
Discovering Sequential Patterns with Predictable Inter-event Delays

Joscha Cüppers1, Paul Krieger2, Jilles Vreeken1

1 CISPA Helmholtz Center for Information Security
2 Saarland University

joscha.cueppers@cispa.de, s8pakrie@stud.uni-saarland.de, vreeken@cispa.de

Abstract

Summarizing sequential data with serial episodes allows non-
trivial insight into the data generating process. Existing meth-
ods penalize gaps in pattern occurrences equally, regardless
of where in the pattern these occur. This results in a strong
bias against patterns with long inter-event delays, and in ad-
dition that regularity in terms of delays is not rewarded or
discovered—even though both aspects provide key insight.
In this paper we tackle both these problems by explicitly
modeling inter-event delay distributions. That is, we are not
only interested in discovering the patterns, but also in de-
scribing how many times steps typically occur between their
individual events. We formalize the problem in terms of the
Minimum Description Length principle, by which we say the
best set of patterns is the one that compresses the data best.
The resulting optimization problem does not lend itself to ex-
act optimization, and hence we propose HOPPER to heuristi-
cally mine high quality patterns. Extensive experiments show
that HOPPER efficiently recovers the ground truth, discovers
meaningful patterns from real-world data, and outperforms
existing methods in discovering long-delay patterns.

Introduction
Summarizing event sequences is one of the key problems in
data mining. Most existing methods do so in terms of serial
episodes and allow for gaps (Tatti and Vreeken 2012) and
interleaving (Bhattacharyya and Vreeken 2017) of pattern
occurrences. By penalizing every gap equally regardless of
where in a pattern it occurs, these methods have a strong
bias against long inter-event delays, whereas methods that
do not penalize gaps (Fowkes and Sutton 2016) are prone to
discover spurious dependencies. What both of these classes
lack is a pattern to be able to specify when the next symbol
is to be expected.

To illustrate, let us consider a toy example of a single
event sequence of all national holidays of a given coun-
try over the span of multiple years. As is usual, some hol-
idays are ‘fixed’ as they always occur on the same date ev-
ery year, and others depend on the lunar cycle and hence
‘move’ around. Existing methods have no trouble finding
holidays that occur right after each another, e.g. 1st Christ-
mas Day right before 2nd Christmas Day, struggle with long

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

delays, such as Whit Monday happening 49 days after Easter
Monday, and outright fail when the relationship is ‘far’ and
‘loose’ such as Easter occurring between 82 to 114 days af-
ter New Year’s. In this paper, we present a method that can
find and describe all these types of dependencies and delays.

To do so, we propose to explicitly model the distributions
of inter-event delays in pattern occurrences. That is, as pat-
terns we do not just consider serial episodes, but also dis-
crete distributions that model the number of time-steps be-
tween subsequent events of a pattern. This allows us to dis-
cover patterns like New Year 82−114−−−−−→ Easter Monday 49−→
Whit Monday, which specify there is a uniformly distributed
delay of 82 to 114 days between New Year’s and Easter
Monday, and a fixed delay of 49 days until Whit Monday.

We define the problem of mining a succinct and non-
redundant set of sequential patterns in terms of the Minimal
Description Length Principle (MDL) (Grünwald 2007), by
which we are after that model that compresses the data best.
Simply put, unlike existing methods we do not plainly pre-
fer patterns with ‘compact’ occurrences but rather those for
which the inter-event delays are reliably predictable, no mat-
ter if these delays are short or long. This way we can auto-
matically determine which discrete-valued distribution best
characterizes the inter-event delays. In practice, we consider
Uniform, Gaussian, Geometric, or Poisson distributions, but
this set can be trivially extended.

The resulting problem does not lend itself for exact
search, which is why we propose the effective HOPPER al-
gorithm to efficiently discover good pattern sets in practice.
Starting from just the singletons, HOPPER considers combi-
nations of current patterns as candidates, uses an optimistic
estimate to prune out unpromising candidates, explores both
short and far dependencies, assigns the best-fitting delay dis-
tributions, and greedily chooses the candidate that improves
the score most.

Through extensive evaluation, we show that HOPPER
works well in practice. On synthetic data we demonstrate
that unlike the state-of-the-art, we recover the ground truth
well both in terms of patterns and delay distributions even in
challenging settings where patterns include delays of hun-
dreds of time steps. On real-world data, we show that HOP-
PER discovers easily interpretable patterns with meaningful
delay distributions. We make all code, synthetic data, and
real-world datasets available in the supplementary material.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8346

Preliminaries
In this section, we discuss preliminaries and introduce the
notation we use throughout the paper.

Notation
As data D we consider a set of |D| event sequences S ∈ D
each drawn from a finite alphabet Ω of discrete events e ∈ Ω,
i.e. S ∈ Ω|S|. We write S[i] to refer to the ith event in S, and
||D|| to denote the total number of events in D.

As patterns we consider serial episodes. A serial episode
p is also a sequence drawn over Ω, i.e. p ∈ Ω|p|. We write
p[i] for the ith event in p. We will model the inter-event de-
lays between a subsequent pair of events p[i] and p[i + 1]
using discrete delay distribution πp,i(· | Θp,i). Whenever
clear from context we simply write πp,i(·).

