
Discrete Cycle-Consistency Based Unsupervised Deep Graph Matching

Siddharth Tourani1,2, Muhammad Haris Khan2, Carsten Rother1, Bogdan Savchynskyy1

1Computer Vision and Learning Lab, IWR, Heidelberg University,
2MBZUAI

Abstract

We contribute to the sparsely populated area of unsupervised
deep graph matching with application to keypoint matching
in images. Contrary to the standard supervised approach, our
method does not require ground truth correspondences be-
tween keypoint pairs. Instead, it is self-supervised by enforc-
ing consistency of matchings between images of the same
object category. As the matching and the consistency loss are
discrete, their derivatives cannot be straightforwardly used for
learning. We address this issue in a principled way by build-
ing our method upon the recent results on black-box differen-
tiation of combinatorial solvers. This makes our method ex-
ceptionally flexible, as it is compatible with arbitrary network
architectures and combinatorial solvers. Our experimental
evaluation suggests that our technique sets a new state-of-the-
art for unsupervised deep graph matching.

1 Introduction

Graph matching (GM) is an important research topic in ma-
chine learning, computer vision, and related areas. It aims
at finding an optimal node correspondence between graph-
structured data. It can be applied in tasks like shape match-
ing (Sahillioğlu 2020), activity recognition (Brendel and
Todorovic 2011), point cloud registration (Fu et al. 2021),
and many others. One classical application of graph match-
ing also considered in our work is keypoint matching, as il-
lustrated in Figure 1.

A modern, learning-based approach to this problem tries
to estimate costs for the subsequent combinatorial matching
algorithm. The learning is usually supervised, i.e., ground
truth correspondences are given as training data. However,
obtaining ground truth is costly, which motivates develop-
ment of unsupervised learning methods.

Our work proposes one such unsupervised technique. In-
stead of ground truth correspondences, our method utilizes
the cycle consistency constraint as a supervision signal, see
Fig. 1. Based on pairwise correspondences of multiple im-
ages, we iteratively update matching costs to improve con-
sistency of the correspondences.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1

3 2

Image A

Image B

1

3

2

2

2

3

3

1

1

1

Image C 3

Figure 1: Illustration of cycle consistency in multi-graph
matching (best viewed in color). There are three nodes in
each image. They are labelled by both color (blue, green,
purple) and numbers (1, 2, 3). Matches between pairs of
nodes are shown by colored lines. A ↔ B, B ↔ C and
C ↔ A are color coded with yellow, light purple and
light pink lines. Correct matches are shown by solid, wrong
matches by dotted lines. Matching of the node 2 is cycle
consistent across the images, whereas nodes 1 and 3 are not.

Related Work
Supervised Deep Graph Matching methods (Fey et al.
2020a; Rolı́nek et al. 2020) typically consist of two parts:
Feature extraction and combinatorial optimization. Whereas
the first part is nowadays carried out by neural networks,
the second is responsible for finding a one-to-one, possibly
incomplete, matching. As shown in (Vlastelica et al. 2019;
Battaglia et al. 2018), neural networks do not generalize
on combinatorial tasks and cannot substitute combinatorial
methods therefore.

The architecture of neural networks of recent deep
graph matching methods such as (Rolı́nek et al. 2020)
or (Wang, Yan, and Yang 2021) is very similar. As a back-
bone they use a VGG16 (Simonyan and Zisserman 2015) or
a similar convolutional network for visual feature generation
and a graph neural network for their refinement and combi-
nation with geometric information. Apart from specific pa-
rameters of the used networks, the key differences are the
type of combinatorial solvers used and how differentiation
through these solvers is dealt with.

A number of combinatorial techniques have been pro-
posed to address the matching problem itself, see the re-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5252

cent benchmark (Haller et al. 2022) and references therein.
One distinguishes between linear and quadratic formula-
tions, closely related to the linear and quadratic assignment
problems (LAP and QAP resp.). These are deeply studied
in operations research (Burkard, Dell’Amico, and Martello
2012). Whereas the optimal linear assignment minimizes
the sum of node-to-node (cf. keypoint-to-keypoint in Fig. 1)
matching costs, the quadratic assignment penalizes pairs of
nodes (pairs of keypoints) matched to each other. Most im-
portantly, this allows to take into account relative positions
of respective keypoints.

The greater expressive power of QAPs comes at a price:
In general this problem is NP-hard, whereas LAP can be
exactly and efficiently solved with a number of polynomial
algorithms, see a practical analysis in (Crouse 2016). Most
learning pipelines, however, adopt an approximate LAP
solver based on the Sinkhorn normalization (SN) (Bregman
1967; Peyré and Cuturi 2017) due to its inherent differentia-
bility (Eisenberger et al. 2022).

Despite the computational difficulty of QAPs, best exist-
ing algorithms are able to provide high-quality approximate
solutions for problems with hundreds of keypoints within
one second or even less (Haller et al. 2022). This speed al-
lows their direct use in end-to-end training pipelines pro-
vided there exists a way to differentiate through the solvers.

The Differentiablity Issue. When incorporating a com-
binatorial solver into a neural network, differentiability con-
stitutes the principal difficulty. Such solvers take continuous
inputs (matching costs in our case) and return a discrete out-
put (an indicator vector of an optimal matching). This map-
ping is piecewise constant because a small change of costs
typically does not affect the optimal matching. Therefore,
the gradient exists almost everywhere but is equal to zero.
This prohibits any gradient-based optimization.

