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Abstract

Large pre-trained vision-language models, such as CLIP,
have shown remarkable generalization capabilities across var-
ious tasks when appropriate text prompts are provided. How-
ever, adapting these models to specific domains, like re-
mote sensing images (RSIs), medical images, etc, remains
unexplored and challenging. Existing prompt learning meth-
ods often lack domain-awareness or domain-transfer mech-
anisms, leading to suboptimal performance due to the mis-
interpretation of specific images in natural image patterns.
To tackle this dilemma, we proposed a Domain-Controlled
Prompt Learning for the specific domains. Specifically, the
large-scale specific domain foundation model (LSDM) is
first introduced to provide essential specific domain knowl-
edge. Using lightweight neural networks, we transfer this
knowledge into domain biases, which control both the visual
and language branches to obtain domain-adaptive prompts
in a directly incorporating manner. Simultaneously, to over-
come the existing overfitting challenge, we propose a novel
noisy-adding strategy, without extra trainable parameters, to
help the model escape the suboptimal solution in a global
domain oscillation manner. Experimental results show our
method achieves state-of-the-art performance in specific do-
main image recognition datasets. Our code is available at
https://github.com/caoql98/DCPL.

Introduction

With the emergence of deep learning technology, various vi-
sual understanding tasks, including classification (Simonyan
and Zisserman 2014; He et al. 2016), semantic segmenta-
tion (Cao et al. 2023b,a), and object detection (Redmon et al.
2016; Girshick 2015), have witnessed remarkable progress.
However, the success of these tasks heavily relies on access
to large-scale, high-quality annotated datasets (Deng et al.
2009; Lin et al. 2014), which entail significant labor and
expense for each specific visual task. To tackle this practi-
cal challenge, the Contrastive Language-Image Pretraining
(CLIP) (Radford et al. 2021) has been introduced, aiming
to provide transferable visual features that can be leveraged
across a diverse range of downstream tasks. By employing
contrastive learning with extensive image-text pairs, CLIP
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Figure 1: Using RSIs as examples. Our method achieves
state-of-the-art performance on 8 different RSIs datasets.

has demonstrated exceptional zero-shot generalization capa-
bilities.

In CLIP, visual categories are directly incorporated into
carefully designed templates as prompts. Nonetheless, the
creation of appropriate templates can be a time-consuming
endeavor. To address this concern and drawing inspiration
from prompt learning techniques, CoOp (Zhou et al. 2022b)
proposes context optimization, employing learnable con-
text vectors to enhance the zero-shot generalization perfor-
mance. Following the prompt learning paradigm, numerous
prompt learning algorithms have been developed for vision-
language models, yielding notable advancements in zero-
shot image recognition. For instance, CoCoOp (Zhou et al.
2022a) tackles the class shift problem by introducing input-
conditional tokens, while MaPle adopts prompt learning for
both vision and language branches to enhance the alignment
between visual and linguistic representations.

Despite the progress made in prompt learning algo-
rithms (Zhou et al. 2022b,a; Khattak et al. 2023; Wang et al.
2022b; Ge et al. 2022), they only consider the same-domain
downstream task, while the adaptation problem from the
natural image domain to specific domains like RSIs has
rarely been considered. The domain-awareness or domain-
transfer mechanisms are correspondingly been ignored. Nat-
urally, existing prompt learning algorithms would approach



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

these domain-specific images with inappropriate natural im-
age perception patterns, leading to suboptimal performance
in specific domain recognition tasks.

To address this challenge and enable prompt learning
to effectively model the necessary domain adaptations for
specific domains like RSIs, medical images, etc, we pro-
pose a novel domain-controlled prompt learning approach.
Our key idea is to generate domain-adaptive prompts for
both the visual and language branches, instead of relying
on existing domain-insensitive prompts, and experiments
are implemented on RSIs and medical images to demon-
strate the efficiency. Specifically, we introduce the newly
open-sourced large-scale specific domain foundation model
(LSDM) as the specific domain knowledge. By incorporat-
ing lightweight neural networks, the LSDM generates do-
main biases separately for the visual branch and the lan-
guage branch. The domain bias for language is incorporated
into the learnable context vector, while the domain bias for
the visual branch is directly integrated into the image fea-
tures. This approach controls the model to rightly under-
stand the specific domain data, leading to more informed
and contextually rich representations, ultimately enhancing
the model’s discriminative power and overall performance.