Finally, a window wS is an ordered set of indices into S.
Two windows aS and bS are in conflict iff they contain the
same index, formally iff |aS ∩ bS | > 0. A window wS is
said to match a pattern p if they identify the same events
in the same order, i.e. when ∀i∈[1,|p|]S[w

S [i]] = p[i] and
∀i∈[1,|p|−1]πp,i(w

S [i+1]−wS [i]) > 0, if p matches we write
wS

p . Whenever S is clear from context, we simply write wp.
All logarithms are base 2 and we define 0 log(0) = 0.

Minimum Description Length
The Minimum Description Length (MDL) principle
(Grünwald 2007) is a computable and statistically well-
founded model selection principle based on Kolmogorov
Complexity (Li and Vitányi 1993). For a given model class
M, it identifies the best model M ∈M as the one minimiz-
ing L(M) + L(D|M), where L(M) is the length of model
M and L(D|M) the length of the data D given M .

This is known as two-part, or crude MDL, in contrast to
one-part, or refined MDL (Grünwald 2007), which is not
computable for arbitrary model classes. We use two-part
MDL because we are particularly interested in the model.
In MDL we are never concerned with materialized codes,
we only care about code lengths. To use MDL we have to
define a model class M, and code length functions for the
model and data given the model. We present these next.

MDL for Patterns with Predictable Delays
In this section we formally define the problem.

Decoding the Database
Before we define how to encode a sequence database using
patterns with delay distributions we give the intuition, by
explaining how to decode a database from a given cover. A
cover C is a description of the data in terms of the patterns p
in model M . Formally, a cover is defined as a tuple (Cp, Cd),
where pattern stream Cp describes which pattern (windows)
are used in what order, and delay stream Cd consists of the
inter-event delays within those windows. Next we explain
how to decode a cover C to reconstruct the encoded data.

In Figure 1 we show a toy example. We show a sequence
S, a model M , and two covers of S using M .

S:
decoded

a b cf a
2 3

d e

5

Data S: a d b f a c e

Cp: a d b f a c e

Cp: p q f a

Cd: 2 3 5

Cover 1 (Singletons):

Cover 2 (Patterns):

Model:

a a:

b b:
c c:

d d:
e e:

f f:

p :

a
Θ1−−→ b

Θ2−−→ c
Θ1 = G(0.5)
Θ2 = N (3, 0.1)

q :

d
Θ1−−→ e

Θ1 = U(5, 5)

Figure 1: Toy example showing two possible encodings of
the same data. Cover 1 uses only singletons, Cover 2 ad-
ditionally uses two patterns, p and q . A cover consist
of the pattern stream Cp encoding the patterns, and the de-
lay stream Cd encoding the inter-event delays. The first gap
of pattern p is modeled with a geometric distribution, and
the second with a normal distribution. The one gap of q is
modeled by a uniform distribution.

We first consider Cover 1. We start by reading the first
code from the pattern stream Cp. This is an a which we
look up in M and find it encodes event ‘a’. We write this to
S[0]. We iterate reading and writing until S is decoded.

Next, we consider Cover 2. We again read the first code
from Cp, which is now a p . We look up that this stands
for pattern p. We write its first symbol, a, to S[0]. To know
where in S we should write ‘b’ we read a code from the
delay stream Cd. We read a 2, which means we write ‘b’ to
S[0+2]. We continue until we have decoded this instance of
pattern p, and then read the next symbol from Cp. This is a
q . We start decoding it from the first empty position in S.

We iterate until S is fully decoded.

Calculating the Encoding Cost
Now we know how to decode a sequence, we formally define
how to compute the encoded sizes of the data and model.

Encoding the data To describe the data without loss, we
need in addition to the pattern and delay streams, to know
the number and length of sequences in D. We hence have

L(D|CT) = LN(|D|) +
∑
S∈D

LN(|S|) + L(Cp) + L(Cd) ,

where we encode the numbers using the MDL-optimal en-
coding for integers z ≥ 1 (Rissanen 1983). It is defined
as LN(z) = log∗ z + log c0 where log∗ z is the expansion
log z + log log z + · · · where we only include the positive
terms. To ensure this is valid encoding, i.e. one that satisfies
the Kraft inequality, we set c0 = 2.865064 (Rissanen 1983).

To encode the pattern stream Cp and the delay stream Cd,
we use prefix codes, which are codes that are proportional in

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8347

length to their probability. For the pattern stream we have,

L(Cp) =
∑
p∈M

−usg(p) log
(

usg(p)∑
q∈M usg(q)

)
,

where usg is the empirical frequency of pattern code p

in the pattern stream Cp. We encode the delay stream Cd

similarly, encoding the inter-event delays dj between events
p[i] and p[i + 1] of every instance of a pattern p using the
corresponding delay distribution πp,i(dj). We hence have

L(Cd) =
∑
p∈M

|p|−1∑
i=1

usg(p)∑
j=1

− log πp,i(dj) .

Encoding the Model As models we consider sets of pat-
terns M that always include all singletons. We refer to the
model that only consists of the singletons as the null model.