The need for end-to-end differentiablity has given rise to
various approaches that utilize differentiable relaxations of
combinatorial optimization techniques (Nowak et al. 2018;
Zanfir and Sminchisescu 2018; Jiang et al. 2019; Wang,
Jabri, and Efros 2019; Yu et al. 2019; Fey et al. 2020b;
Wang, Yan, and Yang 2021). At the end of their pipeline,
all these methods use the Sinkhorn normalization. However,
such methods are either limited to approximately solving the
LAP, or are solver specific, when addressing the QAP.

The most general technique providing a black-box differ-
entiation of combinatorial solvers was proposed in (Vlastel-
ica et al. 2019). Applied to deep graph matching (Rolı́nek
et al. 2020) it is still among the state-of-the art methods in
this domain. We also make use of this technique in our work,
but in the unsupervised setting.

Multi-Graph Matching (MGM) is a generalization of
graph matching for computing correspondences between
multiple images of the same object. From an optimization
point of view, the goal is to minimize the total matching cost
between all pairs of such images given the cycle consistency
of all matchings (Swoboda et al. 2019). The problem is NP-
hard even if the matching of each pair of objects is formu-
lated as LAP (Crama and Spieksma 1992; Tang and Jebara
2017). Apart from optimization, recent works in this domain
include also learning of the matching costs, see, e.g., (Wang,

Yan, and Yang 2021). Contrary to these works, we do not en-
force cycle consistency during inference, and only use it as
a supervision signal for training.

Unsupervised Deep Graph Matching. The field of un-
supervised deep graph matching is still under-studied. Es-
sentially, it contains two works. The first one (Wang, Yan,
and Yang 2020), referred to as GANN, uses cycle consistent
output of an MGM solver as pseudo-ground truth for train-
ing a differentiable QAP-based matching. Costs involved in
MGM as well as the QAP are updated during training, to
make the output of both algorithms closer to each other in
the sense of a cross-entropy loss. The method is restricted
to specific differentiable algorithms and biased to the sub-
optimal solutions provided by the used MGM solver.

The second unsupervised training technique called
SCGM (Liu et al. 2022) is based on contrastive learning
with data augmentation. Specifically, in the unsupervised
training stage each image and the respective keypoint graph
is matched to its augmented copies. The known mapping
between original and modified keypoint graphs serves as
ground truth. This technique can be applied with virtually
any deep graph matching method as a backbone. Moreover,
it can be used as a pre-training technique for our method, as
demonstrated in Section 6.

However, the augmentations are problem specific and de-
pendent on an unknown data distribution. Also, SCGM uses
two views of the same image to build its graph match-
ing problem. It is thus biased towards complete matchings,
which is a disadvantage in real world matching scenarios.

Cycle Consistency as self-supervision signal has been
used in various computer vision applications such as videos,
e.g., (Wang, Jabri, and Efros 2019) or dense semantic match-
ing (Kim et al. 2017). Another example is the seminal
work (Zhou et al. 2016) that leverages synthetic (3D CAD)
objects to obtain correct (2D image-to-image) correspon-
dences. In all these cases, however, one considers dense im-
age matching and penalizes the Euclidean or geodesic dis-
tance between the first and the last point in a cycle. This type
of loss does not fit the discrete setting, where nothing else
but the number of incorrect matches has to be minimized,
i.e., the Hamming distance between matches.

Another approach used, e.g., in multi-shape matching, im-
plicitly enforces cycle consistency by matching all objects to
the universe (Ye et al. 2022). This, however, eliminates cy-
cle consistency as a supervision signal, hence one has to use
additional information in the unsupervised setting. This is
the functional map that delivers a supervision signal in the
recent multi-shape matching works (Cao and Bernard 2022;
Cao, Roetzer, and Bernard 2023). However, the lack of a
functional map makes this approach inapplicable to graph
matching in general and in our application in particular.

Finally, the recent work (Indelman and Hazan 2023) uses
a discrete cycle consistency as part of a loss to improve the
matching results in a supervised setting. To differentiate the
loss they use the direct loss minimization technique (Hazan,
Keshet, and McAllester 2010) that can be seen as a limit case
of the black-box-differentiation method (Vlastelica et al.
2019) utilized in our framework.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5253

Figure 2: Overview of our framework for a batch of 3 images. Features extracted from images and keypoint positions are
transformed into matching costs for each pair of images. The QAPij blocks compute the matching either as LAP or QAP. At
the end the cycle loss counts a number of inconsistent cycles and computes a gradient for back propagation.

Contribution
We present a new principled framework for unsuper-
vised end-to-end training of graph matching methods. It is
based on a discrete cycle loss as a supervision signal and
the black-box differentiation technique for combinatorial
solvers (Vlastelica et al. 2019). Our framework can utilize
arbitrary network architectures as well as arbitrary combi-
natorial solvers addressing LAP or QAP problems. It can
handle incomplete matchings if the respective solver can.

We demonstrate flexibility of our framework by testing
it with two different network architectures as well as two
different QAP and one LAP solvers.

An extensive empirical evaluation suggests that our
method sets a new state-of-the-art for unsupervised graph
matching. Our code is available at: https://github.com/skt9/
clum-semantic-correspondence.

2 Overview of the Proposed Framework
Figure 2 provides an overview of our architecture. First
the features are computed for each keypoint in each image
(block Feature extraction). These features are translated to
matching costs for each pair of images (block Cost compu-
tation) and the respective optimization problems, QAP or
LAP (blocks QAP12, QAP23, QAP31), are solved. Finally,
cycle loss computes the number of inconsistent cycles.