Meanwhile, CoCoOp has identified the overfitting prob-
lem caused by category shift and attempted to solve it in a
conditional method. However, we tend to tackle it in a more
explicit manner. To straightforwardly solve this, adopting
dropout or mutation operations seems to be a plausible so-
lution. However, these strategies only introduce randomness
and variations to some extent, they are still constrained by
their local-sampling nature (dropout) and point-based mod-
ifications (mutation), which means they are insufficient for
escaping suboptimal solutions.

Inspired by the random sampling process in diffusion
models (Ho, Jain, and Abbeel 2020; Nichol and Dhari-
wal 2021), which greatly facilitates exploration in complex
spaces, we propose a novel noisy-adding strategy to handle
it. This strategy induces global domain oscillation through-
out the entire feature space by introducing adaptive random
Gaussian noise. In contrast to local sampling and point jitter-
ing, this strategy allows for broader exploration across whole
feature space, preventing model from being trapped in nar-
row solution regions. As shown in Figure 1, our proposed
method outperforms existing prompt learning approaches
across 8 diverse remote sensing image recognition datasets.

To sum up, the main contributions could be concluded as
follows:

e To the best of our knowledge, we propose the first
prompt learning paradigm for specific domains. By in-
troducing the specific domain foundation model, the pro-
posed domain-controlled prompt learning provides better
domain-adaptive prompts.

* A novel noise-adding strategy is proposed to explic-
itly address the issue of overfitting in domain-controlled
prompt learning, enabling a wider solution space.

e Our method is extensively evaluated on specific do-
main datasets. The experimental results demonstrate our
method achieves state-of-the-art performance.

937

Related Work

Vision Language Models. Vision Language (V-L) mod-
els aim to build a cohesive alignment between images and
languages to learn a shared embedding space that encom-
passes both modalities. Conventional V-L models typically
comprise three key components: a visual encoder, a text
encoder, and an alignment loss. Visual images were of-
ten processed using hand-crafted descriptors (Elhoseiny,
Saleh, and Elgammal 2013; Socher et al. 2013) or neural
networks (Frome et al. 2013; Lei Ba et al. 2015), while
texts were typically encoded using pre-trained word vec-
tors (Socher et al. 2013; Frome et al. 2013) or frequency-
based descriptors (Schnabel et al. 2015; Gong et al. 2018).
The visual and textual representations were then aligned us-
ing techniques like metric learning (Frome et al. 2013) or
multi-label classification (Joulin et al. 2016).

However, recent advancements in V-L models (Radford
et al. 2021; Jia et al. 2021; Yao et al. 2021; Yuan et al. 2021;
Zhai et al. 2022) have revolutionized the field by seamlessly
integrating the two modalities through joint learning of im-
age and text encoders in an image-text pair alignment fash-
ion. For example, models like CLIP (Radford et al. 2021)
and ALIGN (Jia et al. 2021) leverage an extensive corpus
of approximately 400 million and 1 billion image-text pairs,
respectively, to train their multi-modal networks. This ap-
proach enables the recent V-L models to generate highly in-
formative cross-modality representations, leading to excep-
tional performance across various downstream tasks, includ-
ing few-shot and zero-shot visual recognition (Gao et al.
2021; Zhang et al. 2021). Furthermore, by carefully tailor-
ing V-L models and effectively utilizing the cross-modality
representations, traditional image recognition (Conde and
Turgutlu 2021; Fu et al. 2022), object detection (Feng et al.
2022; Bangalath et al. 2022), and semantic segmentation (Li
et al. 2022; Liiddecke and Ecker 2022; Rao et al. 2022) tasks
have also achieved promising performance improvements.

