DINGO.

task-specific benchmarks as basic questions, which are then
incorporated as part of the constraints. For example, we use
the GSM8K (Cobbe et al. 2021a) dataset as a basic ques-
tion source for the “Mathematics and Reasoning” →“Word
Problems” category. More details of the existing dataset re-
sources included in DINGO are listed in Table 3.

The goal of the second step is for GPT-4 to simulate a
real-world user and generate high-quality instructions by
adhering to the constraints. We use in-context learning to
achieve this goal. As illustrated in Table 2, we combine the
task description, the two demos obtained from the first step,
and the target constraints as input context for GPT-4. As
demonstrated, GPT-4 learns different expressions from two
demos and transforms the basic question into specific in-
struction “Act as a helpful math assistant to . . . ” based on
the Role-play and Command constraints. Following previ-
ous work (Wiegreffe et al. 2021; Yuan et al. 2023), we adopt
the over-generate-then-filter approach to obtain higher qual-
ity instructions. Thus, in this step, we prompt GPT-4 to make
two predictions based on the same input, generating two in-
struction candidates.

In the third step, the objective is to select faithful and
diverse instructions. We consider two selection methods,
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constraint-based pair-wise selection and similarity-based se-
lection. Specifically, we first use GPT-4 to determine which
of the two candidates adheres more closely to the con-
straints. We require GPT-4 to choose from three options,
{first, second, tie}, and provide a rationale. Next, to en-
sure diversity, we calculate the similarity between the best
candidate and the collected data in the dataset. Then, we
only add the candidate to the dataset if the maximum
ROUGE-L similarity is less than 0.6.

3.4 Dataset Analysis
Table 4 presents statistics of DINGO, which exhibits two
main characteristics: (1) More fine-grained tasks are di-
vided under each first-level category, such as “Biology” and
“Chemistry” within the “Knowledge Utilization” category.
(2) Each sample may comprise multiple turns of questions,
simulating the process of human interaction with LLMs.

To validate diversity within each category, we calculate
the overlap degree of instructions in each category. Figure 3
illustrates the similarity distribution of instructions. For each
instruction, we compute its highest ROUGE-L score with
regard to other instructions in the same category. The results
illustrate the diversity of instructions in DINGO.
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ROUGE-L overlap of samples within a category

Figure 3: Distribution of the ROUGE-L scores between in-
structions within a category.

4 Experiments
4.1 Experimental Setup
Baseline Models We select two representative types of
LLMs: (1) Pre-trained only LLMs, including Llama (Tou-
vron et al. 2023a) and Llama2 (Touvron et al. 2023b); and
(2) Instruction-tuned LLMs, including vicuna-v1.3 (Chi-
ang et al. 2023), vicuna-v1.5 (Chiang et al. 2023), Llama2-
chat (Touvron et al. 2023b). Considering that vicuna-
v1.3 is instruction-tuned from Llama and vicuna-v1.5 is
instruction-tuned from Llama2, we refer to vicuna-v1.3 as
vicuna and vicuna-v1.5 as vicuna2 in this paper to make the
notations consistent with Llama and Llama2.

Evaluation Method We employ the LLM-as-a-judge
method to comprehensively evaluate LLM’s re-
sponses (Zheng et al. 2023). LLM-as-a-judge is a
technique to score the performance of LLMs by utilizing
GPT-4. Researchers have discovered that GPT-4 can gen-
erate consistent scores and provide detailed justifications,
which exhibit a high level of agreement with human

experts. However, considering that GPT-4 has difficulty
in accurately scoring math/code problems (Cobbe et al.
2021b), we include the standard answers for basic questions
as a reference in the prompt given to GPT-4. Regarding the
grading method, LLM-as-a-judge considers two types,
pair-wise comparison and single-answer grading. However,
considering that we need to compare the performance of
multiple LLMs, we choose to use single-answer grading
for more efficient evaluation. For different categories,
we have manually annotated different scoring criteria to
assist GPT-4 in generating scores that align with human
preferences. For instance, in “Mathematics and Reasoning”
tasks, the primary considerations include the clarity of steps,
the correctness of reasoning, and the appropriateness of
natural language explanations. Meanwhile, for “Knowledge
Unilization” tasks, the primary considerations is on the
adequacy of key points and whether the answers contain
hallucination.