We address all components one by one:
• Section 3 overviews the black-box differentiation tech-

nique (Vlastelica et al. 2019) that addresses the differentia-
bility question discussed in Section 1. As the method re-
quires a combinatorial solver to be represented in the integer
linear program format, we briefly introduce this representa-
tion for LAP and QAP problems.

• Section 4 describes the key component of our frame-
work - the unsupervised discrete cycle consistency loss and
its differentiation.

• In Section 5 we propose a significant modification of
the popular feature extraction and cost computation network
of (Rolı́nek et al. 2020). The modified network is used in our
experiments in addition to the original one.

• Finally, our experimental validation is given in Sec-
tion 6. More detailed results are available in the supplement.

3 Background
Black-box differentiation of combinatorial solvers. The
work (Vlastelica et al. 2019) overcomes the zero gradient
problem for discrete functions in a universal way. It intro-
duces efficient piecewise-linear approximations of the con-

sidered piecewise-constant objective functions. It has the ef-
fect of making the gradient of the approximated function
informative, thus allowing for gradient-based training. Let
c ∈ Rn be continuous input costs and x ∈ X be a discrete
output taken from an arbitrary finite set X . An important
property of the method (Vlastelica et al. 2019) is that it al-
lows to use arbitrary combinatorial solvers as a black-box,
as soon as the costs c and the output x are related via an
integer linear program (ILP):

x(c) = argmin
x∈X

⟨c,x⟩ . (1)

This general formulation covers a significant portion of com-
binatorial problems including LAPs and QAPs.

The flexibility of the black-box technique comes at the
price of a somewhat higher computational cost. The used
combinatorial solver must be run twice on each learning it-
eration: In addition to the normal execution on the forward
pass, the backward pass involves another call to the solver
with specially perturbed costs.

Essentially, if L : X → R denotes the final loss of the
network, its gradient w.r.t. the costs c can be approximated
as

dL(x(c))

dc
:=

x(cλ)− x(c)

λ
. (2)

Here cλ is a perturbed cost vector computed as

cλ = c+ λ
dL

dx
(x(c)) . (3)

More precisely, Equation (2) defines the gradient of a piece-
wise linear interpolation of L at x(c) with a hyperparameter
λ > 0 controlling the interpolation accuracy. Equation (3)
suggests that the loss function L is differentiable. Note that
for the gradient computation (2) no explicit description of
the set X is required.
Graph Matching Problem (QAP and LAP). For our de-
scription of the graph matching problem we mostly fol-
low (Haller et al. 2022). Let V1 and V2 be two finite sets
to be matched, e.g., the sets of keypoints of two images. For
each pair i, j ∈ V1, and each pair s, l ∈ V2, a cost cis,jl is
given. Each such pair can be thought of as an edge between
pairs of nodes of an underlying graph. In general, these costs
are referred to as pairwise or edge costs. The unary, or node-
to-node matching costs are defined by the diagonal terms of
the cost matrix C = (cis,jl), i.e., cis,is is the cost for match-
ing the node i ∈ V1 to the node s ∈ V2. For the sake of
notation we further denote it as cis. In turn, is will stand for
(i, s) below.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5254

Figure 3: (a) Partial loss illustration for a triple of indices i, s, k and the respective binary variables x12, x23, x31. The solid lines
for x23 and x31 denote that these variables are equal to 1 and correspond to an actual matching between the respective points.
The dashed line for x12 denotes that this variable is equal to 0 and therefore points indexed by i and s are not matched to each
other. Given the values of x23 and x31 this violates cycle consistency. (b-e) Illustration of the values of the derivative ∂ℓ/∂x12.
The meaning of the solid and dashed lines as well as the position of x12, x23 and x31 are the same as in (a). The thick blue
dotted lines mean that x12 can be either 0 or 1, since ∂ℓ/∂x12 is independent on x12, see (7). So, for instance, ∂ℓ/∂x12 = 1 for
x23 = 0 and x31 = 1 as illustrated by (c).

The goal of graph matching is to find a matching between
elements of the sets V1 and V2 that minimizes the total cost
over all pairs of assignments. It is represented as the follow-
ing integer quadratic problem:

min
x∈{0,1}V1×V2

∑
is∈V1×V2

cisxis +
∑

is,jl∈V1×V2

is ̸=jl

cis,jlxisxjl (4)

s.t.
{
∀i ∈ V1 :

∑
s∈V2 xis ≤ 1 ,

∀s ∈ V2 :
∑

i∈V1 xis ≤ 1 .
(5)

The uniqueness constraints (5) specify that each node of the
first graph can be assigned to at most one node of the second
graph. Due to the inequality in these constraints one speaks
of incomplete matching contrary to the equality case termed
as complete. The incomplete matching is much more natural
for computer vision applications as it allows to account for
noisy or occluded keypoints. From the computational point
of view both problem variants are polynomially reducible to
each other, see, e.g., (Haller et al. 2022) for details. There-
fore we treat them equally unless specified otherwise.

By ignoring the second, quadratic term in (4), one ob-
tains the LAP. Note that it already has the form (1) required
for black-box differentiation. As for the more general QAP
case, the substitution yis,jl = xisxjl linearizes the objec-
tive of (4) and makes it amenable to black-box differentia-
tion. The resulting ILP problem with different linearizations
of the substitution yis,jl = xisxjl added as a constraint to
the feasible set is addressed by a number of algorithms, see,
e.g., (Haller et al. 2022). We mention here only two, which
we test within our framework: The LPMP solver (Swoboda
et al. 2017) employed in the work (Rolı́nek et al. 2020), and
the fusion moves solver (Hutschenreiter et al. 2021) showing
superior results in (Haller et al. 2022).