For the encoded length of a model we have

L(M) = LN(|Ω|) + log

(||D|| − 1

|Ω| − 1

)
+ LN(|P |+ 1)

+LN(usg(P)) + log

(
usg(P)− 1

|P | − 1

)
+
∑
p∈P

L(p) ,

where we first encode the size of the alphabet Ω and the
supports supp(e|D) of each singleton event. The latter we
do using a so-called data-to-model code — an index over an
enumeration of all possible ways to distribute ||D|| events
over alphabet Ω (Vereshchagin and Vitányi 2004). Next, we
encode the number |P | of non-singleton patterns p ∈ M
and their combined usage by LN(), and then their individual
usages by a data-to-model code. Finally, we encode the non-
singleton patterns.

To do so we need to specify how many, and which events
a pattern consists of, as well as identify and parameterize its
delay distributions. To reward similarities in delay behavior,
we allow a distribution to be used for multiple inter-event
gaps. As a default, we equip every pattern with one Geo-
metric delay distribution. Formally, the encoded length of a
non-singleton pattern p ∈M is

L(p) = LN(|p|) + log(|p| − 1) + log

(|p| − 1

k

)
−
∑
e∈p

log

(
supp(e|D)

||D||

)
+
∑
Θ∈p

L(Θ) ,

where we encode the number of events of p, then its num-
ber of delay distributions, k, and finally where in the pattern
these are used. We encode the events of the pattern using
prefix codes based on the supports of events e in D.

To encode a delay distribution π(· | Θ) it suf-
fices to encode Θ. For the non-default delay dis-
tributions we first encode its type out of the set
Ψ = {Geometric,Poisson,Uniform,Normal} of dis-
crete probability functions under consideration, for which
we need − log |Ψ| bits. We then encode the parameter val-
ues θ ∈ Θ. We use LN(θ) if θ ∈ N, and LR(θ) if θ ∈ R. We
have LR(θ) = LN(d) + LN(⌈θ · 10d⌉) + 1 as the number of
bits needed to encode a real number up to user-set precision
p (Marx and Vreeken 2019). It does so by shifting θ by d
digits, such that θ · 10d ≥ 10p.

The Problem, Formally
With the above, we can now formally state the problem.

The Predictable Sequential Delay Problem Given a se-
quence database D over an alphabet Ω, find the smallest
pattern set P and cover C such that the total encoded size,
L(M,D) = L(M) + L(D|M) is minimal.

Considering the complexity of this problem, even when
we ignore delay distributions there already exist super-
exponential many possible patterns, exponentially many pat-
terns sets over those, as well as, given a pattern set there ex-
ist exponentially many covers (Bhattacharyya and Vreeken
2017). Worst of all the search space does not exhibit any
structure such as (weak-)monotonicity or submodularity that
we can exploit. We hence resort to heuristics.

The HOPPER Algorithm
Now we have formally defined the problem and know how
to score a model we need a way to mine good models. We
break the problem into two parts, finding a good cover given
a model, and finding a good model, and discuss these in turn.

Finding Good Covers
Given a model, we are after that description of the data that
minimizes L(D | M). To compute L(D | M), we need a
cover C. A cover consists of a set of windows, and hence
we first need to find a set of good windows.

Finding Good Windows Mining all possible windows for
a pattern p can result in an exponential blow-up. To en-
sure tractability, we limit ourselves to the 100 windows per
starting event with the most likely delays. To avoid wast-
ing time on windows we will never use because they will
be too costly, we restrict our search to those for which the
delays fall within the 99.7% confidence-interval of the re-
spective probability distribution. For a normal distribution,
that corresponds to three standard deviations from the mean.
In practice, it is extremely unlikely that we would like to in-
clude any of the not considered windows in cover C, hence
these restrictions have a negligible to no effect on the results.

Selecting a Good Cover Armed with a set of candidate
windows, we next explain how to select a set C of these
that together form a good cover. Ideally, we would like to
select that cover C that minimizes L(D | M). Finding the
optimal cover, however would require testing exponentially
many combinations, which would, in turn, result in unfeasi-
ble runtime; we hence do it greedily. For a greedy approach
we need a way to select the next window for addition. Gen-
erally speaking, we prefer long patterns with likely delays.
Based on this intuition, we assign each window wp a score
s(wp). At each step we select the window wp with the high-
est s(wp). If a window conflicts with a previously selected
window, we skip it and proceed. We add windows until all
events of D are covered. To ensure there always exist a valid
cover we always include all singleton windows.

As we prefer long patterns with likely deltas, our window
score trades of pattern length (|p|c) against the cost of the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8348

individual delays. Formally, we have

s(wp) = |p|c−
|p|−1∑
k=1

− log πp,k(wp[k + 1]− wp[k])

where c is the average code cost of a singleton event under
the null model, that is

c =

∑
e∈Ω−supp(e|D) log(supp(e|D)/||D||)

||D|| .

Mining Good Models
Now that we know how to find a good cover given a set of
patterns, we explain how to discover a high-quality pattern
set. Since there are super-exponentially many possible solu-
tions, we again take a greedy approach. The general idea is
that we use a pattern-growth strategy in which we iteratively
combine existing patterns into new longer patterns. Before
we explain our method in detail, we explain how we build
a pattern candidate given two existing patterns and how to
estimate the gain of such a candidate.

Estimating Candidate Gains Computing the total en-
coded length L(M ⊕ p′, D) for when we add a new pattern
p′ to M is costly as this requires covering the data, which in
turn requires finding good windows of p′. To avoid doing so
for all candidates, we propose to instead use an optimistic
estimator to discard those candidates for which we estimate
no gain. Specifically, we want to estimate how many bits we
will gain if we were to add pattern p′ to the model.