Prompt Learning in Vision Language models. V-L
models can be adapted to downstream tasks using either
full fine-tuning or linear probing approaches. However, full
fine-tuning is computationally intensive and may degrade
the previously learned cross-modality representations. On
the other hand, linear probing limits the zero-shot capabil-
ity of models like CLIP. To address these challenges, in-
spired by prompt learning in natural language processing,
many algorithms (Zhou et al. 2022b,a; Khattak et al. 2023;
Wang et al. 2022b; Ge et al. 2022) have been proposed to
efficiently adapt V-L models in the prompt tokens learn-
ing manner. For instance, CoOp (Zhou et al. 2022b) intro-
duces context optimization to adapt CLIP by using learn-
able context vectors while keeping the pre-trained parame-
ters fixed. However, CoOp’s learned context has limited gen-
eralizability and suffers from overfitting issues in base cate-
gories. To overcome these limitations, CoCoOp (Zhou et al.
2022a) proposes conditional context optimization, which
provides instance-conditioned prompt tokens. While previ-
ous methods focus on efficient prompt learning in CLIP’s
language branch, the visual branch is few considered. Ad-
dressing this gap, MaPLe (Khattak et al. 2023) proposes
multi-modal prompt learning to simultaneously adapt vi-
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Figure 2: Overview of our proposed Domain-Controlled Prompt Learning (DCPL) framework. Introducing the large-scale
specific domain foundation model (LSDM) to provide domain foundation knowledge, DCPL provides domain-adaptive prompts
to respectively control the visual and language branch in a directly incorporating manner. Additionally, a noisy-adding strategy
is further proposed to help the model escape the suboptimal solution in a global domain oscillation manner.

sion and language representations, which successfully im-
proves the cross-alignment. However, existing algorithms
rarely consider the adaptation problem when transitioning
from the natural image domain to specific domains like
RSIs, and medical images. This lack of domain awareness
or domain-transfer mechanism leads to an inadequate per-
ception of specific domain images and results in subopti-
mal performance. To handle this issue, we propose domain-
controlled prompt learning for specific domain images to
provide domain-adaptive prompts.

Method

To provide domain-adaptive prompts, our proposed method
(DCPL) first introduces the large-scale specifc domain
foundation model into CLIP to achieve domain-controlled
prompt learning. Figure 2 shows the overall architecture.
More specifically, to better transfer CLIP from the natu-
ral domain to specific domains, the large-scale specific do-
main foundation model (LSDM) is first introduced to pro-
vide specific domain features as the specific domain knowl-
edge. Then, through the designed control nets, the specific
domain features could be respectively transferred into lan-
guage domain bias and visual domain bias. By adding the
language domain bias into the learnable context vectors and
incorporating the visual domain bias into the visual fea-
tures, the networks are controlled to have domain-adaptive
prompts. Simultaneously, to help the network search solu-
tion in a broader space, the noise is adaptively added to the
visual features to perform a global domain oscillation. Be-
low we first introduce the pre-trained CLIP (Radford et al.
2021) and the introduced LSDM (Wang et al. 2022a; Ma and
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Wang 2023). Then, we illustrate the proposed DCPL.

Review of CLIP

CLIP mainly contains a visual encoder and a text encoder,
which could respectively generate image embeddings and
corresponding text embeddings. We follow the setting in
previous methods (Khattak et al. 2023; Zhou et al. 2022a) to
adopt the vision transformer (ViT (Dosovitskiy et al. 2020))
based CLIP model. For the visual encoder, I € RFxWx3
would be firstly spilled into M fixed-size patches, which are
further reshaped as patch embeddings £, € R¥*d»_ Then
the patch embeddings would be propagated into the trans-
former layers with the learnable category tokens C),. To ob-
tain the final image embeddings » € R%, the category to-
kens C; from last layer would be projected into the common
Visual-Language feature space:

x =VisProj(Cy) (D

In the test encoder, the text descriptions for images would
be first tokenized into the words and further projecting them
to word embedding W;. Subsequently, the word embeddings
would be inputted into transformer layers. Similarly, the text
embeddings W; from the last layer are projected into the
common Visual-Language feature space to obtain the final
text embeddings w € R%:

w = WordProj(w;) 2)