4 Cycle Consistency Loss and Its Derivative
Let us denote the fact that a point i is matched to a point

s as s ↔ i. We call a mutual matching of d point sets
V1, . . . ,Vd cycle consistent, if for any matching sequence
of the form sk1 ↔ sk2 , sk2 ↔ sk3 , . . . , skm−1 ↔ skm

it holds skm ↔ sk1 , where ki ∈ {1, . . . , d}, ki < ki+1,
i = 1, . . . ,m.

It is well-known from the literature, see, e.g., (Swoboda
et al. 2019), the cycle consistency over arbitrary subsets of

matched point sets is equivalent to the cycle consistency of
all triples. We employ this in our pipeline, and define the
cycle consistency loss for triples only.

Let us consider a matching of three sets V1,V2

and V3. We define the total cycle loss as the
sum of partial losses for all possible triples
of points from these sets: L(x12,x23,x31) =∑

i∈V1

∑
s∈V2

∑
k∈V3 ℓ(x12

is , x
23
sk, x

31
ki). Here x12 de-

notes a binary matching vector, i.e., a vector that satisfies
the uniqueness constraints (5) between V1 and V2. Vectors
x23 and x31 are defined analogously.

Assume now that the triple of point indices (i, s, k) ∈
V1 × V2 × V3 is fixed. For the sake of notation we omit the
lower indices and assume x12 = x12

is , x23 = x23
sk, x31 = x31

ki
to be binary variables, see Figure 3(a) for illustration.

The partial loss ℓ penalizes cycle inconsistent configura-
tions as the one illustrated in Figure 3(a). In particular, the
partial loss is equal to 1, if x12 = 0 and x23 = x31 = 1.
This can be achieved by, e.g., the following differentiable
function

ℓ(x12, x23, x31) =

(1− x12)x23x31 + (1− x23)x12x31 + (1− x31)x12x23

= x12x23 + x23x31 + x12x31 − 3x12x23x31 (6)
where the three terms are necessary to make sure the loss
function is symmetric.

The derivative of the partial loss ℓ w.r.t. x12 reads
∂ℓ

∂x12
= x23 + x31 − 3x23x31 , (7)

and analogously for variables x23 and x31.
Figure 3(b-e) illustrate the values of the derivative for the

four possible cases. The gradient of L is the sum of gradients
of ℓ over all index triples.

Algorithm 1 summarizes our cycle-loss based unsuper-
vised learning approach. Note that in Step 4 only unary costs
cis are perturbed, as the pairwise costs cis,jl are multiplied
by the lifted variables yis,jl in the linearized QAP objective,
and ∂L/∂y = 0.

5 Network Architecture
In order to show flexibility of our framework we tested it not
only with the baseline network of (Rolı́nek et al. 2020), but

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5255

Algorithm 1: Unsupervised training algorithm

Given: Sets of keypoints to be matched V := {Vi, i ∈ {1, . . . , d}}; λ - the hyper-parameter from Section 3.
1. Randomly select 3 sets from V. W.l.o.g. assume these are V1, V2 and V3.
2. Infer costs c12, c23, c31 for the 3 QAPs corresponding to the pairs (V1,V2), (V2,V3), (V3,V1).
3. Solve the QAPs and obtain the respective matchings x12, x23, x31, see Figure 3.
4. Compute the perturbed costs [c12]λ, [c23]λ and [c31]λ based on (3) and the loss gradient (7), e.g..:

[c12is]
λ := c12is + λ

∂L

∂x12
is

, is ∈ V1 × V2 .

5. Compute the solutions x12([c12]λ), x23([c23]λ) and x31([c31]λ) to the QAP problems (4) with the perturbed costs.
6. Compute the gradients via (2) and backpropagate the changes to the network weights.

also with our own network, whose architecture is presented
in this section.

Feature Extraction

Figure 4 shows the information flow from input, through the
feature extraction block, to the construction of the matching
instance. The weights for the VGG16, SplineCNN and atten-
tion layers are shared across images. Input to the feature ex-
traction block are the image-keypoint pairs. We denote them
as (Im1,KP1) and (Im2,KP2).

The SplineCNN layers require a graph structure for the
keypoints in each image. The keypoints form the nodes of
the graph. We use the Delaunay Triangulation (Delaunay
1934) of the keypoint locations to define the edge struc-
ture of this graph. We refer to the graphs of Im1 and Im2

as (V1, E1) and (V2, E2), respectively. For the sake of nota-
tion, we denote an edge (i, j) in an edge set E as ij.
Backbone Architecture. Following the works of (Rolı́nek
et al. 2020; Fey et al. 2020b; Wang, Jabri, and Efros 2019)
we compute the outputs of the relu4 2 and relu5 1 op-
erations of the VGG16 network (Simonyan and Zisserman
2015) pre-trained on ImageNet (Deng et al. 2009). The fea-
ture vector spatially corresponding to a particular keypoint
is computed via bi-linear interpolation. The set of feature
vectors thus obtained are denoted as F1,F2 in Figure 4.
SplineCNN Based Feature Refinement. The keypoint fea-
tures extracted from the VGG16 network are subsequently
refined via SplineCNN layers (Fey et al. 2018). SplineCNNs
have been shown to successfully improve feature quality in
point-cloud (Li et al. 2020) and other graph structure pro-
cessing applications (Verma et al. 2021).