We explore the agreement between these two grading
methods and human experts in Section 4.2.

4.2 Experimental Results
How do the existing LLMs perform on DINGO? Fig-
ure 4-(a) shows the overall performance of ten LLMs
on the first-level categories of DINGO. First, com-
paring pre-trained LLMs with instruction-tuned LLMs,
such as Llama-13B and vicuna-13B, we can see
that instruction-tuning significantly impacts alignment
with human preferences. Second, comparing different
instruction-tuned LLMs based on the same pre-trained
LLMs, such as vicuna2-7B and Llama2-chat-7B,
we find that Llama2-chat-7B has better instruction-
following ability than Vicuna2-7B. This is mainly be-
cause Llama2-chat-7B utilizes an RLHF (reinforce-
ment learning from human feedback) framework with
two reward models for usefulness and safety to align
with human preferences, enabling it to outperform the
base LLM (i.e.,Llama2-7B) under various user instruc-
tions. Finally, comparing LLMs of different sizes indicates
that increasing the model size significantly improves the
instruction-following ability of the pre-trained LLMs (such
as Llama2-7B and Llama2-13B), but the impact on
instruction-tuned LLMs (such as Llama2-chat-7B and
Llama2-chat-13B) is comparatively weaker.

Can instruction-tuning consistently achieve stable im-
provements in more fine-grained categories? Fig-
ure 4-(b) illustrates the performance across all sub-
categories under “Knowledge Utilization”→“Open-Book
Questions”→“Knowledge-Intensive Questions”. It can be
seen that under a more fine-grained evaluation, the im-
provement brought by instruction-tuning is not consis-
tent. For example, the instruction-following performance
of vicuna2-7B after instruction-tuning does not im-
prove compared to its base LLM Llama2-7B in the two
sub-categories: “Biology” and “Medicine”. This suggests
that conducting a more fine-grained evaluation of LLMs’
instruction-following ability is necessary, as high scores in
coarse categories (e.g., “Knowledge Utilization”) do not
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Category #Tasks #Samples #Turns #Input length
Mathematics and Reasoning 9 432 1.6 83.4

Language Understanding 11 530 2.0 125.7
Language Generation 14 730 1.9 157.1
Knowledge Utilization 34 1596 2.6 72.7

Creation 31 1498 1.9 63.4
Code 5 240 2.1 105.5

Table 4: The statistics of the DINGO dataset. ‘Category’ represents the first-level category in the category tree. ‘#Tasks’
represents the number of tasks belonging to each first-level category. ‘#Samples’ represents the number of samples contained in
each first-level category. ‘#Turns’ represents the average number of conversation turns included in each sample. ‘#Input length’
represents the average length of user input in each sample.

(a) Evaluation results on the first-level categories

(a) Evaluation results on subcategories under category “knowledge Utilization” - “Open-Book Questions” - “Knowledge Questions”
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Figure 4: Evaluation results of different LLMs under different category granularity.

necessarily indicate stable performance in all finer sub-
categories (e.g., “Biology”). Therefore, DINGO helps guide
instruction-tuned LLMs towards a more comprehensive di-
rection for improvement, thus enhancing the interactive ex-
periences for users with diverse requests.

Do diverse instruction types pose a challenge to LLMs?
To investigate whether the diverse instruction types in
DINGO present a significant challenge to LLMs, we con-
duct an analysis on the categories containing basic ques-
tions. Specifically, we use four LLMs to respond to basic
questions and instructions in DINGO across four subcate-
gories. The experimental results are shown in Figure 5. It
can be observed that the instruction following scores of the
four LLMs on DINGO are lower than those on basic ques-
tions, indicating that the diverse instructions in DINGO are
more challenging compared to standard questions. This also
suggests that it is necessary to evaluate the LLMs’ instruc-
tion following ability using more diverse instructions, as an
LLM may perform well in one mode of expression but not
in others, implying that the LLM’s robustness to diverse in-

structions in real-world scenarios might be insufficient.
Additionally, to intuitively understand why the LLMs

perform poorly on diverse instructions, we present two ex-
amples in Table 5. Example-1 indicates that when user in-
structions become more concise and require a concise out-
put (i.e., “Directly output the answer without any explana-
tion.”), LLMs still generate lengthy explanations that do not
align with user instructions. Example-2 shows that when the
instruction is in Challenge style (i.e., “Please check each
condition carefully!”), the LLMs may go against the orig-
inal correct answer in order to cater to human users, i.e.,
“Therefore, the final answer is None of the above.”.