With these image embeddings and the corresponding text
embeddings, the CLIP would maximize the cosine similar-
ity between the image and its matched text while minimize
the cosine similarity between the image and its unmatched
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text. After training, the CLIP would be directly leveraged
to perform the zero-shot classification. Particularly, the w;
is generated from the hand-craft prompt, such as “a photo
of category”, where category is the i-th class name. Then,
suppose there are C' categories and the visual embedding of
the image is z, the probability of the image belonging to ¢-th
class name is produced by:

exp(sim(z,w)/T)

plylr) = =& :
> i exp(sim(z,w)/T)

where sim denotes the cosine similarity and 7 is the adjust-

ing temperature parameter.

3

Large-Scale Specific Domain Foundation Model

The Large-Scale Specific Domain Foundation Model
(LSDM) (Sun et al. 2022; Wang et al. 2022a; Ma and Wang
2023) is recently proposed to provide better representations
for downstream image processing tasks like RSIs, medical
images, etc. Inspired by this, the large-scale remote sens-
ing foundation model (LRSM) (Wang et al. 2022a) and
MedSAM (Ma and Wang 2023) are respectively utilized
to provide basic domain knowledge for RSIs. The LRSM
mainly adopt ViT (Dosovitskiy et al. 2020) and ViTAE (Xu
et al. 2021) architectures, and the networks are trained in
an MAE (He et al. 2022) manner with millions of RSIs.
MAE aims to recover the masked images with the visible
parts in an encoder-decoder architecture. The network is op-
timized by minimizing the loss between the recovered re-
gions and the ground-truth masked regions. Harnessing the
power of a meticulously curated dataset comprising over one
million medical images, MedSAM (Ma and Wang 2023) are
pre-trained for downstream medical image processing tasks.
Since we need to control the visual and language branches
in the cross-modality space, the pre-trained encoder of the
LSDM network is leveraged to provide the specific domain
embeddings R;, as the basic specific domain knowledge.

DCPL: Domain-Controlled Prompt Learning

Existing prompt learning methods all ignore the adaption
problem from the natural domain to the specific domain like
the remote sensing domain. This negligence would result in
the specific domain images being handled with an inappro-
priate natural image processing pattern, further leading to
suboptimal performance. To tackle this challenge, we intro-
duce the LSDM to provide specific domain knowledge to
control the visual and language to perceive the specific do-
main images with domain-adaptive prompts.

Give the input images I € RT*WX3the input images
would be propagated into the pre-trained encoder of LSDM
to generate the specific domain embeddings R, € R% as
the basic specific domain knowledge:

o = Epgirt!) @

Control the Language Branch. To control the language
branch, we first adopt the learnable context vectors in the
CoOp (Zhou et al. 2022b) as the basic prompt. Assuming
we have M context tokens {v§’, v§!, ..., v{" }. The language
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domain bias D! € R% for the language branch is gener-
ated by D! = frc(Ry), where frc(-) denotes the designed
language control net. By directly incorporating the domain
bias Dy into the context tokens, the basic context tokens are
transferred into the specific domain:

vt (Ry) = vt + Dy,m € {1,2,..M} (5)

m

Then the final domain-adaptive prompt could be defined as
t; (Rb) = {Uft (Rb), Ugt (Rb), ey Uﬁf[(Rb), Ci}, where 7 de-
notes i-th category, and C; means the category name.

Control the Visual Branch. We first compute the visual
domain bias DY € R% through the designed visual control
netfrco(-): DY = fvc(Ry). Since the specific domain em-
beddings have the same modality as the final image embed-
dings = € R% . Thus, the generated domain bias could be di-
rectly fused with z to directly generate the domain-adaptive
image features x4(Rp):

xd(R(,) =x+ Dg (6)

In this manner, both prompts for the visual and language
branches are directly controlled by the introduced specific
domain knowledge Rj, which helps the model process the
specific domain images in a correct specific domain percep-
tion manner.