The VGG16 keypoint features (F1,F2 in Figure 4) are in-
put to the SplineCNN layers as node features. The input edge
features to the SplineCNNs are defined as the difference of
2D coordinates of the associated nodes. We use two layers
of SplineCNN with MAX aggregations.

The outputs of the SplineCNN layers are appended to the
original VGG node features to produce the refined node fea-
tures, denoted as F1,F2. The edge features Pk, k = 1, 2,
are computed as Pk

ii′ := Fk
i −Fk

i′ , ii
′ ∈ Ek.

Self- and Cross-Attention Layers have been re-
cently explored in the graph matching context (Liu
et al. 2023). Essentially, they implement the function

CA(g1
i ,g

2,pQ,pK ,pV) :=

∑
s∈V2

softmax

(
(g1

iW
Q + pQ

is).(g
2
sW

K + pK
is)

⊤
√
D

)
·(g1

iW
V

+ p
V
is) (8)

WQ, WK and WV are learned projection matrices. D is
the dimension of the feature vector f1i . Q, K, V stand for
Query, Key and Value respectively. Intuitively speaking, the
projection matrices learn which features to take more/less
notice of. The vectors pQ,pK ,pV are described below.
Self-Attention + RPE layer combines the self-attention
mechanism (Vaswani et al. 2017) with the relative position
encoding (RPE). The latter has been shown to be useful for
tasks where the relative ordering or distance of the elements
matters (Wu et al. 2021).

The layer transforms the node features Fk = {fki |
i ∈ Vk}, k = 1, 2 into the improved features Uk =
{uk

i | i ∈ Vk}, k = 1, 2. These are computed as uk
i =

CA(uk
i , f

k,pQ,pK ,pV), k = 1, 2. The vector pQ = {pQ
is |

is ∈ V1 × V2} is computed as

pQ
is = MLP(sineEmbed(xi − xs)) , (9)

where xi and xs are the 2D image coordinates of the respec-
tive key points. Here sineEmbed(·) stands for the sinusoidal
embedding consisting of 20 frequencies uniformly sampled
in [0, 2π], as commonly used in transformers (Vaswani et al.
2017), and MLP is a multi-layer perceptron. Vectors pK

and pV are computed by (9) as well and differ only by
learned weights of the respective MLPs.
Cross-Attention Layer incorporates feature information
across graphs. It has been used in a number of applications
like semantic correspondence (Yu et al. 2021) and point
cloud registration (Wang and Solomon 2019) to improve
feature expressivity from two different data sources.

Recall that the node features refined by the Self-Attention
layer are Uk = {uk

i | i ∈ Vk}, k = 1, 2. Then the
node cross attention features for U1 with respect to U2 de-
noted as Z1/2 = {z1/2i | i ∈ V1} are defined as z

1/2
i =

CA(u1
i ,u

2,0,0,0). The respective matrices WQ, WK and
WV defining this mapping are trained independently for
self- and cross-attention layers.

The cross-attention node features for U2 with respect
to U1 are computed analogously and denoted by Z2/1 =

{z2/1s | s ∈ V2}.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5256

Figure 4: Information flow for feature processing and matching instance construction. The feature extraction layer is shown in
the blue box. Input to the pipeline are image-keypoint pairs, (Im1,KP1), (Im2,KP2) in the figure. The features extracted via a
pre-trained VGG16 backbone network are refined by SplineCNN layers. The outputs of the SplineCNN layers are subsequently
passed through self-attention (SA) with relative position encoding (RPE) and cross-attention (CA)layers and finally used in the
construction of a matching instance. NC and EC denote node and edge costs. See the detailed description in the main text.

Similarly we compute the cross-attention edge features
Y1/2 = {y1/2

ij | ij ∈ E1)} and Y2/1 = {y2/1
ij | ij ∈ E2)}

by plugging the coordinates of the edge features P1 and P2

into (8) instead of the node features U1 and U2.

Matching Instance Construction
It remains to specify how the costs for the graph matching
problems in Equation (4) are computed. The unary costs cis
are computed as:

cis :=

〈
z
1/2
i

||z1/2i ||
,

z
2/1
s

||z2/1s ||

〉
− ĉ . (10)

The constant ĉ regulates the number of unassigned points,
i.e., its larger positive values decrease this number and
smaller increase. We treat ĉ as a hyper-parameter. The edge
costs cis,jl are given by:

cis,jl :=

〈
y
1/2
ij

||y1/2
ij ||

,
y
2/1
sl

||y2/1
sl ||

〉
. (11)

6 Experimental Validation
Compared Methods We evaluate our framework in four
settings. As a baseline, we build it on top of the super-
vised BBGM method (Rolı́nek et al. 2020). That is, we reuse
its network and the respective QAP solver (Swoboda et al.
2017) within our unsupervised framework. We refer to the
respective algorithm as CL-BBGM. Using BBGM as a base-
line allows us to compare our method directly to the com-
peting SCGM method (Liu et al. 2022) that uses BBGM as
a backbone.

Our second setting is a modification of CL-BBGM, re-
ferred to as CL-BBGM (SCGM), where we start with the
weights learned in unsupervised fashion by SCGM (Liu
et al. 2022) with BBGM as a backbone. Our third setup is
the network described in Section 5 paired with the state-of-
the-art QAP solver (Hutschenreiter et al. 2021). We term
it as CLUM, which stands for Cycle-Loss-based Unsuper-
vised Graph Matching. Our fourth algorithm, referred to as
CLUM-L, is a variant of CLUM with a LAP solver in place
of the QAP one. The edge costs generated by the network
are ignored in this case.