To do so, we estimate the usage of p′. As we will explain
below, every candidate p′ is constructed by concatenating
two existing patterns p1, p2 ∈ M . Assuming that p′ will be
used maximally, we have an optimistic estimate of its us-
age as usg(p′) = min(usg(p1), usg(p2)), or, if p1 = p2
as usg(p′) = usg(p1)/2. We estimate the change in model
cost by adding p′ by assuming all occurrences of the least
frequent parent pattern are now covered by p′. Combined
the estimated gain is,

∆L(M ⊕ p′) = −L̂(p′) + L(argmin
p∈{p1,p2}

usg(p))

where L̂(p′) is the cost of p′ omitting the delay distribution
between p1 and p2. We estimate ∆L(D |M ⊕ p′) as

∆L(D |M ⊕ p′) = s log(s)− s′ log(s′) + z log(z)−
x log(x) + x′ log(x′)− y log(y) + y′ log(y′)

where s is the sum of all usages, s =
∑

p∈M usg(p), and, for
readability, we shorten usg(p′) to z, usg(p1) to x, usg(p2)
to y and write x′, y′, s′ for the “updated” usages, that is x′ =
x− z, y′ = y − z and s′ = s− z.

As we do not have any information about the delays be-
tween p1 and p2 we assume these are encoded for free.
Putting the above together gives us an optimistic estimate
of the total encoded cost when adding pattern p′ to M as

∆L(D,M ⊕ p′) = ∆L(M ⊕ p′) + ∆L(D |M ⊕ p′) .

Wherever clear from context, we simply write ∆L(p′).

Algorithm 1: OPTIMIZEALIGNMENT

Input : pattern candidate p′, alignment A
Output: estimated gain∗, optimized alignment A∗

1 gain∗ ← −∞
2 while ∆LA(p

′) > gain∗ do
3 gain∗ ← ∆LA(p

′)
4 A∗ ← A
5 drop all delays d with minimal frequency from A

6 return gain∗, A∗

Estimating Candidate Occurrences When we want to
evaluate a candidate pattern p′, constructed from patterns
p1 and p2, we have to determine its occurrence windows.
A simple and crude way to determine candidate windows is
by mapping every occurrence of p1 to the nearest next oc-
curence of p2. We call this procedure ALIGNNEXT. It is
particularly good for finding a mapping with the shortest
possible delays, but will not do well when delays are rela-
tively long. For this, the ALIGNFAR algorithm by Cüppers,
Kalofolias, and Vreeken (2022) provides a better solution. In
a nutshell, it efficiently discover that mapping A that mini-
mizes the variance in delays. By a much larger search space
it is naturally more susceptible to noise.

As a result, both strategies can give a good starting points,
but neither will likely give an alignment that optimizes our
MDL score. We propose to greedily optimize these map-
pings using an optimistic estimate. We first observe that
given a mapping, we can trivially compute the delays, on
which we can then fit a distribution. We do so for all distri-
butions π ∈ Ψ and choose that π∗

p′(· | Θ∗) that minimizes
the cost of encoding the delays. Second, we observe that a
mapping also allows us to better estimate the usage of p′ as
the number of mapped occurrences of p1 and p2. This gives
a gain estimate under alignment A as

∆LA(p
′) = −L(p′)+∆L(D |M ⊕p′)+

∑
d∈A

log π(d|Θ∗).

We now use this estimate to identify and remove those map-
pings with the lowest delay probability (i.e. those with min-
imal frequency) until ∆LA(p

′) no longer increases. We give
the pseudocode as Algorithm 1.

Mining Good Pattern Sets Next, we explain how we use
the gain estimation and cover strategy to mine good pat-
tern sets P . We give the pseudo-code for our method, HOP-
PER, as Algorithm 2. The key idea is to use a bottom-up
approach and iteratively combine previously found patterns
into longer ones.

We iteratively consider the Cartesian product of patterns
p1, p2 ∈M as candidates. We evaluate these in order of po-
tential gain. Events and patterns that occur frequently have
the largest potential to compress the data, therefore we con-
sider these combinations first. Specifically, we evaluate com-
binations of p1 and p2 in order of how many events they
together currently cover (line 2).

Given a pattern candidate p′ = p1 ⊕ p2, we use our opti-
mistic estimator to determine if we expect it to provide any

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8349

Algorithm 2: HOPPER

Input : sequence database D, alphabet Ω
Output: model M

1 CT ← Ω; Cand ← CT × CT ;
2 forall p1, p2 ∈ Cand do ordered descending on
|p1|usg(p1) + |p2|usg(p2)

3 if ∆L(p1 ⊕ p2) > 0 :
4 gain, p′ ← ALIGNCANDIDATE(p1, p2)
5 if gain > 0 ∧ L(D,M) > L(D,M ⊕ p′) :
6 p′ ← FILLGAPS(p′, |p1|)
7 M ←M ⊕ p′

8 M ← PRUNE(M)
9 Cand ← Cand ∪ {M × p′, (p1, p2)}

10 M ← PRUNEINSIGNIFICANT(M)
11 return M

gain in compression. If not, we move on to the next can-
didate. If we do estimate a gain based on usage of p1 and
p2 alone, we proceed and optimize the alignment of occur-
rences of p1 and p2 to those of occurrences of p′. We do
so using ALIGNCANDIDATE, for which we give the pseu-
docode in the supplementary. In a nutshell, it returns the best
optimized result out of ALIGNNEXTand ALIGNFAR.