Noisy-Adding Strategy. As discussed in CoCoOp (Zhou
et al. 2022a), prompt learning methods tend to be overfit-
ted in the base categories and not generalizable to wider un-
seen classes within the same task. CoCoOp tends to handle
this problem with an instance-conditional network. How-
ever, we tend to solve it in a more explicit manner. Nor-
mally, we could adopt the dropout or mutation operations to
solve this. However, these methods are actually local sam-
pling strategies or point-based modifications. This means
the prompt learning network is still searching for solutions
in the oscillation-limited domain. The inference process in
diffusion models (Ho, Jain, and Abbeel 2020; Nichol and
Dhariwal 2021) would add random noise to escape the trivial
solutions and search for better solutions in complex space.
Inspired by this, we also randomly sample the noise to help
the model escape the suboptimal solution and search for
the solutions with the global domain oscillate. Particularly,
given the Gaussian noise z, we first compute the adaptive ad-
justing factor o,,, by computing the mean of image embed-
dings: 0,,, = Mean(x). Then, the adaptive adjusting factor
is leveraged to scale the sampled Gaussian noise. To directly
handle the overfitting problem, the noise would be directly
added to the domain-adaptive images features x4(Rp):

ZTq(Ry) = za(Ry) + 0mz N

Finally, the probability of the image belonging to i—th cate-
gory name is changed from equation 3 to:
exp(sim(Zq(Ry), ty(Rs))/T)

plyle) = S, exp(sim(Za(Ry), ti(Ry))/7)

®)

Experiments

To assess the effectiveness of proposed method, we con-
ducted extensive experiments using RSIs and medical im-
ages as examples, covering three distinct problem settings:



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Base Novel HM Base Novel HM Base Novel HM
CLIP 71.19 71.33 70.63 CLIP 64.50 60.30 62.33 CLIP 70.60 62.60 66.36
CoOp 87.61 70.84 78.03 CoOp 79.37 5890 67.62 CoOp 87.30 6420 73.99
Co-CoOp 91.82 6898 78.43 Co-CoOp 83.30 59.50 69.42 Co-CoOp 93.70 5990 73.08
MaPLe 93.12 71.71 80.42 MaPLe 85.23 59.60 70.15 MaPLe 95.30 5790 72.03
Ours (VITAE) 93.07 73.79 81.81 Ours (VITAE) 86.30 58.47 69.71 Ours (VITAE) 9533 62.07 75.19
Ours (ViT) 93.77 75.81 83.36 Ours (ViT) 87.05 59.30 70.54 Ours (ViT) 95.93 64.60 77.21

(a) Average over 8 datasets (b) MLRSNet (c) PatternNet

Base Novel HM Base Novel HM Base Novel HM
CLIP 66.70 95.30 78.48 CLIP 73.50 7040 71.92 CLIP 71.50 60.20 65.37
CoOp 84.80 89.13 8691 CoOp 87.63 70.37 78.06 CoOp 88.43 60.20 71.63
Co-CoOp 90.97 90.00 90.48 Co-CoOp 92.63 65.73 76.89 Co-CoOp 92.37 58.80 71.86
MaPLe 91.67 93.70 92.67 MaPLe 92.73 7457 82.66 MaPLe 9393 56.27 70.38
Ours (VITAE) 87.87 92.13 89.95 Ours (VITAE) 93.33 75.13 83.25 Ours (VITAE) 9493 62.83 75.61
Ours (ViT) 91.67 95.37 93.48 Ours (ViT) 9290 76.03 83.62 Ours (ViT) 95.03 64.64 76.94

(d) RSSCN7 (e) AID (f) RSICD

Base Novel HM Base Novel HM Base Novel HM
CLIP 80.60 68.00 73.77 CLIP 73.10 90.80 80.99 CLIP 69.00 63.00 65.87
CoOp 93.60 74.53 82.98 CoOp 9520 8240 88.34 CoOp 84.53 6697 74.73
Co-CoOp 9523 7157 81.72 Co-CoOp 97.10 77.00 85.89 Co-CoOp 89.27 69.37 78.07
MaPLe 97.70 7090 82.17 MaPLe 97.70  88.03 92.61 MaPLe 90.70 72.70 80.71
Ours (VITAE) 97.00 75.43 84.87 Ours (VITAE) 98.80 91.10 94.79 Ours (VITAE) 90.97 73.23 81.14
Ours (ViT) 98.00 80.00 88.09 Ours (ViT) 98.77 93.70 96.17 Ours (ViT) 90.80 72.80 80.81