We compare our method to the so far only existing unsu-
pervised methods GANN (Wang, Yan, and Yang 2020) and

SCGM (Liu et al. 2022). As mentioned in Section 1, SCGM
is not stand-alone and requires a supervised graph match-
ing algorithm as a backbone. Following the original SCGM
paper (Liu et al. 2022), we show results with backbones
BBGM and NGMv2. We also provide published results of
several supervised methods for reference, see Table 1.
Experimental Setup. All experiments were run on an
Nvidia-A100 GPU and a 32 core CPU. All reported re-
sults are averaged over 5 runs. The hyper-parameters are
the same in all experiments. We used Adam (Kingma and
Ba 2015) with an initial learning rate of 2 × 10−3 which
is halved at regular intervals. The VGG16 backbone learn-
ing rate is multiplied by 0.01. We process batches of 12 im-
age triplets. The hyper-parameter λ from (3) is set to 80.
Hyper-parameter ĉ from (10) for Pascal VOC (unfiltered)
is set to 0.21 for SCGM w/BBGM, 0.257 for both CLUM
and CLUM-L, 0.329 for both CL-BBGM and CL-BBGM
(SCGM), respectively. Note, that ĉ is important only for the
case of incomplete assignments, i.e., the Pascal VOC (Unfil-
tered) dataset in our experiments, see below. In other exper-
iments a sufficiently large value of ĉ has been used to assure
complete assignments. We use image flips and rotations as
augmentations.
Datasets We evaluate our proposed method on the task of
keypoint matching on the following datasets: Willow Object
Class (Cho, Alahari, and Ponce 2013), SPair-71K (Min et al.
2019) and Pascal VOC with Berkeley annotations (Evering-
ham et al. 2010; Bourdev and Malik 2009). All but Pascal
VOC assume complete matching. The consolidated results
are given in Table 1. The detailed evaluation can be found
in (Tourani et al. 2024).

Following (Rolı́nek et al. 2020) all considered methods
are assumed to match pairs of images of the same category
with at least three keypoints in common. We apply the same
rule to select the image triples for training.
Pascal VOC with Berkeley Annotations. Follow-
ing (Rolı́nek et al. 2020), we perform evaluations on the
Pascal VOC dataset in two regimes:

•Filtered. Only the keypoints present in the matched
images are preserved and all others are discarded as outliers.
This corresponds to complete matching.

• Unfiltered. Original keypoints are used without any
filtering. This corresponds to incomplete matching.
Willow Object Class. Similar to other methods, we pre-
train our method on Pascal VOC.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5257

GANN

CL-BBGM

CLUM (Ours)

BBGM (Supervised)

Figure 5: Visualization of matching results on the SPair-71K dataset. In addition to the unsupervised techniques GANN, CL-
BBGM, CLUM we show results of the fully supervised BBGM as a baseline. Correctly matched keypoints are shown as green
dots, whereas incorrect matches are represented by red lines. The matched keypoints have in general similar appearance that
suggests sensible unary costs. Improving of the matching quality from top to bottom is arguably mainly due to improving the
pairwise costs, with the fully supervised BBGM method showing the best results.

Supervised Unsupervised
Dataset BBGM NGMv2 GANN SCGM SCGM CL-BBGM CL-BBGM CLUM-L CLUM

w/NGMv2 w/BBGM (SCGM) (Ours)
PascalVOC F 79 80.1 31.5 54.3 57.1 58.4 58.8 59.7 62.4
PascalVOC U 55.4 54.0 24.3 32.1∗ 33.9∗ 38 41.7 40.3 43.5

Willow 97.2 97.5 92.0 91.0 91.3 91.6 93.2 93.4 95.6
SPair-71K 82.1 80.2 31.7 36.9 38.7 40.6 41.2 41.6 43.1

Table 1: Consolidated results of the various deep graph matching methods on the benchmark datasets. Numbers are accuracy
in percentage (higher is better) for all datasets but PascalVOC Unfiltered, (PascalVOC U) where the F1-score is used. Detailed
results can be found in the supplement. Italic font is used for the values taken from original works and the ThinkMatch library.
∗ - trained on PascalVOC Filtered (PascalVOC F).

SPair-71K is considered to have more difficult matching in-
stances as well as higher annotation quality than PascalVOC.

Results
An ablation study for our method, as well as detailed results
can be found in our technical report (Tourani et al. 2024).

The evaluation results are summarized in Table 1 and il-
lustrated in Figure 5. In addition to the four unsupervised
setups mentioned above, we trained GANN and SCGM on
SPair-71K, as the respective results were missing in the orig-
inal works. We also evaluated SCGM trained on PascalCOV
(Filtered) on PascalVOC (Unfiltered), as SCGM is not suit-
able for direct training for incomplete matching. All other
results are taken from the ThinkMatch (Wang, Yan, and
Yang 2021) testing webpage.

Note that already our baseline algorithm CL-BBGM out-
performs all existing unsupervised methods (GANN and
both SCGM variants) on all datastes but Willow, where it

performs slightly worse than GANN. When pre-trained with
SCGM (see CL-BBGM (SCGM) in Table 1) it gets con-
sistently better results. In turn, our high-end setup CLUM
uniformly outperforms all other unsupervised techniques.
The LAP variant of this method, CLUM-L, performs signif-
icantly worse than CLUM, but still better than all previously
existing unsupervised methods.