If the alignment leads to an estimated gain, we compute
our score exactly (l. 5) and if the score improves we are safe
to add p′ to our model. We do so after we consider aug-
mentations of p′ with events that occur between p1 and p2
(FILLGAPS, line 6) such that we further improve the score.
Adding a new pattern to M can make previously added pat-
terns redundant, e.g. when all occurrences of p1 are now
covered by p′. We prune all patterns for which the score im-
proves when we remove them from M (PRUNE). Finally, we
create new candidates based on the just added pattern, and
add (p1, p2) back to the candidate set, as we might want to
build a different pattern from it in a later iteration.

Before returning the final pattern set, we reconsider all
patterns in the model and only keep those that give us a sig-
nificant gain (Bloem and de Rooij 2020; Grünwald 2007) in
compression. We provide further details on the pattern min-
ing procedure in the supplementary.

As we consider the most promising candidates first, the
more candidates we evaluate to have no gain, the more un-
likely it becomes we will find a candidate that will provide
any substantial gain. To avoid evaluating all of those unnec-
essarily, we propose an early stopping criterion by consid-
ering up to |Ω|2/100, but at least 1 000, unsuccessful candi-
dates in a row. As our score is bounded from below by 0, we
know that Hopper will eventually converge.

Related Work
Mining sequential patterns from event sequences has a rich
history. Traditional sequential pattern miners focus on find-
ing all frequent patterns (Agrawal and Srikant 1995; Lax-
man, Sastry, and Unnikrishnan 2007), these suffer from ex-
ponentially many patterns, making interpretation hard to

impossible. Closed episodes (Yan, Han, and Afshar 2003;
Wang and Han 2004) partially solve this, but are highly
sensitive to noise. More recently, research focus shifted to
mining patterns with a frequency that is significant with re-
spect to some null hypothesis (Low-Kam et al. 2013; Petit-
jean et al. 2016; Tonon and Vandin 2019; Jenkins, Walzer-
Goldfeld, and Riondato 2022). While this alleviates, it does
not solve the pattern explosion.

Pattern set mining solves the pattern explosion by asking
for a small and non-redundant set of patterns that generalizes
the data well, as instead of asking for all patterns that satisfy
some individual criterion. There exist different approaches
to how to score a pattern set. ISM (Fowkes and Sutton 2016)
takes a probabilistic Bayesian approach, unlike us they do
not model gaps. SQS (Tatti and Vreeken 2012) is an example
of a method that employs the Minimum Description Length
principle to identify the best set of serial episodes, which
are sequential patterns that allow for gaps. SQUISH (Bhat-
tacharyya and Vreeken 2017) builds upon SQS and addi-
tionally allows interleaved and nested patterns. However,
SQS and SQUISH, are not capable of finding patterns with
long inter-event delays and penalize each individual gap uni-
formly, regardless where in the pattern it occurs.

Existing methods that enrich patterns with delays can be
categorized into two groups, methods that discover frequent
patterns that satisfy some user set delay constrains (Yoshida
et al. 2000; Giannotti et al. 2006; Dauxais et al. 2017; Cram,
Mathern, and Mille 2012), and methods that discovers de-
lay information from the data (Yen and Lee 2013; Nanni
and Rigotti 2007). The latter, in contrast to our method, only
consider the minimal delay between events, do not work on
a single long sequence, and mine all frequent patterns, and
hence also suffer from the pattern explosion.

Existing pattern set miners that do model the inter-event
delay solve different problems. Galbrun et al. (2018) pro-
pose to mine periodic patterns, which are patterns that con-
tinuously appear throughout the data with near-exact delays.
It is therewith well-suited for the holidays example in the in-
troduction, but less so for discovering patterns that only ap-
pear more locally. OMEN (Cüppers, Kalofolias, and Vreeken
2022) does discover local patterns and delay distributions,
but does so in a supervised setup between a pattern and a
target attribute of interest. As such, each of the above meth-
ods consider part of the problem we study here, but none
address it directly: we aim to discover a small set of sequen-
tial patterns where the delays between subsequent events in
a pattern are modelled with a probability distribution.

Experiments
In this section we empirically evaluate HOPPER on synthetic
and real-world data. We implement HOPPER in Python and
provide the source code along with the synthetic data and the
real-world data in the supplementary.1 We compare HOPPER
to SKOPUS (Petitjean et al. 2016) as a representative statis-
tically significant sequential pattern miner, SQS (Tatti and
Vreeken 2012), SQUISH (Bhattacharyya and Vreeken 2017)
and ISM (Fowkes and Sutton 2016) as representatives of the

1eda.rg.cispa.io/prj/hopper

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8350

general class of pattern set miners, and to PPM (Galbrun
et al. 2018) as a representative of the periodic pattern min-
ers. For all, we use the implementation by the authors.

HOPPER considers delays up to a user set max delay, for
all experiments we set it to 200. SKOPUS only works on a
set of sequences, when the dataset consists of one sequence,
we split the sequence into 100 equally long sequences. We
parametrize SKOPUS to report the top 10 patterns of at most
length 10, which corresponds to the ground-truth value in
our synthetic experiments. PPM only accepts a single se-
quence as input, to make it applicable on databases of multi-
ple sequences, we concatenate these into one long sequence.
We give the full setup description in the supplementary.