(g) UCM (h) WHURS19 (i) NWPU

Table 1: Comparison with existing methods in base-to-novel generalization on 8 remote sensing recognition datasets. The best

results are shown in bold.

1) base-to-novel class generalization within a dataset, 2)
cross-dataset transfer, and 3) domain generalization. Due to
space limitations, more detailed special domain experiments
are illustrated in supplementary materials. In this section, we
offer a comprehensive overview of the utilized datasets and
the evaluation metrics employed. Furthermore, we provide
detailed insights into implementation specifics of our experi-
ments. Subsequently, we conduct an in-depth analysis of our
method’s performance in each of aforementioned problem
settings. Additionally, we performed ablation experiments
to elucidate the effectiveness of our proposed approach.

Experimental Details

The proposed method was evaluated on eight remote sens-
ing datasets, namely MLRSNet (Qi et al. 2020), Pattern-
Net (Zhou et al. 2018), RSSCN7 (Zou et al. 2015), AID (Xia
et al. 2017), RSICD (Lu et al. 2017), UCM (Yang and
Newsam 2010), WHURS19 (Dai and Yang 2011), and
NWPU (Cheng, Han, and Lu 2017). Consistent with pre-
vious methods (Khattak et al. 2023), we employed accuracy
and Harmonic Mean (HM) as evaluation metrics. The HM is
computed as follows:

M — 2 X ACCbase X Accnovel

Accbase + Accnovel (9)
Here, Accpqse denotes the accuracy for base category, and
Accpove; denotes the accuracy for novel category. It is crit-
ical to note that the reported results are averaged over three
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runs. For the base-to-novel generalization setting, experi-
ments were conducted on all eight remote sensing datasets.
In the cross-dataset generalization and domain generaliza-
tion settings, MLRSNet was used as the source dataset,
while the remaining datasets served as the target datasets.
We implemented our method based on MaPLe and adopted
similar training details. All experiments were conducted us-
ing a few-shot training strategy with 16 shots, randomly
sampled for each class. Pre-trained ViT-B/16 CLIP model is
used as the basis for prompt tuning. The training process for
all models lasted for 5 epochs, employing a batch size of 4
and a learning rate of 0.0035. We utilized the SGD optimizer
and trained models on a single NVIDIA A100 GPU. The
template for the word embeddings is "a photo of category’.
We kept the hyperparameters consistent across all datasets
to ensure fair comparisons. The language and visual control
networks were implemented as two independent networks
with the same architecture. Each network consisted of two
linear layers followed by a ReLU activation layer.

Generalization from Base-to-Novel Classes

Prompt learning aims to ease the application of large-scale
models to various tasks, emphasizing effective generaliza-
tion from familiar to unfamiliar classes. To study it, we
conducted comprehensive experiments on remote sensing
recognition datasets. Utilizing LRSM capabilities, we em-
ployed two pre-trained models, ViT and ViTAE, to integrate
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Source Target
MLRSNet PatternNet RSSCN7 AID RSICD UCM WHURS19 NWPU Average
CoOp 72.53 66.97 69.03 67.30 6350 77.57 85.47 70.43 71.60
Co-CoOp 71.70 65.67 68.80 66.63 6257 76.40 85.33 70.30 70.92
MaPLe 76.83 68.53 71.43 65.13 5953  79.90 85.23 72.80 72.42
Ours 77.73 67.13 71.60 68.73 64.17 78.50 86.97 72.87 73.46

Table 2: Comparisons between our method with state-of-the-art methods for cross-dataset generalization with MLRSNet dataset
as the source domain and remaining remote sensing datasets as the target domains. The best results are shown in bold.