7 Conclusions
We presented a new framework for unsupervised cycle-loss-
based training of deep graph matching. It is extremely flexi-
ble in terms of the neural networks, as well as the combinato-
rial solvers it can be used with. Equipped with the best com-
ponents it outperforms the state-of-the art and its flexibility
suggests that its performance improves with the improve-
ment of the components. Our framework can be adapted to
other deep learning tasks like 6D pose estimation and corre-
spondence estimation.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5258

Acknowledgements
We thank the Center for Information Services and High Per-
formance Computing (ZIH) at TU Dresden for its facili-
ties for high throughput calculations. Bogdan Savchynskyy
was supported by the German Research Foundation (project
number 498181230).

References
Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-
Gonzalez, A.; Zambaldi, V. F.; Malinowski, M.; Tacchetti,
A.; Raposo, D.; Santoro, A.; Faulkner, R.; Gülçehre, Ç.;
Song, H. F.; Ballard, A. J.; Gilmer, J.; Dahl, G. E.; Vaswani,
A.; Allen, K. R.; Nash, C.; Langston, V.; Dyer, C.; Heess,
N.; Wierstra, D.; Kohli, P.; Botvinick, M. M.; Vinyals, O.;
Li, Y.; and Pascanu, R. 2018. Relational inductive biases,
deep learning, and graph networks. CoRR, abs/1806.01261.
Bourdev, L.; and Malik, J. 2009. Poselets: Body part detec-
tors trained using 3d human pose annotations. In 2009 IEEE
12th International Conference on Computer Vision, 1365–
1372. IEEE.
Bregman, L. M. 1967. The Relaxation Method of Finding
the Common Point of Convex Sets and its Application to
the Solution of Problems in Convex Programming. USSR
Computational Mathematics and Mathematical Physics.
Brendel, W.; and Todorovic, S. 2011. Learning spatiotem-
poral graphs of human activities. In 2011 International Con-
ference on Computer Vision, 778–785. IEEE.
Burkard, R.; Dell’Amico, M.; and Martello, S. 2012. As-
signment problems: revised reprint.
Cao, D.; and Bernard, F. 2022. Unsupervised Deep Multi-
shape Matching. In European Conference on Computer Vi-
sion, 55–71. Springer.
Cao, D.; Roetzer, P.; and Bernard, F. 2023. Unsupervised
Learning of Robust Spectral Shape Matching. In SIG-
GRAPH / ACM Transactions on Graphics (TOG).
Cho, M.; Alahari, K.; and Ponce, J. 2013. Learning graphs to
match. In Proceedings of the IEEE International Conference
on Computer Vision, 25–32.
Crama, Y.; and Spieksma, F. C. 1992. Approximation al-
gorithms for three-dimensional assignment problems with
triangle inequalities. European Journal of Operational Re-
search, 60(3): 273–279.
Crouse, D. F. 2016. On implementing 2D rectangular as-
signment algorithms. IEEE Transactions on Aerospace and
Electronic Systems, 52(4): 1679–1696.
Delaunay, B. 1934. Sur la sphère vide. A la mémoire de
Georges Vorono. Bulletin de l’Académie des Sciences de
l’URSS. Classe des sciences mathématiques et naturelles, 6:
793.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.
Eisenberger, M.; Toker, A.; Leal-Taixé, L.; Bernard, F.;
and Cremers, D. 2022. A Unified Framework for Implicit
Sinkhorn Differentiation. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,
509–518.
Everingham, M.; Van Gool, L.; Williams, C. K.; Winn, J.;
and Zisserman, A. 2010. The Pascal visual object classes
(VOC) challenge. International journal of computer vision,
88(2): 303–338.
Fey, M.; Lenssen, J. E.; Morris, C.; Masci, J.; and Kriege,
N. M. 2020a. Deep Graph Matching Consensus. In Interna-
tional Conference on Learning Representations (ICLR).
Fey, M.; Lenssen, J. E.; Morris, C.; Masci, J.; and Kriege,
N. M. 2020b. Deep Graph Matching Consensus. In 8th In-
ternational Conference on Learning Representations, ICLR.
Fey, M.; Lenssen, J. E.; Weichert, F.; and Müller, H. 2018.
SplineCNN: Fast geometric deep learning with continuous
b-spline kernels. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 869–877.
Fu, K.; Liu, S.; Luo, X.; and Wang, M. 2021. Robust point
cloud registration framework based on deep graph matching.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 8893–8902.
Haller, S.; Feineis, L.; Hutschenreiter, L.; Bernard, F.;
Rother, C.; Kainmüller, D.; Swoboda, P.; and Savchynskyy,
B. 2022. A comparative study of graph matching algorithms
in computer vision. In European Conference on Computer
Vision, 636–653. Springer.
Hazan, T.; Keshet, J.; and McAllester, D. 2010. Direct loss
minimization for structured prediction. Advances in neural
information processing systems, 23.
Hutschenreiter, L.; Haller, S.; Feineis, L.; Rother, C.;
Kainmüller, D.; and Savchynskyy, B. 2021. Fusion moves
for graph matching. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, 6270–6279.
Indelman, H. C.; and Hazan, T. 2023. Learning Constrained
Structured Spaces with Application to Multi-Graph Match-
ing. In International Conference on Artificial Intelligence
and Statistics, 2589–2602. PMLR.
Jiang, B.; Sun, P.; Tang, J.; and Luo, B. 2019. Glmnet: Graph
learning-matching networks for feature matching. arXiv
preprint arXiv:1911.07681.
Kim, S.; Min, D.; Ham, B.; Jeon, S.; Lin, S.; and Sohn, K.
2017. FCSS: Fully convolutional self-similarity for dense
semantic correspondence. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 6560–
6569.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In Bengio, Y.; and LeCun, Y., eds.,
3rd International Conference on Learning Representations,
ICLR 2015.
Li, Q.; Liu, S.; Hu, L.; and Liu, X. 2020. Shape correspon-
dence using anisotropic Chebyshev spectral CNNs. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 14658–14667.
Liu, C.; Zhang, S.; Yang, X.; and Yan, J. 2022. Self-
supervised Learning of Visual Graph Matching. In Euro-
pean Conference on Computer Vision, 370–388. Springer.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5259