Synthetic Data
To evaluate how well HOPPER recovers patterns with known
ground, we consider synthetic data. To this end, we generate
data as follows. For each synthetic configuration we gen-
erate 20 independent datasets. For each dataset we sample
uniform at random one sequence of length 10000 over an
alphabet of 500 events, we plant 10 unique patterns, uni-
formly, at random locations while avoiding collisions. The
frequency of planted patterns, length and delay distributions
between events we vary per experiment.

As evaluation we consider standard F1 score. Where, to
reward partial discovery, we weight a reported pattern pr by
the relative edit distance to the planted pattern pp, that is,
w(pr, pp) = max(1 − lev(pr, pp)/|pp|, 0) where lev is the
Levenshtein edit distance. Since we do not want to reward
redundant discoveries we cap the total reward to one per
planted pattern. To illustrate, consider the example where
we plant one pattern abcd, and discover two patterns, ab and
cd. We value both as 0.5. As we can technically reconstruct
the generating pattern we hence have a recall of one, but, as
we have to do so using two rather than one pattern, we have
a precision of 0.5. This way we reward partial discoveries,
which is especially relevant for methods that are designed
to pick up events that occur close to one another, but might
miss the full pattern if it includes a long delay. We provide
additional details on the evaluation in the supplementary.

Sanity Check We start with a sanity check, where we run
HOPPER on 20 data sets without structure, generated uni-
formly at random. It correctly does not report any patterns.

Delay Distributions Next, we test how well HOPPER can
recover patterns for varying numbers of delay distributions.
We consider the case of no delay distributions up to a pat-
tern including a delay distribution between every subsequent
pair of events. We plant 10 unique patterns of length 10 and
in total 200 pattern occurrences, that is, on expectation 20 in-
stances per pattern. As delay distribution, we plant Uniform
distributions with a delay of between 10 to 20 time steps.

We present the results in the first panel of Fig. 2. We ob-
serve that HOPPER performs on par when there are no delay
distributions and outperforms the state of the art when we
increase their number. We find that SQUISH performs on par
with SQS in our experiments and to avoid clutter from here
onward postpone its results to the supplementary.

Low Frequency Next, we evaluate performance with low-
frequency patterns, we decrease the frequency of the total
number of planted patterns. We consider the same setting as
above, where we set the number of distributions to four and
decrease the total number of planted patterns from 200 to
100, that is, on expectation, from 20 to 10 per pattern. We
show the results in the 2nd panel of Fig. 2. We observe that
HOPPER outperforms all other methods, ultimately reducing
to the performance of SQS in the low-frequency domain.

Long Delays Next, we investigate how robust HOPPER is
to long delays, to this end we plant 10 patterns at 200 loca-
tions. We plant patterns of length 3, with Normal distributed
inter-event delays, with a standard deviation of one, and in-
crease the mean stepwise from 1 to 180. We present the re-
sults in the third panel of Fig. 2. We observe HOPPER is very
robust against long delays: even with an expected delay of
180 between the individual events it achieves a very high F1
score. In contrast, its competitors do not fare well; SQS and
SKOPUS perform well initially but then quickly deteriorate.

High Variance Finally, we evaluate HOPPER under in-
creasing variance of inter-event delays. To this end we plant
400 occurrences of 10 patterns of length 3, with Normally
distributed delays with mean 50 and varying the standard
deviations. We show the results in the last panel of Fig. 2.

We observe that HOPPER gets near perfect results for
lower variance and high F1 score until a standard deviation
of 7 at which point 95% percent of the probability mass is
distributed over a range of 28 timestamps. In general, we ob-
serve that the higher the frequency, the more robust we are
against higher variance. We can see that SKOPUS is consis-
tent under increasing variance. This is probably due to the
fact that SKOPUS does not care about the distance between
events only about the order in which they occur.

Real World Results
Next, we evaluate Hopper on real-world data. We use eight
datasets that together span a wide range of use-cases. We
consider a dataset of all national Holidays in a European
country over a century, the playlist a local Radio station
recorded over a month, the Lifelog2 of all activities of one
person recorded in over seven years, the MIDI data of hun-
dred Bach Chorales (Dua and Graff 2017), all commits to
the Samba project for over ten years (Galbrun et al. 2018),
the Rolling Mill production log of steel manufacturing plant
(Wiegand, Klakow, and Vreeken 2021), the discretized mus-
cle activations of professional ice Skating riders (Moerchen
and Fradkin 2010), and finally, three text datasets the Guten-
berg project, resp. Romeo and Juliet by Shakespeare, A
Room with a View by E.M. Forster, and The Great Gatsby by
F. Scott Fitzgerald. We give the total number of events per
dataset in Table 1 and further statistics in the supplementary.