Source Target
MLRSNet PatternNetv2 RSSCN7v2  AIDv2 RSICDv2 UCMv2 WHURSI9v2 NWPUv2 Average
CoOp 72.53 66.97 69.07 67.13 64.27 77.40 85.20 71.17 71.72
Co-CoOp 71.70 65.57 69.37 67.13 62.73 75.70 84.83 70.97 71.00
MaPLe 76.83 68.03 72.50 64.90 59.73 78.93 83.07 73.17 72.15
Ours 77.73 68.27 72.10 68.33 64.57 77.30 85.80 73.37 73.43

Table 3: Comparisons between our method with SOTA methods for single-source multi-target domain generalization with
MLRSNet dataset as the source domain and remaining datasets as the target domains. The best results are shown in bold.

domain-specific knowledge for remote sensing. Our method
was rigorously evaluated against state-of-the-art techniques
like zero-shot CLIP, CoOp, CoCoOp, and MaPLe, provid-
ing a robust benchmark in Table 1. Compared to the lead-
ing MaPLe approach, our method demonstrated significant
performance enhancements across both base and novel cat-
egories in remote sensing datasets. Notably, our ViT-based
approach exhibited superior overall performance. For base
categories, we achieved a noteworthy improvement from
93.07% to 93.7%. Particularly striking were the substan-
tial improvements for novel categories, rising from 73.79%
to 75.81%. Considering both base and novel classes, our
method outperformed MaPLe by 2.94%. Noteworthy was
the outstanding gain of 6.56%. on the RSICD dataset. An
intriguing observation arose when comparing the ViTAE
model, with its deeper architecture and greater expressive
capacity. Surprisingly, while ViTAE outperformed MaPLe
overall, it fell slightly short compared to the ViT-based ap-
proach. This suggests an upper limit to the utilization of re-
mote sensing knowledge, where a deeper architecture may
not always be optimal for prompt learning. Detailed analy-
sis revealed enhanced performance for the base categories
in AID, WHURS19, and NWPU datasets with our ViTAE-
based method. However, relatively lower performance in
novel categories consistently aligned with our earlier find-
ings, emphasizing the intricate relationship between model
depth, prompt learning, and dataset characteristics.

Cross-dataset Evaluation

To demonstrate our proposed method’s capacity for cross-
dataset generalization, we utilized MLRSNet for training
and subsequently evaluated the model on the remaining
seven datasets. Comparative results, outlined in Table 2,
highlight the notable performance of our method across di-
verse datasets. Particularly impressive was our method’s su-
perior performance on MLRSNet, achieving a substantial
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Methods Base Novel HM
CLIP 4983 41.83 45.18
CoOp 51.59 4377 46.81

Co-CoOp | 64.45 43.16 49.45
MaPLe 62.39 4440 49.01
Ours 66.11 48.75 53.08

+1.66 +4.35 +3.63

Table 4: Comparison (average) with existing methods in
base-to-novel generalization on medical image classification
datasets. The best results are shown in bold.

improvement of nearly 1%. The RSICD dataset witnessed
the most significant performance boost, emphasizing the ef-
ficacy of domain knowledge for this specific dataset. Despite
less favorable outcomes on PatternNet and UCM datasets,
our method surpassed all algorithms in terms of overall per-
formance with a 1.04% performance improvement.

Domain Generalization

To further validate the generalization ability of our proposed
method, we conducted an evaluation in the domain gener-
alization setting. Our approach was compared against other
state-of-the-art algorithms, and the comparative results are
presented in Table 3. Remarkably, our method consistently
outperforms the competing algorithms, achieving the high-
est average performance with a noteworthy 1.28% improve-
ment. It is important to note that while our method may
encounter challenges when applied to the RSSCN7v2 and
UCMV2 datasets, it excels on the RSICDv2 dataset, show-
casing an impressive performance gain of 4.84%. These
findings underscore the efficacy of incorporating domain-
controlled prompt learning in enhancing the generalization.
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Methods Base Novel HM
Baseline 97.70 70.90 82.17
Baseline+VC | 97.80 76.43 85.80
Baseline+LLC | 97.60 73.33 83.74
Ours 98.00 80.00 88.09

Table 5: Ablation study of domain-controlled prompt learn-
ing in different branches. VC and LC individually denote
Visual and Language domain-controlled prompt learning.