Liu, H.; Wang, T.; Li, Y.; Lang, C.; Jin, Y.; and Ling, H.
2023. Joint graph learning and matching for semantic fea-
ture correspondence. Pattern Recognition, 134: 109059.
Min, J.; Lee, J.; Ponce, J.; and Cho, M. 2019. Spair-71k: A
large-scale benchmark for semantic correspondence. arXiv
preprint arXiv:1908.10543.
Nowak, A.; Villar, S.; Bandeira, A. S.; and Bruna, J. 2018.
Revised note on learning quadratic assignment with graph
neural networks. In 2018 IEEE Data Science Workshop
(DSW), 1–5. IEEE.
Peyré, G.; and Cuturi, M. 2017. Computational optimal
transport. Center for Research in Economics and Statistics
Working Papers, (2017-86).
Rolı́nek, M.; Swoboda, P.; Zietlow, D.; Paulus, A.; Musil,
V.; and Martius, G. 2020. Deep graph matching via black-
box differentiation of combinatorial solvers. In European
Conference on Computer Vision, 407–424. Springer.
Sahillioğlu, Y. 2020. Recent advances in shape correspon-
dence. The Visual Computer, 36(8): 1705–1721.
Simonyan, K.; and Zisserman, A. 2015. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition. In In-
ternational Conference on Learning Representations, ICLR.
Swoboda, P.; Kainmüller, D.; Mokarian, A.; Theobalt, C.;
and Bernard, F. 2019. A convex relaxation for multi-graph
matching. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 11156–11165.
Swoboda, P.; Rother, C.; Abu Alhaija, H.; Kainmuller, D.;
and Savchynskyy, B. 2017. A Study of Lagrangean Decom-
positions and Dual Ascent Solvers for Graph Matching. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition.
Tang, D.; and Jebara, T. 2017. Initialization and Coordinate
Optimization for Multi-way Matching. In Proceedings of the
20th International Conference on Artificial Intelligence and
Statistics, volume 54 of Proceedings of Machine Learning
Research, 1385–1393.
Tourani, S.; Rother, C.; Khan, M. H.; and Savchynskyy, B.
2024. Unsupervised Deep Graph Matching Based on Cycle
Consistency. ArXiv:2307.08930.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Verma, N.; Boukhayma, A.; Boyer, E.; and Verbeek, J. 2021.
Dual Mesh Convolutional Networks for Human Shape Cor-
respondence. In 2021 International Conference on 3D Vi-
sion (3DV), 289–298. IEEE.
Vlastelica, M. P.; Paulus, A.; Musil, V.; Martius, G.; and Ro-
linek, M. 2019. Differentiation of blackbox combinatorial
solvers. In International Conference on Learning Represen-
tations.
Wang, R.; Yan, J.; and Yang, X. 2020. Graduated assign-
ment for joint multi-graph matching and clustering with ap-
plication to unsupervised graph matching network learning.
Advances in Neural Information Processing Systems, 33:
19908–19919.

Wang, R.; Yan, J.; and Yang, X. 2021. Neural graph match-
ing network: Learning Lawler’s quadratic assignment prob-
lem with extension to hypergraph and multiple-graph match-
ing. IEEE Transactions on Pattern Analysis and Machine
Intelligence.
Wang, X.; Jabri, A.; and Efros, A. A. 2019. Learning corre-
spondence from the cycle-consistency of time. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2566–2576.
Wang, Y.; and Solomon, J. M. 2019. Deep closest point:
Learning representations for point cloud registration. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 3523–3532.
Wu, K.; Peng, H.; Chen, M.; Fu, J.; and Chao, H. 2021. Re-
thinking and improving relative position encoding for vision
transformer. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 10033–10041.
Ye, Z.; Yenamandra, T.; Bernard, F.; and Cremers, D. 2022.
Joint deep multi-graph matching and 3d geometry learning
from inhomogeneous 2d image collections. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 36, 3125–3133.
Yu, H.; Li, F.; Saleh, M.; Busam, B.; and Ilic, S. 2021.
Cofinet: Reliable coarse-to-fine correspondences for robust
pointcloud registration. Advances in Neural Information
Processing Systems, 34: 23872–23884.
Yu, T.; Wang, R.; Yan, J.; and Li, B. 2019. Learning deep
graph matching with channel-independent embedding and
Hungarian attention. In International conference on learn-
ing representations.
Zanfir, A.; and Sminchisescu, C. 2018. Deep learning of
graph matching. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2684–2693.
Zhou, T.; Krahenbuhl, P.; Aubry, M.; Huang, Q.; and Efros,
A. A. 2016. Learning dense correspondence via 3d-guided
cycle consistency. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 117–126.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5260