We run HOPPER, SQS, ISM, PPM, and SKOPUS on all
datasets. We report the number of patterns (|P |), the av-
erage expected distance between the first and last event
(E(wp[|p|] − wp[0])) and for HOPPER, the number of dis-
covered delay distributions (#Θ). In the interest of space

2https://quantifiedawesome.com/

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8351

0 1 2 3 4 5 6 7 8 9

0
0.2
0.4
0.6
0.8
1

#Θs per pattern

F
1

20 18 16 14 12 10

0
0.2
0.4
0.6
0.8
1

Expected frequency per patten

F
1

HOPPER SQS SKOPUS ISM PPM

1 5 10 15 20 40 6010
0
14
0
18
0

0
0.2
0.4
0.6
0.8
1

Mean of inter-event delay

F
1

1 2 3 4 5 6 7 8 9 10

0
0.2
0.4
0.6
0.8
1

Standard deviation of inter-event delay

F
1

Figure 2: [Higher is better] F1 scores for recovering patterns from synthetic data. From left to right, we evaluate for varying
numbers of inter-event distributions, expected frequency of a pattern, mean inter-event delay, resp. different standard deviations
for normally distributed delays. We see that HOPPER performs on par with SQS when inter-event delays are few and simply
structured, and outperforms the competition with a large margin whenever their structure is more complicated.

HOPPER SQS PPM

Dataset ||D|| |P | #Θ E(w) |P | E(w) |P | E(w)

Holidays 37k 1 7 393 3 19.2 14 51.6
Radio 16k 22 43 48 15 5.8 587 71.9
Lifelog 40k 37 68 129 58 3.9 1.6k 119.1
Samba 29k 40 101 110 221 2.7 1.4k 17.1
Chorales 7k 56 57 4.7 114 2.6 433 2.6
Rolling 54k 237 489 7.4 470 5.0 3.6k 181.9
Skating 26k 86 160 9.1 160 4.0 1.4k 55.5
Romeo 37k 254 284 12.9 254 2.8 2.3k 332.7
Room 87k 565 610 3.1 701 2.5 – –
Gatsby 64k 439 488 7.3 519 2.6 4.7k 641.9

Table 1: Results on real-world data. For HOPPER, SQS, and
PPM we report the number of discovered patterns (|P |) and
the average expected distance between the first and last sym-
bol of a pattern (E(w)). For HOPPER we additionally give
total number of discovered inter-event distributions (#Θ).

we postpone the results of ISM and SKOPUS, along with the
metrics runtime and average events per pattern to the sup-
plementary. HOPPER terminates within seconds to hours,
depending on the dataset. We find that while HOPPER and
SQS discover similar numbers of patterns, those that HOP-
PER discovers reveal much longer range dependencies and,
in general, include more events. PPM results in an order of
magnitude more patterns, most of which are singletons. Next
we look at the results for Holidays and Radio in more detail.

On the Holidays dataset, HOPPER finds a single pattern,
May 1st 155−−→ National Holiday 83−→ 1st Christmas Day 1−→
2nd Christmas Day 6−→ New Year 80−112−−−−−→ Good Friday 3−→
Easter Monday 49−→ Whit Monday, where all delay distribu-
tions are uniform. The pattern precisely describes all fixed
and all lunar-calendar dependent holidays within the year. In
contrast, the competing methods only find fractions of this
pattern, such as 1st Christmas Day, 2nd Christmas Day. We
show the results for all methods in the supplementary.

The Radio dataset includes all the songs played, as well
as the ad slots and news segments, for a local radio station
over the course of a month. On this data, HOPPER discovers
the pattern Jingle 0−→ Ads 0−→ News 0−→ Jingle U(3,5)−−−−→ Jingle
where the 0-gaps correspond to geometric distributions with

p = 1 and the last inter-event delay is a uniform distribution.
Other methods find comparable or parts of this patterns, but
none give the immediate insight that the first four events fol-
low directly after one another and the last Jingle plays be-
tween 3 to 5 events after the previous.

More importantly, unlike other methods, HOPPER also
picks up patterns such as Solo Para G(0.02)−−−−→ As It Was
N (48,25)−−−−−−→ I Believe P(24)−−−−→ Anyone for You that confirm our

suspicion that radio stations often play the same sequence
of particularly popular songs interspersed with less-well-
known songs. No other method finds any comparable pat-
terns. HOPPER discovers much longer patterns than its com-
petitors. Whereas most competitors find patterns of length 2,
SQS patterns of at most 4 events, HOPPER discovers patterns
of up to 7 events long. Together, this illustrates that HOPPER
finds patterns that are not only more detailed in terms of the
delay structure, but also in which events they describe.

Conclusion
We consider the problem of summarizing sequential data
with a small set of patterns with inter-event delays. We for-
malized the problem in terms of the Minimum Description
Length principle and presented the greedy HOPPER algo-
rithm. On synthetic data we saw that our method recov-
ers the ground truth well and is robust against high delays
and variance. On real-world data we observed that HOPPER
finds meaningful patterns that go beyond what state of the art
methods can capture. While methods that only consider the
order of events, can in theory find patterns with long delays,
they often do not do this in practice.

We introduce a more powerful pattern language that en-
ables us to discover new structure in data. This comes with
the trade-off, of a much larger search space and, in the-
ory, makes us more susceptible to noise, however the ex-
periments have shown that this is not a problem in practice.
HOPPER achieves a high F1 score on all experiments in Fig.
2, despite these having 80% or more noise.