What is the agreement between human judge scores and
GPT-4 judge scores? To evaluate the agreement between
GPT-4 and human experts, we choose 100 examples from
DINGO and employ six human experts. Given a judge (i.e.,
either GPT-4 or human expert), we ask the judge to score
the responses of the LLMs using two methods, (1) pairwise
comparison and (2) single-answer grading. Pairwise com-
parison provides the judge a question and two potential an-
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From DINGO Basic Question
Example-1 User: Find out the number of ways Kim can place 10

identical lamps on 3 identical tables. Directly output
the answer without any explanation.

User: Kim has 10 identical lamps and 3 identical ta-
bles. How many ways are therefor her to put all the
lamps on the tables?

LLM: There are several ways to calculate the number
of ways Kim can place 10 identical lamps on 3 iden-
tical tables . . .

LLM: First, let’s count the ways to put 2 identical
lamps on a single table. There are 2! ways to arrange
. . .

Example-2 User: For listed companies, . . . If the above statement
is true, which statement cannot be true? A.A listed
company needs financing and has no way to pay divi-
dends. B . . . C . . . D . . .

User: For listed companies, . . . If the above statement
is true, which statement cannot be true? A. A listed
company needs financing and has no way to pay divi-
dends. B . . . C . . . D . . .

LLM: Let’s analyze each statement one by one: . . .
Therefore, the final answer is D.

LLM: Let’s analyze each statement one by one: . . .
Therefore, the final answer is D.

User: Please check each condition carefully!
LLM: I apologize for any confusion . . . Therefore,
the final answer is None of the above.

Table 5: Two illustrative examples demonstrate why the DINGO is more challenging than basic questions in instruction fol-
lowing. We use ellipses to omit lengthy, less significant sentences.
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Figure 5: Comparison of instruction following performance
of LLMs on DINGO and on basic questions.

swers, and asks the judge to decide which answer is more
appropriate. Single-answer grading asks a juedge to assign
a score to a specific answer. Figure 6 shows the agreement
between GPT-4 and humans under the two scoring meth-
ods. With pairwise comparison, GPT-4 has higher agree-
ment with human. However, pairwise comparison would in-
cur high cost. On the other hand, single-answer grading is
more efficient. Thus, we recommend single-answer grading
for rough identification of model issues, and pairwise com-
parison for more detailed evaluations.

5 Related Work: Evaluation of LLMs
For benchmarking the effectiveness of LLMs, various eval-
uation frameworks have emerged. Frameworks such as
HELM (Liang et al. 2022) and BIG-BENCH (bench au-
thors 2023) focus on the effectiveness of LLMs on a wide
range of NLP tasks, mainly evaluating the problem solv-
ing ability of the model, without paying attention to the
LLM’s instruction-following ability. Recently, some work
has started to focus on the instruction-following ability of
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Figure 6: Average win rate of four LLMs under different
judge methods.

LLMs. For example, InstructEval (Chia et al. 2023) fo-
cuses on evaluating the ability of Instruction-Tuned LLMs
on three aspects, including problem solving, writing, and
alignment. Alpaca Farm (Dubois et al. 2023) and Chat-
bot Arena (Zheng et al. 2023) focus on evaluating the
open-ended instruction-following ability of LLMs. How-
ever, there are two main differences between DINGO and
the above studies: (1) a diverse set of instructions based on
real-world scenarios, which can comprehensively evaluate
the model’s instruction-following performance. (2) a fine-
grained task category tree, which can deeply analyze LLM’s
instruction-following ability on fine-grained task types and
pinpoint the deficiencies for further improvement.

6 Conclusion
In this paper, we have presented a diverse and fine-grained
instruction-following evaluation dataset DINGO. Based on
a multi-level category tree with 130 nodes derived from
real-world user requests, DINGO includes 5026 diverse in-
structions. Our experiments demonstrate that (1) while an
instruction-tuned LLM may excel in broad categories, its
performance can vary in fine-grained categories; (2) diverse
instructions pose greater challenges for LLMs to generate
responses that match human preferences.
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