Methods Base Novel HM
Baseline 97.70 70.90 82.17
Dropout(0.3) 97.78 77.83 86.67
Dropout(0.5) 97.30 77.67 86.38
Mutation(0.05) 97.60 71.67 82.65
Mutation(0.1) 97.20 71.57 82.44
Ours 98.00 80.00 88.09

Table 6: Ablation study of overfitting-tackling strategies.

Experiments on Other Domain

To further validate the effectiveness of our proposed method,
we conducted comprehensive experiments on medical do-
main datasets, including BTMRI (Nickparvar 2021), CHM-
NIST (Kather et al. 2016), and CCBTM (Hashemi 2023).
The comparative results are summarized in Table 4. Specif-
ically, our method achieves an impressive 1.66% perfor-
mance improvement for base categories and an even more
substantial 4.35% improvement for novel categories. When
considering the overall performance metric, Harmonic Mean
(HM), our method exhibits a significant 3.63% improvement
compared to other algorithms. These compelling results in-
dicate the efficacy of our method.

Ablation Study

Domain-Controlled Prompt Learning. In order to analyze
the impact of different components in domain-controlled
prompt learning, we conducted separate experiments for
both the visual and language branches. The evaluations were
performed on the UCM datasets, and summarized in Ta-
ble 5. Obviously, incorporating domain-controlled prompt
learning leads to performance improvements. Specifically,
controlling the visual branch yields substantial performance
gains, particularly in novel categories, resulting in an overall
improvement of 3.63%. Simultaneously, domain-controlled
prompt learning in the language branch contributes to an
overall improvement of 1.57%. These findings highlight the
effectiveness of domain-controlled prompt learning in bene-
fiting both the visual and language branches.

Different Overfitting-Tackling Strategies. We adopt the
proposed noisy-adding strategy to explicitly solve the over-
fitting problem. Adopting dropout or mutation operations
seems to be a plausible solution. Thus, we implement ex-
periments on the UCM dataset to distinguish our method
from other strategies, and the results are shown in Table 6.
The dropout and mutation operations could both bring per-
formance improvements. The dropout with a rate of 0.3 has
a better performance than a rate of 0.5, and the mutation
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Figure 3: The ablation study of noise-adding strategy across
eight remote sensing datasets.

with 5 percent has a better performance than the 10 percent.
Though these operations could bring some performance im-
provements, our noisy-adding strategy could have obviously
better performance improvements. This phenomenon sug-
gests the local sampling in dropout and point jittering in
mutation are insufficient in escaping suboptimal solutions,
yet our method helps the network have a broader solution
exploration in a global domain oscillation manner.
Noise-Adding Strategy across Datasets. To comprehen-
sively assess the impact of the noise-adding strategy, we
conducted experiments across eight diverse remote sensing
datasets. The performance gains achieved by incorporating
the noise-adding strategy are illustrated in Figure 3. The re-
sults demonstrate that the noise-adding strategy consistently
improves performance across the majority of datasets, with
only minor performance decreases observed in the NWPU
and AID datasets. Remarkably, the noise-adding strategy
leads to an overall performance improvement of 1.87%.
This observation highlights the effectiveness of the proposed
strategy to mitigate overfitting and boost performance.

Conclusion

Focusing on the neglected natural-to-specific adaptation
challenge, we introduce large-scale specific domain foun-
dation models to provide specific domain knowledge and
further perform domain-controlled prompt learning in both
visual and language branches for specific domain images.
To overcome the base-to-novel overfitting challenge, a novel
noisy adding strategy is proposed to explicitly escape the
suboptimal solutions in a global domain oscillation manner.
To validate the effectiveness of our method, we conduct ex-
tensive experiments using specific domain datasets, produc-
ing compelling experimental results that demonstrate the su-
periority of our proposed approach.
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