Currently, we model the delay between subsequent events
in a pattern. In practice, some events may depend on some
event earlier in the pattern. We see it as an interesting direc-
tion for future work to extend our pattern language to include
rule-like dependencies.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8352

References
Agrawal, R.; and Srikant, R. 1995. Mining sequential pat-
terns. In ICDE, 3–14. Los Alamitos, CA, USA: IEEE Com-
puter Society.
Bhattacharyya, A.; and Vreeken, J. 2017. Squish: Efficiently
Summarising Event Sequences with Rich Interleaving Pat-
terns. In SDM, 11.
Bloem, P.; and de Rooij, S. 2020. Large-Scale Network Mo-
tif Analysis Using Compression. DAMI, 34: 1421–1453.
Cram, D.; Mathern, B.; and Mille, A. 2012. A Com-
plete Chronicle Discovery Approach: Application to Activ-
ity Analysis. Expert Systems, 29(4): 321–346.
Cüppers, J.; Kalofolias, J.; and Vreeken, J. 2022. Omen:
Discovering Sequential Patterns with Reliable Prediction
Delays. KAIS, 64(4): 1013–1045.
Dauxais, Y.; Guyet, T.; Gross-Amblard, D.; and Happe, A.
2017. Discriminant Chronicles Mining: Application to Care
Pathways Analytics. In AIME, 234–244. Springer.
Dua, D.; and Graff, C. 2017. UCI Machine Learning Repos-
itory.
Fowkes, J.; and Sutton, C. 2016. A Subsequence Interleav-
ing Model for Sequential Pattern Mining. In KDD.
Galbrun, E.; Cellier, P.; Tatti, N.; Termier, A.; and
Crémilleux, B. 2018. Mining Periodic Patterns with a MDL
Criterion. In ECMLPKDD18, 535–551. Springer.
Giannotti, F.; Nanni, M.; Pedreschi, D.; and Pinelli, F. 2006.
Mining Sequences with Temporal Annotations. In Proceed-
ings of the 2006 ACM Symposium on Applied Computing,
593–597. Dijon France: ACM. ISBN 978-1-59593-108-5.
Grünwald, P. 2007. The Minimum Description Length Prin-
ciple. MIT Press.
Jenkins, S.; Walzer-Goldfeld, S.; and Riondato, M. 2022.
SPEck: Mining Statistically-Significant Sequential Patterns
Efficiently with Exact Sampling. Data Min Knowl Disc,
36(4): 1575–1599.
Laxman, S.; Sastry, P. S.; and Unnikrishnan, K. P. 2007.
A Fast Algorithm for Finding Frequent Episodes in Event
Streams. In KDD07, 410–419. ACM.
Li, M.; and Vitányi, P. 1993. An Introduction to Kolmogorov
Complexity and its Applications. Springer.
Low-Kam, C.; Raissi, C.; Kaytoue, M.; and Pei, J. 2013.
Mining Statistically Significant Sequential Patterns. In
ICDM, 488–497. Dallas, TX, USA: IEEE. ISBN 978-0-
7695-5108-1.
Marx, A.; and Vreeken, J. 2019. Telling Cause from Effect
by Local and Global Regression. KAIS, 60: 1277–1305.
Moerchen, F.; and Fradkin, D. 2010. Robust Mining of Time
Intervals with Semi-Interval Partial Order Patterns. In SDM,
315–326.
Nanni, M.; and Rigotti, C. 2007. Extracting Trees of Quan-
titative Serial Episodes. In Džeroski, S.; and Struyf, J., eds.,
Knowledge Discovery in Inductive Databases, volume 4747,
170–188. Berlin, Heidelberg: Springer Berlin Heidelberg.
ISBN 978-3-540-75548-7.

Petitjean, F.; Li, T.; Tatti, N.; and Webb, G. I. 2016. Skopus:
Mining Top-k Sequential Patterns under Leverage. DAMI,
30(5): 1086–1111.
Rissanen, J. 1983. A Universal Prior for Integers and Es-
timation by Minimum Description Length. Annals Stat.,
11(2): 416–431.
Tatti, N.; and Vreeken, J. 2012. The Long and the Short of
It: Summarizing Event Sequences with Serial Episodes. In
KDD, 462–470. ACM.
Tonon, A.; and Vandin, F. 2019. Permutation Strategies for
Mining Significant Sequential Patterns. In ICDM, 1330–
1335. Beijing, China: IEEE. ISBN 978-1-72814-604-1.
Vereshchagin, N. K.; and Vitányi, P. M. B. 2004. Kol-
mogorov’s Structure Functions and Model Selection. IEEE
Transactions on Information Theory, 50(12): 3265–3290.
Wang, J.; and Han, J. 2004. BIDE: Efficient Mining of Fre-
quent Closed Sequences. In ICDE, 79–90.
Wiegand, B.; Klakow, D.; and Vreeken, J. 2021. Mining
Easily Understandable Models from Complex Event Logs.
In SDM, 10.
Yan, X.; Han, J.; and Afshar, R. 2003. CloSpan: Mining:
Closed Sequential Patterns in Large Datasets. In SDM, 166–
177. SIAM.
Yen, S.-J.; and Lee, Y.-S. 2013. Mining Non-Redundant
Time-Gap Sequential Patterns. Applied Intelligence, 39(4):
727–738.
Yoshida, M.; Iizuka, T.; Shiohara, H.; and Ishiguro, M. 2000.
Mining Sequential Patterns Including Time Intervals. In
Dasarathy, B. V., ed., AeroSense 2000, 213–220. Orlando,
FL.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8353

